
Abstract 

Recommendation Systems are central in current 
applications to help the user find useful informa-
tion spread in large amounts of post, videos or 
social networks. Most Recommendation Systems 
are more effective when huge amounts of user 
data are available in order to calculate similari-
ties between users. Educational applications are 
not popular enough in order to generate large 
amount of data. In this context, rule-based Rec-
ommendation Systems are a better solution. 
Rules are in most cases written a priori by do-
main experts; they can offer good recommenda-
tions with even no application of usage informa-
tion. However large rule-sets are hard to main-
tain, reengineer and adapt to user goals and pre-
ferences. Meta-rules, rules that generate rules, 
can generalize a rule-set providing bases for 
adaptation, reengineering and on the fly genera-
tion. In this paper, the authors expose the bene-
fits of meta-rules implemented as part of a meta-
rule based Recommendation System. This is an 
effective solution to provide a personalized rec-
ommendation to the learner, and constitutes a 
new approach in rule-based Recommendation 
Systems. 

1 Introduction 

Nowadays, when the amount of information is becoming 
over-exceeding, Recommendation Systems emerge as the 
solution to find the small piece of gold in mountains of 
garbage. In electronic commerce, knowledge management 
systems, social networks, and other fields and markets, 
they help users find useful products, lessons or contribu-
tions. There are many inputs which can be used as infor-
mation sources like i.e. user similarities with other users, 
user profile, and user preferences. All these inputs provide 
the system with valuable data to suggest the user the best 
way to follow or the most appropriate choice. Further-
more, people ratings [Rocchio, 1971] are another impor-
tant source of information for Recommendation Systems.  

Other sources of information are i.e. user interests, 
goals, and objectives, all of them more useful for educa-
tional applications. However, educational applications 
lack of enough amounts of data to establish user similari-
ties in a precise way. In this case, recommendations are 
based on information stored in a user model which is ex-
tended explicitly or implicitly. There are also hybrid ap-

proaches which ask some minimum information to the 
user and the rest is obtained in an implicit way.  

For educational applications rule-based Recommenda-
tion Systems have proved as more useful than other sys-
tems [Abel et al., 2008]. In general acceptable recommen-
dations can be obtained with a small amount of informa-
tion. However, when the system achieves a better know-
ledge of the user, recommendations increase precision 
since rules evolve in parallel or new ones are included to 
the rule-set. In general expressing user preferences, goals 
and interest with rules can be difficult [Anderson et al., 
2003] to solve this problem complex and large rule-sets 
are generated. This solution carries another problem: the 
size and complexity of the rule-set can be unaffordable. In 
addition, it would be desirable to generate rules based on 
data extracted from a database or from the user, increasing 
this way user adaptability. Such generation could also be 
on the fly, allowing the rule-set to be up to date. 

In this paper we propose a solution to this problem by 
the introduction of a new abstraction level: meta-rules, 
which provide foundations for effective adaptive and per-
sonalized processes, such as in, e.g. learning. This ap-
proach has been implemented in the context of Meta-
Mender, our meta-rule-based Recommendation System. In 
this paper, we also describe the Meta-Mender architecture 
and implementation to contextualize the meta-rules ap-
proach. 

2 Background and Related Work 

In the field of educational recommendations there are ap-
proaches like [El Helou et al., 2009] which use a modified 
page ranking algorithm for the generation of recommen-
dations. The algorithm considers actors, activities and 
resources as main entities. Here user’ activity is used to 
create a directed graph representing the entities  and links 
between them are generated. Later a rank is assigned to 
nodes and this information is used to generate recommen-
dations for a user query. This work is valuable for us be-
cause in general meta-rules use as input the user’s activity 
for the automatic generation of rules. This input comes as 
in the referenced paper from actors, activities and re-
sources. The main difference is that in our approach it will 
be generated a set of rules instead of a directed graph. 

In the field of rule-based recommenders there are some 
relevant reports in the literature [Abel et al., 2008], for 
example, describes a rule based Recommendation System 
for online discussion forums for the educational online 
board Comtella-D. Actually the system is able to call sev-
eral encapsulated recommenders, collaborative filtering or 
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content-based recommenders, and the rules decide accord-
ing to the amount and type of user data which recom-
mender should be called. In doing so, the rules define a 
meta-recommender which is very interesting but tangen-
tial to this work. 

