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Abstract. This paper focuses on resource-aware and cost-effective indoor-
localization at room-level using RFID technology. In addition to the
tracking information of people wearing active RFID tags, we also in-
clude information about their proximity contacts. We present an evalua-
tion using real-world data collected during a conference: We complement
state-of-the-art machine learning approaches with strategies utilizing the
proximity data in order to improve a core localization technique further.

1 Introduction

While approaches for outdoor localization can utilize various existing global
sources, e.g., GPS signals, mobile broadcasting signals, or wireless network sig-
natures, methods for indoor localization usually apply special installations (e.g.,
RFID or Bluetooth readers), or require extensive training and calibration efforts.

In this paper, we propose an approach for indoor localization using active
RFID technology: We focus on a cost-effective and resource-aware solution that
requires only a small number of RFID readers (Figure 1). Furthermore, our
method can be applied to installations, where readers cannot be positioned freely.
The latter constraint is encountered often, especially in buildings under mon-
umental protection. Our application context is a conference, where conference
participants wear active RFID tags for tracking, for memorizing their contact
information, and for the personalization of conference services. Therefore, we
present an analysis of data collected in a real-life context, in contrast to scenar-
ios that examine RFID localization in laboratory experiments, e.g., [18][12]. In
Section 3.1 we discuss additional challenges, that such an application faces and
that are difficult to implement in simulated scenarios. We consider a real-life
localization problem at room-level, i. e., the task to determine the room, that a
person is in at a given point in time.

Our contribution is three-fold: We present an analysis of the contact and
proximity data in order to prove the validity and applicability for the sketched



application. Additionally, we evaluate the benefits of several state-of-the-art ma-
chine learning techniques for predicting the locations of participants at the room-
level. We propose to utilize the (proximity) contacts of participants for improving
the predictions of a given core localization algorithm. We evaluate the impact of
different strategies considering the top performing machine learning algorithm.
The real-world evaluation data was collected at the LWA 2010 conference (of
the German Association of Computer Science) in Kassel, Germany3.

The rest of the paper is structured as follows: Section 2 discusses related work.
After that, Section 3 describes the approach for resource-aware localization at
room-level using RFID technology. Next, Section 4 features the evaluation of the
approach utilizing several machine learning algorithms and different strategies
for implementing the proximity contacts. Finally, Section 5 concludes the paper
with a summary and interesting directions for future research.

2 Related Work

The Global Positioning System (GPS) is the most widely used localization sys-
tem for outdoor positioning. It is based on a network of 24-30 satellites placed
in the orbit. One of the drawbacks of GPS is that it cannot be used for in-
door localization, because its signals are blocked by most construction materials.
Therefore, the research on indoor localization systems has received great interest
during the last decade.

For indoor localization several algorithms have been proposed, usually based
on angle of arrival (AoA) [19], time of arrival (ToA) [15] or time difference of
arrival (TDoA) [20] methodologies. On the one hand, these methods are highly
accurate in estimating the position of an object; on the other hand they consume
a lot of energy. Furthermore, they require expensive hardware and an extensive
deployment of suitable infrastructure. Another class of localization algorithms
estimates the position of a target based on the received signal strength [12]. Most
of these approaches use the log-distance path loss model [21] to estimate the
distance from the object to at least three reference points. Then, the possible
position of the object is calculated using triangulation. The disadvantage of
this approach is that propagation effects such as reflection, multi-path-fading or
phase-fluctuations limit the precision of positioning.

Scene analysis is another option to estimate the position of an object [4][18][6].
Usually, this technique works in two phases, the off-line learning phase and the
online localization phase. In the off-line phase, data about the received signal
strengths (RSS) for each point in the localization area is stored in a database
to save the localization points. In the online phase two scene analysis tech-
niques of predicting the position exist: k-nearest-neighbor (kNN) and proba-
bilistic methods. kNN predicts the position by finding the k closest fingerprints
in the database. The estimated location is the (weighted) centroid of the cor-
responding k locations. The probabilistic model selects the location with the
highest probability.

