
Profile Mining in CVS-Logs and Face-to-Face
Contacts for Recommending Software Developers

Bjoern-Elmar Macek, Martin Atzmueller, and Gerd Stumme
Knowledge and Data Engineering Group (KDE), University of Kassel, Germany

{macek, atzmueller, stumme}@cs.uni-kassel.de

Abstract—In order to support a software development team in
its day-to-day operations, different data sources can be exploited.
In this paper, we focus on CVS logs and communication profiles
between developers provided by RFID-proximity information.
We provide a novel approach for combining the data sources
into a graph, and apply the pagerank algorithm for capturing
interesting knowledge about resource and developer profiles.
Additionally, we discuss the application in the software developer
setting, and also for project management. The proposed approach
is evaluated in the context of a real-world developer setting.

I. INTRODUCTION

Knowledge and experience management play a significant
role in software development teams: On the one hand, specific
profiles of developers concerning resources, packages, and
projects provide an overview on the area that the respec-
tive developer is working on, e.g., for an overview on the
activity of a team. On the other hand, resource profiles,
i.e., characterizations about the familiarity of developers with
specific resources, can increase the effectiveness of other
team members by suggesting persons that are familiar with
specific resources. In this way, knowledge management and
knowledge transfer, e.g., transfer of projects, instructing new
team members, or participation in open-source projects, can
be successfully implemented.

In this paper, we propose an approach for analyzing the
communication and commit structure of a development group
using reality mining techniques. In this context, the devel-
opment group uses CVS as a code versioning system; addi-
tionally, conversations between developers are captured using
active RFID tags developed by the SocioPatterns1 consortium.
Using the tags, we are able to store the time and duration of a
conversation, so that this information can be analyzed further.
In the sketched scenario, the two basic assumptions are the
following: The added and removed lines of code (LOC) that a
developer commits for a specific resources serves as a proxy
for her familiarity with this specific portion of code, e.g., [12],
[15]. Additionally, conversations between developers serve as
a way for transferring information or knowledge from one
developer to another. Therefore, such interactions also help
to increase the familiarity of developers with the source code.

We provide two novel classes of graphs built from structural
data for mining developer and resource profiles concerning the
’familiarity’ with specific resources, packages and/or projects.
By defining a special query on these graphs, we can calculate

1http://www.sociopatterns.org

either a set of developers that are familiar with a specific
portion of source code, or we can analyse the quality of code
coverage by a given subgroup of software developers. The
proposed method is able to retrieve two sorts of profiles:
Developer profiles, including the top-k resources for each
developer, and a set of the top-k developers for a certain
resource, package, or project denoting the familiarity with
the code element, as a recommendation. Utilizing the graph
structure, the PageRank [6] algorithm is applied for extracting
these profiles. To the best of the authors’ knowledge, this is
the first time, that PageRank has been applied for this purpose.
Furthermore, as another novel element we apply RFID-based
technology (described above) for modeling the real-life com-
munication. This enables the capture of conceptual knowledge
which is mostly propagated via conversations and cannot be
extracted by mining software repositories.

We evaluate the approach in the context of a small developer
group with a medium sized project, including both software
repository logs and RFID contact information. The evaluation
results demonstrate the effectiveness and impact of the pro-
posed approach.

The rest of the paper is structured as follows: Section II
discusses related work. After that, Section III presents the
proposed method for mining developer and resource profiles.
Next, Section IV describes its application for profiling and
recommendation. In Section V we present an evaluation of
the proposed approach. Finally, Section VI concludes with a
summary and interesting directions for future work.

II. RELATED WORK

In [16] and [7], Cattuto et al. analyze the social graph
structures constructed by the contact and location information,
which were generated by the active RFID tags, that were also
used in our scenario. We apply the same technology which was
developed within the Sociopatterns project to interpret RFID
proximity signals as conversation and location information.
Several approaches like [22], [11] use email communication
protocols to measure expertise and detect flow of expertise
information, but any other medium that is appropriate in terms
of privacy and explanatory power can of course be used, too.
In the following we focus on face-to-face communication,
because we think, that most of the relevant conversations
within a local development group is made directly and not
via email.