An advantage of rule-based recommenders against oth-
er approaches is how easy it is to generate explanations 
for these systems. In many cases, it is almost impossible 
to explain to the user how a Recommendation System has 
derived a conclusion. If the user is not sure of a given 
recommendation and-or prefers to receive some logic-
supported arguments which help him to choose a given 
solution, rules-based systems are the best ones prepared to 
solve this issue. This problem is usual in automated colla-
borative filtering systems [Herlocker, 1999], where the 
lack of explanations decreases the system acceptance and 
affects user trust. 

RACOFI [Anderson et al., 2003] is defined by its au-
thors as a rule-applying collaborative filtering system. 
This system is a hybrid conformed by a collaborative fil-
tering recommender plus a rule-based recommender. It 
was designed for recommending Canadian music but its 
authors argue that the system is content independent. 
RACOFI uses rules to modify, for example, ratings of 
items based on item similarity. This means that if a user 
rates an album as highly original, other albums’ originali-
ty of the same author will be incremented. This paper is 
very useful for us because it contains a large set or rules 
which will be used to prove the synthesis power of a me-
ta-rule approach.  

With regards to meta-rules, we have not found anything 
similar to our proposal. Initially used by LISP [McCarthy 
et al., 1985] and other languages, the closest concept is 
rule templates, followed by Open Rules

1
 and the Object 

Oriented RuleML
2
 approach of handling rules as data, 

thus generating entire rules from its component parts. 
These approaches are very valuable. However, our ap-
proach of producing rules using imperative programming 
comprises these two approaches and, at the same time, it 
seems to be more powerful. For instance, Meta-Mender 
can easily generate meta-rules, or other supplementary 
features, easily. In addition, as it will be shown in the next 
sections, using meta-rules in Rule-based Recommender 
Systems is not common, and it provides other benefits like 
maintainability, reengineering and on-the-fly generation. 
Finally, the introduction of another level of abstraction is 
very valuable for adaptation and performance.  

For the implementation of a rule-based recommender 
using a rule-management system can be of great help. In 
this respect, Meta-Mender makes use of DROOLS 
[DROOLS] as rule engine. DROOLS is a business rule 
management system (BRMS) with a forward chaining 
inference-based rules engine (the so-called rule system). 
This system makes use of an enhanced implementation of 
the Rete algorithm [Forgy, 1982]. DROOLS is designed 
to allow plug-able language implementations.  Currently, 
rules can be written in Java

3
, MVEL

4
, Python

5
, and 

Groovy
6
. It is also possible to write functions to be ex-

ecuted as the consequence of any rule; this feature has 

                                                 
1 http://openrules.com/index.htm 
2 http://ruleml.org/indoo/indoo.html 
3 http://www.sun.com/java/ 
4 http://mvel.codehaus.org/ 
5 http://www.python.org/ 
6 http://groovy.codehaus.org/ 

been used to generate rules from meta-rules. It is also 
possible to assign a priority to rules, which is a way to 
address the execution order by the rule designer. 

3 The Meta-Mender Architecture and Im-

plementation 

As aforementioned, the Meta-Mender Recommendation 
System uses DROOLS as the rule engine. This rule sys-
tem works as follows, first it is required to feed the engine 
with a set of rules (or meta-rules in this case); these meta-
rules are defined by the professor or by the technical team 
using the application requirements. To define meta-rules 
is a more complex task than to define rules. In this re-
spect, future research will be done in order to generate 
meta-rules automatically. A meta-rule example will be 
shown in the next subsection. Later some facts should be 
added to the engine. These facts are extracted commonly 
from a database, be it relational or ontological. As the 
facts are inserted, rules antecedents are checked for com-
pleteness and once the engine is started, rules that fulfill 
its antecedents are fired and the corresponding conse-
quences are executed. The order of execution is arbitrary, 
so rule priority must be stated if the order of execution is 
important for the final result. In our case the order is im-
portant because the output of this iteration will be a file of 
rules and these files have a structure, so the rules that gen-
erate the header must be executed before the rules that 
generate the body. The output is used for a second itera-
tion from which the final recommendations are obtained. 
See Figure 1 for a simplified representation of the recom-
mender architecture and Figure 2 for an example of a me-
ta-rules file, this file can generate rules for recommending 
the next course to follow in a .LRN educational applica-
tion. See that at the consequence of the meta-rules a func-
tion is called, this function receives some information that 
allows it to write the rules wanted. 