3 http://www.kde.cs.uni-kassel.de/conf/lwa10/
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In our experiments, we consider a different approach using a new generation
of cost-effective and resource-aware RFID tags, i.e., tags with a low power con-
sumption. These RFID tags (proximity tags) are developed by the SocioPatterns
project4 and the company Bitmanufaktur5; at the time of writing the project
will soon become open-source, see the SocioPatterns web site for more informa-
tion. The technical innovation of the applied tags is their ability to detect the
proximity of other tags within a range of up to 1.5 meters. Due to the fact, that
the human body blocks RFID signals, face-to-face contacts can then be detected.
In this context, one of the first experiments using RFID tags for tracking the
position of persons on room basis was conducted by Meriac et al. (cf., [16]) in
the Jewish Museum Berlin in 2007. Cattuto et al. [8] added proximity sensing
in the SocioPatterns project. Barrat et al. [13] did further experiments.

For several research questions, e.g., for social network analysis, it is rather
interesting to combine the movement and contact data of persons. To conduct
such analysis we apply active RFID tags that provide data from which we can
extract positioning data as well as contact data. The proximity-tags are primarily
developed for recognizing face-to-face contacts.

In the context of the presented approach, one additional problem concerns
the exact positioning information: Our hardware setting does not provide in-
formation (like ToA, TDoA, AoA, RSSI, ...) used for positioning in traditional
localization algorithms. Like the work of [16] we use the number of packages each
RFID reader received from each RFID tag in a specific time interval (for each
signal strength) to determine the users position. Compared to the work of [16]
we use a fingerprint technique to estimate the location of the user. In [16] the
participant is allocated to the room whose RFID readers received most packages
with the weakest signal strength. This approach works fine, but it is based on
the fact that at least two readers are placed in each room. Unfortunately, often
it is not possible to place the RFID readers at arbitrary positions, e.g., in older
buildings, or buildings with monumental protection.

Localization with proximity tags and readers as applied in our hardware
setting is challenging for different reasons: First, the number of packages per
second sent by the RFID tags is very low. Second, the position of RFID readers
can not be chosen freely and the number of readers should be as small as possible.
Third, as discussed above, the RFID readers do not offer additional information
(like ToA, RSS,...) about the received packages from proximity tags. Fourth, as
already described in previous work RFID properties like reflection and multi-
path-fading complicate the task of localization. For further reading about RFID
we refer to [10,11].

In this paper, we propose a resource-aware approach for indoor localization
using proximity tags. To the best of the authors’ knowledge, this is the first time
that the accuracy of such a localization approach is investigated in a real world
application. In contrast, to the presented approach all existing literature studied
their approaches under nearly optimal (laboratory) conditions, e.g., [18][12].

4 http://www.sociopatterns.org
5 http://www.bitmanufaktur.de
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3 Resource-Aware RFID Room-Level-Localization

In the following section, we first outline the resource-aware application scenario
using active RFID tags. After that, we describe the application of machine learn-
ing for room-level prediction of the tags’ location. Next, we summarize the strate-
gies for improving the accuracy of the applied methods by utilizing the proximity
contacts between the applied RFID tags.

3.1 Resource-Aware RFID Application Scenario

In this paper, we aim at a flexible and resource aware approach for localization
using RFID: It should require only a small number of readers, and should further
allow the free placement of readers not constrained to single rooms. E. g., a reader
might be assigned to several areas, or to larger areas in general. In our experience,
such a setting is highly relevant for practical applications, and also needed to be
taken into account for our real-world evaluation scenario. Further issues, that
have to be overcome in a real-world setting are the interference between tags – if
many tags are put into one location and signals transcending room boundaries,
i. e., walls or ceilings.

In summary, in a real-life setup the localization problem is much more com-
plicated compared to a simulated environment, using very many readers and
resources e. g., [16] . Below, we describe the hardware and system architecture
used in our localization experiment.

Hardware For our localization experiment at the poster session of a confer-
ence we asked each participant to carry an active RFID tag (see Figure 1).
The tags provide localization and proximity detection in a resource-aware and
cost-effective way, which conforms to our requirements. Every two seconds each
RFID tag sends one package in four different signal strengths (-18dbm, -12dbm,
-6dbm, -0dbm) to RFID readers placed at fixed positions in the conference area
(see Figure 2). Dependent on the signal strength the range of one package inside
a building is up to 25 meters. Each package is 128 bits long, encrypted, and con-
tains information about the tag id from the reporting RFID tag, signal strength
and CRC checksum. For more details, we refer to Barrat et al. [5] and [2]. The
continuous sending of RFID packages in uniform time-intervals (two seconds)
gives us the opportunity of determining the package-loss of an RFID tag at each
RFID reader. We use this information to create the characteristic RFID vectors.
Here, we note that we do not use the package loss explicitly. Instead we use the
number of packages an RFID reader receives from a tag.