There are several different approaches trying to solve the
problem of finding help for a software development related
problem. Minto and Murphy [20] exploit the information,
that several files might be related to each other if they are
checked in together often. Let d be the developer in need of
help, then the introduced algorithmn produces a ranking of the
developers, in which those persons score high, that committed
to the same or related files as d often. This indicates, that
they already know how to help each other quite well. But the
ranking produced is obviously independent from the problem
itself and does not provide good recommendations, if d needs
information from someone working on a completely distinct
set of code. We try to overcome this issue by taking the
problem related files into account for a recommendation.
In [12], Girba et al. detect and visualize different phases
of software collaboration using line-of-code-based measures
derived from a code repository. Those phases can be easily
identified by interpreting the activity diagrams presented, but
require manual reviewing by an expert to enable him or her
to produce some kind of valid recommendation for assigning
a development task to a well suited developer.
Lappas et al [17] present a social network based approach
by defining the team formation problem, that uses profile
information of team members containing the set of skills they
have. A solution contains those persons that together as a
group meet all requirements for the given task. To maximize
the social compatibility of the team members, they minimize
the communication cost between developers, a measure that
was introduced to capture social information. There was no
explicit definition or case study given for this measure.
In [18], McDonald and Ackerman investigate the process of
knowledge transfer in a working team. They describe the
personal process of deciding which person can help best in two
phases: expertise identification and selection. In the first phase
you determine the people who can help you. In the second
you choose among them. In this paper, we identify experts
directly by analyzing the face-to-face contact logs, instead of
predicting it from a set of personal attributes.

III. METHOD

A. Repository Preliminaries

A Concurrent Version System (CVS) supports software
development by storing and managing all submitted source
code changes. The process of submitting work is also called
commit or activity. In order to measure the size of the
commit, we define the number of changed lines of code as
the sum of added and removed lines of code. As in every
ordinary file system, the files contained within a CVS project
are grouped together by a folder hierarchy, which resembles
a tree, in the following named resource tree GR. A part
of the complete pathname is interpreted in Java projects
as the name of something called package. These packages
provide a unique namespace for the files they contain and are
represented as nodes within GR. For our use case Conferator,
the package eu.ubicon of the project ubicondb would
be represented as a node in the hierarchy tree with the name

��������

	�

������

�
�
�
�	

��������
�
 ������
�
�������
�

��	��	���	�
��
�

��	���
�
�
��
�

����

���� !"

�#!$#% &

�'� &

Fig. 1. Resource Tree of Project ubicondb.

ubicon and a parent with the name eu. We exemplify the
structure introduced in Figure 1. The complete pathname of
a package is defined for our purposes as the project name
followed by a dot and the respective package name: e.g.
ubicondb.eu.ubicon. The complete pathname of a file
equals its name appended to the complete pathname of the
package it is contained in.

We denote by F the set of all files, by PC the set of all
packages and by PJ the set of all projects. A resource is either
a file, a package or a project and we define the set of all re-
sources by R = F ·∪PC ·∪PJ . We denote by ≥ the partial order
on R that is induced by the project/package/subpackage/file
relation: We write r ≥ r′ if r′ is a file, subpackage or package
that is contained in r. We write r � r′ if r > r′ and there is
no package r′′ with r > r′′ > r′.

Definition 1 (Activity): An activity a ∈ A is an entity with
the properties a.dev, a.file and a.ts ∈ D, where a.file is the
modified file and a.dev is the developer who committed
modifications to the repository. The timestamp of the commit
is contained in a.ts. Given an activity a, the function loc(a)
returns the total number of changed lines of code, which
equals the sum of changed, added and removed lines.

Definition 2 (Commit Relevant Activities): The commit
relevant activities Ad,r for developer d ∈ D and resource
r ∈ R are defined as follows:

Ad,r = {a ∈ A | a.file ≤ r, a.dev = d}

So Ad,r represents all CVS activities that changed a file
f ≤ r and were submitted by developer d.

We formally extend the order relation between resources to
developers by

f � d ⇐⇒ Ad,f 6= ∅

Definition 3 (Commit Sizes): For every r ∈ R the function
loc(r) returns the total number of changed lines of code, which
were committed to r or any of its successors.

loc(r) =
∑

a|a.file≺r

loc(a)

The commit size function loc(d, f) returns for developer d ∈
D and file f ∈ F the total number of LOC, that d changed in
f :

loc(d, f) =
∑

a∈Ad,f

loc(a)

With these definitions given, we construct two types of
weighted graphs on R ∪ D: the dependency and the contri-
bution graph. The higher the weight on edge (v1, v2), the
higher v1’s dependency on or contribution to v2. This will
be used in Section IV to model the flow of endogenous and
exogenous information through the graph. We speak about
the first, when information is created via knowledge transfer
within a group, and the latter, if experience is gained outside
the social network: via programming in our case.