 
Figure 1. The Meta-Mender Architecture 

 
It is worth mentioning that in DROOLS, rule conditions 

cannot contain functions, this is a common issue in rule 
systems the behind reason is performance. The condition 
is formed by a conjunction of patterns that must be 
matched by the inference algorithm. These patterns cor-
respond at the end with object instances. So rule condi-
tions are in a way fixed and must be defined statically. 
The only way to adapt a rule-set to changing conditions is 
by generating rules dynamically. These changing condi-
tions can be: 

• Changes in the application architecture, this includes 

the addition of a new forum or social network. 



• Changes in membership conditions, access restric-

tions, or similar. 

• Changes in model, new classes addition, modifica-

tion of existing classes, etc. 

It is clear that a static defined condition cannot cope 
with all these changes. So if there is a way for generating 
rules according to current system conditions and proper-
ties, it could save time and effort as long as increase adap-
tation. See Figure 3 for an example of a rules file obtained 
from the meta-rules file of Figure 2. In this figure it can be 
noted that the recommendation list is created as rules con-
sequences are executed. The function AddRecommen-
dedCourse() builds this list and the parameter (10 - 
$courseLevel) allows giving more priority to those 
courses with a lesser level of complexity. This criterion 
can be personalized to every student. 

Meta-rules can handle changing conditions. Different 
rules can be generated depending on user data, system 
properties, etc.; also rules priority can be different which 
implies different recommendations. 
 

package service 

 

//global variables definitions 

global java.lang.String filePath; 

 

//rules 

rule Header 

//empty antecedent, executes always 

  when    

  then 

    WriteHeader(filePath); 

end 

 

rule CourseSequenceRule 

  salience -1 //priority 

  when //antecedent 

  //classId is an object field 

    LRNClassData($classId : classId,  

$className : className) 

    LRNStudentData($studentId :  

      studentId,  

      $studentName : studentName) 

    LRNClassPerStudent(classId ==  

      $classId, studentId == $studentId) 

  then 

    WriteClassMembershipRule(filePath,  

      $studentName, $className); 

end 

 

//function implementation 

function void WriteHeader( 

String filePath) { 

 ... 

} 

 

function void WriteClassMembershipRule( 

String filePath,  

String studentName,  

String className) { 

    ... 

} 

 

Figure 2. A Meta-rule File 

 

Rule output can be related with rule priority since it 
will be possible to order the results and give the user a list 
of recommendations ordered by priorities. 

4 Practical Implementations of the Meta-

Mender Recommendation System 

The Meta-Mender recommender is been used at present as 
part of two projects. The first one, TELMA

7
, is focused on 

the application of Communications and Information 
Technologies in lifelong training of surgeons of Minimal-
ly Invasive Surgery (MIS). 

TELMA develops an online learning environment 
which manages the content and knowledge generated by 
users in an efficient way. TELMA creates a new training 
strategy based on knowledge management, cooperative 
work and communications and information technologies 
aiming to the improvement of the formation process of the 
surgeons of MIS. 

In order to cover all these needs and achieve its goals, 
TELMA develops a cooperative and adaptable learning 
platform. This platform is composed of a training system 
which integrates a tool for the authoring of didactic mul-
timedia content, a Recommendation System and a social 
network. The Recommendation System, Meta-Mender, 
manages the knowledge generated by the users creating 
the foundations for adaptive learning. The learning plat-
form allows the construction of a complete knowledge 
base thanks to the reuse and sharing of the knowledge 
generated for the professionals who access the learning 
system. 
 

package service 

 

global domain.RulesOutData outData; 

 

rule MathI 

  when 

    UserData($userName : name,  

      $userId : id) 

    Course($courseLevel : courseLevel,  

      $courseName : name, id == 1) 

    not (TotalCoursePercentage(userId ==  

      $userId, courseId == 1)) 

  then           

    outData.AddRecommendedCourse( 

     $courseName, 10 - $courseLevel,  

     $userName); 

end 

 

rule AlgebraI 

  when 

    UserData($userName : name,  

      $userId : id) 