One decisive factor, that makes proximity tags interesting for conference sce-
narios is the possibility to detect other proximity tags within a range of up to 1.5
meters. Since the human body blocks RFID signals, one can detect and analyze
face-to-face contacts in this way [5]. In this work, we show that this proximity
information helps to improve the localization accuracy. The information about
contacts is transmitted in the fourth and strongest signal strength of the tags.
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Thus, a tag sometimes sends more than one package (every two seconds) in that
strength, because more packages are needed to transport the contact informa-
tion. Since it is not possible to store information on the tags permanently, every
time-dependent information is lost, when a tag is out of the range of all RFID
readers.

The RFID readers (see Figure 1) receive RFID signals and forward them to
a central server via UDP where the signals are decrypted, analyzed and stored
in a database. Because of resource-awareness reasons the RFID readers do not
provide information like AoA or RSS of the received packages, which could help
to additionally improve the accuracy of the localization results.

Fig. 1. Proximity tag (left) and RFID reader (right)

3.2 Machine Learning for Prediction using RFID Data

As described in Section 3.1, each RFID tag sends one package in four different
signal strengths every two seconds. Similar to most fingerprint approaches we
assume that the number of packages an RFID reader received is significantly
dependent on the position of the sending RFID tag, i. e., when a tag is moved
away from the reader, the number of received packages will decrease. Therefore,
we can determine sets of characteristic vectors (fingerprints) for each room in
the conference area.

Observation vector space In a setting with R RFID readers and P proximity
tags, each transmitting on S different signal strengths, let l denote the length
of a time window and t a point in time. Further, let V lr (p, t) ∈ Ns (1 ≤ r ≤ R,
1 ≤ p ≤ P ) be an S-dimensional vector where the s-th entry is the number of
packages that RFID reader r received from proximity tag p with signal strength
s in the time interval [t− l, t]. The vector

V l(p, t) =
(
V l1 (p, t), V l2 (p, t), · · · , V lR(p, t)

)
(1)

– i. e., the concatenation of the vectors V lr (p, t) over all readers r, – is called the
package count vector or characteristic vector of the proximity tag p at time t.
The dimension of vector V l(p, t) is S ·R. With the parameter l one can control
the influence of older signals. For longer time intervals, the probability rises that
packages sent from a previous location influence the vector at the current time
point t.
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We consider the localization problem as a classification task. In the learning
phase, we create a set of fingerprints (training data) for each room, and learn
a classification model based on these fingerprints. In the online classification
(localization phase) we determine the position of a participant from his current
fingerprint, using the classification model. In this paper, we modify four state of
the art machine learning methods for that classification task by including prox-
imity contact information and analyze the resulting increase in their accuracy
due to these contacts.

Basic Room Prediction In the following, we outline the basic machine learn-
ing methods that we applied as a benchmark for predicting locations of the par-
ticipants, and as initial methods to be complemented with the contact strategies
described below. We briefly summarize their basic features, and discuss their
application using the RFID data. We refer to the basic localization methods as
the Loc-Basic approach.

Naive Bayes (nBay) While naive Bayes [17] is a rather simple approach, studies
comparing classification algorithms have shown that the naive Bayes classifier is
often comparable in performance with decision trees, while achieving high accu-
racy and speed being applied to large databases. Therefore, for the localization
naive Bayes is a good candidate due to its learning performance and accuracy.

K-Nearest Neighbor (kNN) As a lazy learner, the k-nearest neighbor algorithm
[17] is easy to setup and implement, since only a certain set of training data
needs to be stored, and a suitable distance (similarity) metric be applied for
retrieving a similar case for a given query. Therefore, a scenario that does not
allow for long training periods favors a nearest neighbor classifier. The parameter
k controls the number of neighbors considered for each prediction.