B. Dependency Graph

A dependency graph GD consists of resource and developer
nodes. Since the edges of the graph represent members of the
depends relation, we discuss for both cases, how an edge is
to be interpreted and how the weight is to be calculated.

A resource r directly depends on another resource r′, if r �
r′. We define the strength of the dependency as the fraction:

depends(r, r′) =
loc(r′)

loc(r)

In other words, depends(r, r′) equates to the percentage of
developer activity in child resource r′ compared to the total
activity in the parent resource r. Intuitively, a file f depends
on a developer d, if d committed changes to f . We measure
the amount of dependency as follows:

depends(f, d) =
loc(d, f)

loc(f)

So the dependency graph is formally defined as the weighted,
directed graph GD = (R ∪ D,�) with edge weights given
by depends. It is easy to see, that the sum of weights of all
outgoing edges for every resource node equals 1. The out-
degree of the developer vertexes is 0. In Figure 2 a hypothetical
example is given.
This definition and all further applications can be extended to
contain more than only one resource tree.

C. Contribution Graph

The contribution graph GC consists of the same nodes as
GD. The directions of the edges are inverted, and the weight of
an edge is now defined by its contribution value contributes.

Fig. 2. Dependency graph for an example project with edges from seven
files to three developers.

Concerning the edges from developer to file nodes it is an
intuitive way to choose the value contributes(d, f) propor-
tional to the LOC that a developer changed of a file f :

contributes(d, f) =
loc(d, f)∑

d′∈D loc(d′, f)

For every resource in GR there exists at most one parent node.
So every resource contributes with a normalized value of 1 to
its parent.

contributes(r1, r2) =

{
1, if r2 � r1
0, else

The contribution graph is formally defined as the graph GC =
(R ∪ D,≺) with edge weights defined by contributes. An
example of the resulting graph is shown in Figure 3.

D. Communication Preliminaries

Another important part of our graph model is that we cap-
ture the flow of information that occurs during conversations.

Definition 4 (Conversation): A conversation c ∈ C is an
object, where c.dev = (d1, d2) ∈ D × D states the two
developers in conversation, c.from the timestamp of the
beginning of the conversation and c.til of its ending.

The quality of the heuristic for determining code-relevant
conversations among the set of all conversations has a great
impact on the quality of the application results. As the RFID
technology that we applied does not register the content of a

Fig. 3. Contribution graph for an example project with edges going from
the bottom to the top.

conversation, we have to estimate its code-relevancy by its
time and its duration. If one takes into account all contacts
one will also include all the conversations, that are of a more
social and less technical and work related nature. We assume,
that for discussing a code relevant topic, you need to talk
for at least five minutes with the person, who can help you,
because shorter conversations can hardly include a remarkable
amount of information about a piece of code, that was written
by members of the development team. This is assumption
A1. We also assume, that most of the code relevant topics
come up when people need help with something they are
currently working and committing on (A2). Based on A2, we
define the commit relevant conversations. Since the duration
of a working day is generally about eight hours, we define
the interval of interest for code relevant communication, in
which the percentage of code relevant topics is most probably
at its peak, to the eight hours before a commit.

Definition 5 (Commit-relevant conversations): The set of
commit-relevant conversations C(d1,d2),r for a given pair of
developers (d1, d2) and resource r is defined as the subset
of C containing all conversations within eight hours before a
commit of a file f ≤ r performed by d1.

C(d1,d2),r = {c ∈ C |c.dev = (d1, d2), c.til− c.from ≥ 5min

c.from ∈ ∪a∈Ad1,r
[a.ts− 8h, a.ts]}

The set of all commit-relevant conversations is then
Cr =

⋃
d1,d2∈D C(d1,d2),r.