    Course($courseLevel : courseLevel,  

      $courseName : name, id == 2) 

    not (TotalCoursePercentage( 

      userId == $userId, courseId == 2)) 

    exists (TotalCoursePercentage( 

      userId == $userId, courseId == 1)) 

  then           

    outData.AddRecommendedCourse( 

      $courseName, 10 - $courseLevel,  

      $userName); 

end 

 

Figure 3. A Rules File Obtained from the Meta-rules 

File of Figure 2  

 
The second project, GAME·TEL

8
, is focused on the 

creation of a system for the design, development, execu-
tion and evaluation of educational games and simulations, 

                                                 
7 www.ines.org.es/telma 
8 www.ines.org.es/gametel 



adapted to student preferences, educational goals, profile, 
[Burgos et al., 2007]. 

The games and simulations are conversational adven-
tures which are both usable and understandable. These 
characteristics benefits to the content creator, the profes-
sor in most cases, as long as to the final user, usually the 
student [Moreno-Ger et al., 2008; Torrente et al., 2008]. 

The software system is composed of several intercon-
nected modules which allow the integration and inter-
communication between games and simulations and sev-
eral tools widely used for communities of professors. In-
itially these tools are the learning management systems 
Moodle and .LRN, and the authoring and learning units 
execution system LAMS [Burgos et al., 2006; Moreno-
Ger et al., 2006]. In this context the Meta-Mender Rec-
ommendation System will suggest to users the best learn-
ing path according with their preferences, goals and objec-
tives and will help with the game adaptation problem. As 
an example, the following meta-rule allows the generation 
of rules for the forums that the user has access to, see Fig-
ure 4. 
 

rule ForumRecommendationRule  

salience -1   

when 

  TelmaUser($userId : userId, $userName :  

    userName, $mainInterest:  

    mainInterest) 

  TelmaForum($forumId : forumId,  

    $mainTopic : mainTopic) 

  TelmaForumAccessPerStudent(forumId ==  

    $forumId, userId == $userId)  

then 

  WriteForumRecommendationRules(filePath,  

    $userId, $userName, $forumId,  

    $mainTopic); 

end 

 

Figure 4. A Meta-rule from Telma Application 

 
This kind of rules allows for adaptation in case of the 

addition of a new forum to the application, a fact that can 
happen at any moment. 

 
modify(amount->"0.5"; 

    comment->"Adjusting originality  

    rating (by 0.5) for high ratings  

    of other albums by this artist."; 

    variable->originality; 

    product->?item) 

  :- 

    rating(itemID->?item2; 

    originality->"9.0"!?REST0), 

    product(itemID->?item2; 

    artist->?artist!?REST1), 

    product(itemID->?item; 

    artist->?artist!?REST2). 

 

Figure 5. A Modify Rule from the RACOFI System 

5 Expressive Power of Meta-rules 

In this section we provide an example of the expressive-
ness power of meta-rules. We expose how a large set of 
rules can be generated from some few meta-rules.  
 

tax(amount->"%15"; 

    comment->"15 percent HST") 

  :- 

    location(nb). 

 

Figure 6. A Tax Rule from the RACOFI System 

 
To this extend, we lean on the set of rules published on 

[Anderson et al., 2003]. This rule-set contains 20 rules 
that modify user ratings based on item similarity. An ex-
ample of these modify rules can be seen on Figure 5. 

Other set of rules are the tax rules, there are 20 tax rules 
in the referenced paper. See Figure 6 for an example of 
these rules. 

Finally the last set of rules is the so-called: NotOf-
fered rules. A sample of these rules can be seen on Fig-
ure 7. There are 12 such rules in the rule-set. 
 

NotOffered(itemID->?itemID) 

  :- 

    userLevel(beginner), 

    product(itemID->?itemID; 

      impression->?IMP!?REST), 

    $lt(?IMP,7,true). 
 

Figure 7. A NotOffered Rule from the RACOFI Sys-

tem 

 
So the RACOFI rule-set defines more than 50 rules. 