Support Vector Machines (SVM) Support vector machines [9] have become one
of the benchmark techniques for machine learning approaches due to their good
classification performance for a broad range of applications. Therefore, we also
consider support vector machines as our basic learning strategy and benchmark
method. In this scientific work we use the SVMlight C-implementation [3] from
Thorsten Joachims. For our experiments described in Section 4 we chose an RBF
kernel

Ka,b = exp (−γ||xa − xb||2), (2)

where xa and xb are package count vectors. In Section 4 we analyze the best
parameter combination for parameter γ ∈ R and parameter j ∈ R. Here, the
parameter j is the cost factor, by which training errors on positive examples
dominate errors on negative examples6. For all other parameters we chose the
default values as described in [14].

6 http://svmlight.joachims.org/
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Random Forest (RF) The random forest classifier [7] is an ensemble classifi-
cation method: It applies a set of unpruned decision trees for classification. It
can usually be learned in a cost-effective manner. Therefore, we also selected a
random forest method for our set of base learners for the localization approach.
In Section 4 we analyze the accuracy for different combinations of the two input
parameters mtry (denoting the number of predictors sampled for splitting at
each node) and ntree (the number of trees). For our experiments we use the
R-implementation of Random Forest [1].

3.3 Advanced Room Prediction using Contacts

In this section we describe three simple but effective techniques which include
contact information for improving the accuracy of the Loc-Basic algorithms.
Let Cw(p, t) denote the set of users (proximity tags) that were in contact with
user p within a time interval [t − w, t]. Hereby, the length w of that interval is
independent from the length l of the time interval used in the construction of
the characteristic vectors. Assume, that we want to predict the position of user
p at time t.

Mean-Approach As input for the Loc-Basic algorithm the following vector
is used:

V lmean(p, t) =
V l(p, t) +

∑
q∈Cw(p,t) V

l(q, t)

1 + |Cw(p, t)|
. (3)

Thus, the new characteristic vector V lmean(p, t) of user p is the average over all
package count vectors of the contacts of user p and of user p himself.

Max-Approach Let (v1p, · · · , vSRp ) be the component representation of V l(p, t).
As input for the Loc-Basic algorithm the vector

V lmax(p, t) =

(
max

q∈Cw(p,t)∪{p}

{
v1q
}
, · · · , max

q∈Cw(p,t)∪{p}

{
vS·Rq

})
(4)

is used. V lmax(p, t) is the component-wise maximum of the characteristic vectors
of user p and his contacts.

Vote-Approach This approach consists of two phases. At first (preliminary)
positions for user p and all his contact users are predicted using Loc-Basic.
Then, the final prediction of p’s position is established by a majority vote among
all these Loc-Basic predictions.

4 Evaluation

Below, we first discuss the applied data before we describe the evaluation setting
in detail. After that, we present the results of our experiments, and conclude with
a comprehensive discussion.
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4.1 Datasets

We utilized real-world data collected at the LWA 2010 conference in Kassel,
covering the locations of tracked participants and contacts between these. In
order to obtain a diverse and interesting set of observations we focused on the
two hour poster session, since during that time many participants had gathered
in 5 adjacent rooms. This provides us a challenging scenario for our methods.
To ensure that each point in the conference area was covered, we placed 6 RFID
readers at adequate positions in the conference area (see Figure 2).

We consider two kinds of tags: user tags and object tags: A user tag is a
proximity tag worn by a participant during the conference. With an object tag
we denote a proximity tag fixed to an unmovable object. In total, we fixed 46
object tags to several posters, tables and seats. Depending on its size we put
between two and thirteen object tags in each room. The training data contains
the first 1500 characteristic vectors collected with the object tags for each room
of the conference area. Obtaining the training set took about 25 minutes.

Ground truth: In summary, 46 people took part in our localization experiment
during the poster session. We collected their tag data over a duration of two
hours. To evaluate the accuracy of our predictions we needed to determine the
positions of the participants, for which we applied the object tags. Since the tags
detect other proximity tags only within a range of up to 1.5 meters, whenever a
contact between the tag of a participant tag and an object tag was recorded, we
could infer that this participant was in the same room as the object tag (ground
truth). In the experiments, we predicted the rooms for those vectors where the
precise location could be verified with the ground truth data.

Fig. 2. Conference Area: the numbered rooms were used by participants during the
poster-session, the circles mark the positions of RFID readers.
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4.2 Setting

In all experiments, the target is to maximize the overall localization accuracy.
The setup of the experiments contains a variety of parameters such as tuning
parameters of the algorithms, parameters that control the vector space of our
observations or parameters to control the set of contacts for each user at a specific
time. Several of these parameters are data set dependent. Due to the nature of
our setting as a social get-together most users did not switch locations very
often. It is therefore possible and useful to choose large intervals to construct
the observation vector space, in our experiments we chose l = 10, 30 and 50
seconds. However, other contexts might demand more frequent changes of the
locations. In such cases fingerprints should be collected only over rather short
time intervals.

Since the fourth and strongest signal strength of the tags transmits in irreg-
ular intervals (in contrast to the other signal strengths), we considered vectors
including or excluding the fourth signal strength. All in all, we obtained six dif-
ferent datasets, in the following referred to as F10−3 through F50−4 where e. g.,
the vectors of F50−4 are collected over l = 50 seconds and constructed with all
four signal strengths of each tag. Depending on the length of the time window
l and the number of used signals, the size of training data is shown in Table 1.
To include the contact information we used the mean, max and vote approach.

Table 1. Size of the ground truth dataset for different time window lengths l and
numbers of signals.

F10−3 F10−4 F30−3 F30−4 F50−3 F50−4

135208 137126 137454 137579 137570 137586

The first parameter to choose is the length w of the time window over which we
collect contacts. We experimented with five time windows: w ∈ {2, 5, 10, 20, 30}
(in seconds). A second parameter d is the degree of transitive closure, that is
added to the contact set. Contact information for one user at a specific time can
be sparse. In such cases it may be of help to “add more contacts” based on the
rationale, that contacts between users u1 and u2 and between u2 and u3 might
indicate a contact between users u1 and u3. This procedure of adding such (tran-
sitive) contacts can be iterated and d is the count of these iterations. Since for
d = 7 no new contacts were produced we investigated the values d = 0, 1, . . . , 6.

To prevent combinatorial explosion, we structured our experiments into two
parts, described below: In the first part, we applied each of our four Loc-Basic
algorithms with different parameter settings to each of the six datasets. In the
second part we additionally considered contact data to increase the localization
quality for those parameter settings, that performed best in part one. Addition-
ally, we conducted several experiments exploring variations of the size of the
training set.
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4.3 Results and Discussion - Part 1: Machine Learning Baseline

Table 2 presents the results of the first phase showing the best parameter com-
binations for each dataset and algorithm together with the achieved overall ac-
curacies. We ran kNN with values for k from 5 through 200 in steps of 5. For
RF we tried all combinations of mtry = 1, . . . , 20 and forest sizes ntree of 25
through 500 in steps of 25. SVM was run with combinations of j = 1, . . . , 20
and γ ∈ {2, 0,−2,−4, . . . ,−18,−20}. Finally, the nBay does not depend on a
parameter. An immediate observation is, that nBay was always outperformed

Table 2. For each algorithm and dataset the best parameters settings and the resulting
total accuracy in %. ∗ The same accuracy was achieved with γ = −12.

base F10−3 F10−4 F30−3 F30−4 F50−3 F50−4

kNN
k 50 165 125 185 180 200

acc 71.96 73.58 74.36 79.33 73.26 79.80

RF
mtry 1 1 1 2 1 4
ntree 475 375 400 350 275 200
acc 77.44 78.03 83.66 84.53 84.18 84.78

SVM
j 1 1 7 1 13 1
γ −14 −14 −10∗ −18 −10 −20

acc 78.05 77.95 82.55 84.15 82.53 84.84
nBay acc 33.42 38.97 51.14 56.96 56.57 61.97

by any of the other algorithms. This is not surprising as the basic assumption
of nBay is the complete independence of the entries in each observation. Such
independence can not be claimed for our datasets. If a reader receives, e. g., pack-
ages from a tag in its lowest signal strength, then it is much more likely that the
reader will also receive packages in a higher strength from that tag. However,
since we are interested in observing the boost that contact information can have
on the results of a given classifier, we experimented with nBay rather than with
more complex Bayes approaches taking dependencies into account.