This number is not very high but its maintainability can 
consume a lot of time. Also it is very hard to confirm that 
the rule-set is consistent with current data, suppose that it 
is necessary to modify a tax or a rating, it would be neces-
sary to traverse the affected rules to check that everything 
is correct. Also on the fly rule generation, in order to in-
crease adaptation, is a feature not easily covered with a 
static rule-set. 
 

rule modifyMetarule 

  when 

    RatingAmountPair($amount : amount,  

      $rating : rating) 

    ProductMetadata($metadata : metadata) 

  then 

    WriteModifyRule(filePath, $metadata,  

      $amount, $rating); 

end 

 

rule taxMetarule 

  salience -1 

  when 

    TaxData($amount : amount,  

      $location : location) 

  then 

    WriteTaxRule(filePath,  

      $amount, $location); 

end 

 

rule notOfferedMetarule 

  salience -2 

  when 

    NotOfferedData($maximum : maximum,  

      $metadata : metadata, $student 

      student, $userLevel : userLevel) 

  then 

    WriteNotOfferedRule(filePath,  

      $maximum, $metadata, $student,  

      $userLevel); 

end 

 

Figure 8. A Meta-rule-set that Generates the RACOFI 

Rule-set 

 
The meta-rule approach discussed in this paper and im-

plemented in our Meta-Mender Recommendation System 
is very useful to solve the problems mentioned above. 
Identifying common rule´s structure it is possible to write 
a concise meta-rule-set able to generate on the fly any 



number of rules. This metadata, because meta-rules usual-
ly gets metadata as input, driven rule generation help solv-
ing the consistency problem, because rules can be regene-
rated at any moment after a change in the metadata. 

Adaptation is also enhanced because different rules can 
be generated depending on user goals, needs and interests. 
As a side effect the development time of a rule-set is dras-
tically reduced as long as a large number of rules can be 
generated with only one meta-rule. 

As an example a set of meta-rules able to generate the 
whole rule-set of the RACOFI system is shown in Figure 
8. 

 
function void WriteModifyRule( 

  String filePath, String metadata,  

  String amount, String rating)  

{ 

      FileWriter output = new  

        FileWriter(filePath, true); 

      MessageFormat mFormat = new  

        MessageFormat(""); 

      output.write(mFormat.format( 

        "modify(amount-> \"{0}\";\n",  

        new Object[]{amount})); 

      output.write( 

        mFormat.format( 

        "        variable->{0};\n",  

        new Object[]{metadata})); 

      output.write("        product->?item)\n"); 

      output.write("    :-\n"); 

      output.write(mFormat.format( 

        "       rating(itemID->?item2;" +  

        "{0}-     >\"{1}\"!?REST0),\n",  

        new Object[]{metadata, rating})); 

      output.write("       product(" +  

        "itemID->?item2;artist-" +  

        ">?artist!?REST1),\n"); 

      output.write("       product(" +  

        "itemID->?item;artist-" +  

        ">?artist!?REST2).\n"); 

  output.close(); 

} 

 
Figure 9. The WriteModifyRule Function 

 
In Figure 9 it can be seen a function that generates the 

modify rule-set of the RACOFI System. The rest of the 
functions referenced in Figure 8 are similar to this one. 

6 Conclusions and Future Work 

In this paper, we present a meta-rule based approach for 
rule generation. Meta-rules are rules that generate rules, 
and are able to generalize a rule-set providing bases for 
adaptation, reengineering and on the fly generation. In this 
paper, the benefits of meta-rules have been exposed. As 
an implementation example some details of Meta-Mender 
a meta-rule based Recommendation System have been 
also presented. The Meta-Mender Recommendation Sys-
tem is a component of, at present, two educational appli-
cations in development and test. The concept the Meta-
Mender is based on, meta-rules for adaptation starts a new 
branch in the recommendation field and broadens the 
scope for new solutions in the field. 

Meta-rules are an effective solution to provide a perso-
nalized recommendation to the learner, and constitute a 
new approach in rule-based Recommendation Systems. 

Meta-rules constitute a new abstraction level, which 
provides foundations for effective adaptive and persona-
lized processes, such as in, e.g. learning. This abstraction 
level is also highly valuable for adaptation. Rules can be 

different for different users or for the same user at differ-
ent periods of time. Meta-Mender is a recommendation 
system that implements this approach. 

At present, we use Meta-Mender in two R&D projects. 
In both, the next step is an evaluation phase with real data 
from actual users (in fact, two different, separate target 
groups). These two evaluation processes will provide a 
first-hand feedback of the implementation of Meta-
Mender. Out of these results, we will refine the engine 
and we will design a visual authoring tool for meta-rules. 
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