The results of the other three algorithms are between 71.96% and 84.78%.
Taking into account the room layout and the hardware constraints due to our
resource-aware approach, these results can be considered acceptable. As can
be expected, in all cases the more sophisticated algorithms RF and SVM had
higher scores than the simple kNN. Including the fourth signal strength into
the datasets yielded better results than ignoring it – with one exception (SVM,
F10−4) where the two results differ, however only by 0.1%. Furthermore, the
datasets where the package vectors are collected over 30 or 50 seconds yield
better scores compared to the ones where only 10 seconds are considered.

A closer look at the influence of the algorithms parameters is presented (ex-
emplary) in the diagrams of Figure 3. For higher values of k the accuracy of
kNN rises, up to a certain level. After a (dataset dependent) threshold the ac-
curacy almost stabilizes at that level. While the choice of the forest size ntree
for RF did not influence the result much, the choice of the mtry parameter is
of importance. In general, with lower values (1 through 4) the results were sig-
nificantly better than for other choices. The curves of SVM fluctuate strongly
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on the datasets F10−3 and F10−4 and yield more stable curves for the others. In
general, better results where achieved using very small values for the parameter
j – in the cases where the best score was obtained with j = 7 or j = 13, the
scores using j = 1 were not significantly lower. In all cases, results were better
using lower values for γ such as −20.
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Fig. 3. Exemplary for F30−4, the diagrams, showing the accuracies in % a) vs. k (kNN),
b) vs. ntree for different values of mtry (RF) and c) vs. j for different values of γ
(SVM). In c) the graphs for γ = 2, γ = 0 and γ = −2 were left out for the sake of
legibility. All three are constant with accuracies 14.81%, 15.94% and 48.74%.

4.4 Results and Discussion - Part 2: Utilizing Contact Information

In the second phase of the experiments, we employed the best parameters de-
termined in phase one (Table 2) and included contact information to boost the
localization accuracy. Tables 3, 4 and 5 present for each dataset and algorithm
the best choice of the two parameters w and d and the achieved accuracy. Fur-
thermore, for each method the lowest accuracy that was achieved with any com-
bination of the two parameters is given. In the tables, bold numbers mark the
accuracies of those methods, that performed best for the given algorithm and
dataset. Italic numbers indicate accuracies, that are below the according baseline
of phase one.

A first encouraging observation is, that in all experiments with the mean or
max approach, the methods had a strictly positive influence on the accuracy.
Only voting performed in some cases worse than the baseline, mainly for nBay.
For nBay we attribute this to the fact, that the voting scheme is a probabilistic
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Table 3. For each algorithm with max aggregation and each dataset the best choices
of w and d with the according accuracy in % and the minimum accuracy achieved with
max aggregation.

max F10−3 F10−4 F30−3 F30−4 F50−3 F50−4

kNN
w 30 20 30 30 30 30
d 4 4 1 2 1 2

top acc 80.26 80.28 83.39 85.40 82.78 85.53
min acc 78.01 78.75 80.99 84.04 80.25 84.1

RF
w 20 20 20 20 20 5
d 3 2 6 1 6 1

top acc 84.94 85.49 89.59 89.96 88.94 87.53
min acc 83.25 83.99 88.31 88.92 87.95 86.73

SVM
w 20 20 20 20 20 20
d 2 2 5 1 2 1

top acc 84.43 85.46 88.16 89.14 88.65 88.72
min acc 82.89 83.73 87.09 88.33 87.42 88.06

nBay
w 30 30 30 30 30 30
d 3 4 2 6 1 1

top acc 50.60 56.81 65.80 71.95 69.55 76.57
min acc 44.40 50.13 61.30 66.70 66.77 72.50

Table 4. For each algorithm with mean aggregation and each dataset the best choices
of w and d with the according accuracy in % and the minimum accuracy achieved with
mean aggregation.

mean F10−3 F10−4 F30−3 F30−4 F50−3 F50−4

kNN
w 10 20 30 20 30 30
d 1 1 1 2 2 2

top acc 75.79 79.55 80.68 85.62 79.63 86.24
min acc 75.19 78.52 79.35 84.30 78.24 84.73

RF
w 10 10 20 20 30 30
d 2 3 6 3 4 5

top acc 79.51 80.65 88.04 88.33 88.29 88.83
min acc 78.00 79.31 86.57 87.29 86.83 87.57

SVM
w 20 20 30 30 30 20
d 2 3 2 2 2 2

top acc 83.96 85.01 88.43 89.49 88.89 89.39
min acc 82.56 83.39 86.91 88.33 87.26 88.32

nBay
w 30 30 30 30 30 30
d 5 5 2 2 2 2

top acc 49.61 52.62 65.22 68.88 71.26 75.54
min acc 43.93 48.20 60.23 64.31 66.26 70.59

method. Since nBay itself has only a very low accuracy, it is likely that among
the votes many are in fact false predictions. Thus, the probability of a wrong
classification even rises.

With one exception the best results were always achieved using max or mean
aggregation. Here, including the contact information yielded significant boosts
in overall accuracy: up to an additional 9.52% for kNN (F50−3), 7.5% for RF
(F10−3), 7.51% for SVM (F10−4) and 17.84% for nBay (F10−4). These results
are clear evidence, that the contact information can support the localization
approach significantly. Even stronger evidence for that presents Table 6. This
table shows for the above mentioned four settings the fraction of test data where
contact information (depending on the parameters d and w, chosen as in Table 3)
is available (contact fraction). Further, given are the prediction accuracies on
only that fraction of the dataset of both, the Loc-Basic algorithms (contact
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Table 5. For each algorithm with voting aggregation and each dataset the best choices
of w and d with the according accuracy in % and the minimum accuracy achieved with
voting aggregation. ∗ The same accuracy was achieved with d = 4

vote F10−3 F10−4 F30−3 F30−4 F50−3 F50−4

kNN
w 20 30 20 20 20 20
d 2 3 2∗ 3 3 3

top acc 77.39 79.71 80.02 85.17 78.63 85.94
min acc 76.11 78.35 78.82 83.80 77.69 84.49

RF
w 10 10 20 10 20 20
d 5 1 1 2 2 3

top acc 81.32 81.67 86.77 87.55 87.81 88.97
min acc 80.75 81.14 86.27 87.08 87.03 87.88

SVM
w 20 20 5 20 2 30
d 4 4 0 2 0 2

top acc 81.35 81.09 83.22 86.75 82.76 87.46
min acc 80.05 79.51 81 .29 85.55 80 .86 86.17

nBay
w 2 2 2 2 2 2
d 0 0 0 0 0 0

top acc 33 .05 38 .70 50 .90 56 .53 56 .10 61 .31
min acc 31 .48 37 .54 50 .39 55 .81 55 .22 60 .66

base acc) and the best contact boosted algorithms (contact best acc). Boost
denotes the additional gain of accuracy due to the inclusion of the contact data.
Here, the scores of kNN, RF and SVM profit with more than 11% while the
accuracy of nBay increases by more than 25%. Our best performing algorithm
with respect to the complete test set (RF with max aggregation using F30−4)
yields a prediction accuracy of 92.69% if applied to that part dataset for that
contact information is available.

Table 6. For each algorithm (in its best performing aggregation parametrization) the
fraction of data for which contact information is available (in %) and a comparison
of prediction accuracy of the algorithms without contacts and those using the best
performing method of contact data aggregation.

kNN RF SVM nBay
strategy F50−3 F10−3 F10−4 F10−4

contact fraction 69.23 65.01 64.91 69.3
contact base acc 74.33 76.83 77.78 33.05
contact best acc 88.09 88.18 89.34 58.80

boost 13.76 11.34 11.57 25.74

Next, we investigated the influence of the parameters d and w. As can be
seen in the Tables 3, 4, 5 the fluctuation of the accuracy for different parameter
combinations was rather low, often less than 1%. Figure 4 displays exemplary
for each algorithm the results of the max approach for the F10−4 dataset and
of the vote approach for the F50−4 dataset. The behavior of the accuracy using
the mean approach was generally similar to that of the max approach. The
parameter d usually had only a small influence. In most experiments only the
difference between d = 0 and d = 1 was significant. For the values 1, . . . , 6
the accuracy stayed almost constant. Variations of the w parameter also caused
similar behavior throughout the experiments. In those, where the contacts had
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Fig. 4. a) through d) present the accuracies in % of all experiments with the max
approach on F10−4, e) through h) those of the experiments with the vote approach on
F50−4. For several choices of w, the accuracy is plotted vs. the degree of transitivity d.

positive influence on the accuracy, the choices w = 20 or w = 30 delivered the
best results, while w = 10 usually was better than w = 5 or w = 2.

Furthermore, we analyzed the influence of the training set size. We ap-
plied the method from our previous experiments that performed best (RF with
ntree = 350 , mtry = 2, w = 20 and d = 1 using the max approach on F30−4)
to classify with models based on differently sized training sets. Figure 5 shows
the resulting accuracies compared to those of the according Loc-Basic method.
Up to 450 samples per room, increasing the training size increases the accuracy.
Afterwards the accuracy increases only little or decreases in some cases. The
distance between the curves (the boost due to the contacts) is almost constant,
only for very small training set sizes it is slightly larger.
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Fig. 5. The accuracy in % vs. the number of training samples per room.

5 Conclusions

In this paper, we have presented an approach for cost-effective and resource-
aware localization at room level using RFID-tags. We evaluated several state-
of-the-art machine-learning algorithms in this context, complemented by novel
techniques for improving these using the RFID (proximity) contacts. The results
of the experiments yielded several reasonable values for the applicable param-
eters. For the simpler algorithms, they could also have been learned in a short
preceding training phase, which demonstrates the broad applicability of the ap-
proach in the sketched resource-aware setting.

In the presented experiments we always considered training data collected by
the object tags. In future work, we aim to analyze the accuracy of the proposed
approach using the user tags in more detail. An extended analysis concerns using
all available and also no contact information at all, respectively, when we consider
the user tags for obtaining the training data. Furthermore, we plan to focus on
optimizing the applied parameter combinations, i.e., number of readers, number
of packages per second, etc., in order to increase the accuracy further. Testing
our algorithms in WiFi and GPS based localization settings is also another
interesting option for future work.

Acknowledgements

This work has been supported by the VENUS research cluster at the inter-
disciplinary Research Center for Information System Design (ITeG) at Kassel
University. We utilized active RFID technology which was developed within the
SocioPatterns project, whose generous support we kindly acknowledge. We also
wish to thank Milosch Meriac from Bitmanufaktur in Berlin for helpful dis-
cussions regarding the RFID localization algorithm. Our particular thanks go
the SocioPatterns team, especially to Ciro Cattuto, who enabled access to the
Sociopatterns technology, and who supported us with valuable information con-
cerning the setup of the RFID technology.

15



References

1. CRAN - Package randomForest, http://cran.r-project.org/web/packages/

randomForest/index.html

2. OpenBeacon Active RFID Project, http://www.openbeacon.org
3. SVM-Light Support Vector Machine, http://svmlight.joachims.org/
4. Bahl, P., Padmanabhan, V.N.: RADAR: An In-Building RF-Based User Location

and Tracking System. In: INFOCOM. pp. 775–784 (2000)
5. Barrat, A., Cattuto, C., Colizza, V., Pinton, J.F., den Broeck, W.V., Vespignani,

A.: High Resolution Dynamical Mapping of Social Interactions with Active RFID.
CoRR abs/0811.4170 (2008)

6. Bekkali, A., Sanson, H., Matsumoto, M.: RFID Indoor Positioning Based on Prob-
abilistic RFID Map and Kalman Filtering. In: WiMob. p. 21 (2007)

7. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
8. Cattuto, C., den Broeck, W.V., Barrat, A., Colizza, V., Pinton, J.F., Vespignani,

A.: Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Net-
works. PLoS ONE 5(7) (07 2010)

9. Cortes, C., Vapnik, V.: Support-Vector Networks. Machine Learning 20(3), 273–
297 (1995)

10. Finkenzeller, K.: RFID Handbook: Fundamentals and Applications in Contactless
Smart Cards and Identification. John Wiley & Sons, Inc., New York, NY, USA, 2
edn. (2003)

11. Glover, B., Bhatt, H.: RFID Essentials (Theory in Practice (O’Reilly)). O’Reilly
Media, Inc. (2006)

12. Hightower, J., Vakili, C., Borriello, G., Want, R.: Design and Calibration of the
SpotON Ad-Hoc Location Sensing System. Tech. rep. (2001)
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