Let r be the investigated resource, then based on the commit-
relevant conversations concerning r and its child resources, we
define the communication relation ←:

d1 ← d2 ⇐⇒ C(d1,d2),r 6= ∅

We also write d2 → d1 if d1 ← d2. The resulting graphs are
denoted as G∗D = (R ∪D,� ∪ ←), G∗C = (R ∪D,≺ ∪ →).
As these graphs depend on the resource tree and the commit-
relevant contacts, which both depend on the inspected resource
r ∈ R, G∗D, G

∗
C are also defined with respect to r. The role

associated with d1 is the one who needs help, while d2 is
a person who might provide it. Next we define the commit
relevant conversation duration function duration as follows:

duration(d1, d2, r) =
∑

c∈C(d1,d2),r

c.til− c.from

We represent the conversation information in the graph by
creating weights for the directed edges between the developer
nodes based on the duration function.

E. SNA - Communication Edges

There are several ways to model the flow of information
via communication and a lot of them may make sense here.
Because of A2 we assume, that during the time interval of a
working day before a commit the percentage of development
related conversations is at its peak and so is statistically most
significant. We assume A2 is close to the truth for a lot of
teams. A measure that certainly differs for several teams in
science and economy is the amount of knowledge transfered
within the groups. Some groups consist of more social people
than others and their conversation topics may be more diverse.
Because of this, we introduce the knowledge transfer rate φ ∈
R+, 0 ≤ φ < 1, which is a parameter of this communication
model. The higher it is, the more collaborative is the team and
the more time is spent on knowledge transfer.
For G∗D and G∗C we extend the weight defining functions for
conversation edges as follows:

depends(d1, d2) =

1− φ, if d1 = d2

φ · duration(d1,d2,r)∑
d∈D duration(d,h,r) , else

contributes(d1, d2) =

0 if d1 = d2

φ · duration(d2,d1,r)∑
d∈D duration(d,d1,r)

, else

In G∗C , our construction yields outgoing edges from devel-
opers to two kinds of nodes: to the files they committed on
and to the developers, who were asked for help. The weight
for the edges between the developers sums up to φ, while we
defined the weights of the other kind in such a way, that the
sum of outgoing edges is 1. We multiply those weights with
1− φ in order to ensure the property of the adjacency matrix

Fig. 4. Communication edges between developers for φ = 0.1. The broken
reflexive edges are added in G∗

D , while the edges to the files exist in G∗
C .

having a 1-norm of 1. So we modify contributes with d ∈ D
and f ∈ F like this:

contributes(d, f) = (1− φ) · loc(d, f)∑
d′∈D loc(d′, f)

Figure 4 illustrates the construction for our example.

IV. APPLICATIONS

Because we will apply PageRank [6] on the graphs, we
briefly recall its basics.

A. Page rank preliminaries

The equation describing one iteration is

~ei+1 = α · ~ei · W + (1− α) · ~q,

where ~ei is the probability distribution after i iterations of page
rank (pr) with given damping factor α, the random surfer
vector ~q and the edge weight matrix W . It is easy to see,
that for all dependency and contribution graphs the adjacency
matrix W has a 1-norm of 1. In the sequel, we will see, that
the same is true for ~q, so that the result of the PageRank
application can be interpreted as a probability distribution.
In the following ~q is interpreted as a query vector and the
produced rank is interpreted as dependency or contribution
depending on which graph pr was applied to.

Obviously ~ei+1 is defined as the linear combination of two
terms td = ~ei · W and tq = ~q. The term td represents the
process of distributing the probability of a node n to all its
successors n′ ≺ n with respect to the weights w(n, n′) which
are contained in W . The process of assigning probability to
the nodes with respect to the surfer vector becomes manifest
in tq .
In [3], the effect of the damping factor α is analyzed, leading
to the result, that for every edge traversal of a package of

dependency or contribution during one iteration of PageRank,
it is reduced by the factor α, so that the same package after
i jumps is smaller by factor of αi, than it would be, if there
was no damping factor. This has several implications for our
applications. One of them, which applies for each of them,
is the fact, that the transitive influence of communication is
greatly reduced for an α close to 0. Because of our empirical
results we chose α = 0.4.

B. Recommender

In order to answer questions of the kind “Who can help
me best with a development problem concerning resource r?”
or “Who can fix this bug in resource r?”, we start the first
of two phases. We create G∗D, then remove all edges between
developers, and assign dependency to r ∈ R with the sum of
all dependencies being 1. The probability is now propagated
via an initial application of page rank with α = 1 along
the edges of the resource tree to the developer nodes, which
accumulate the dependency distributed from the files. The
resulting distribution of probability over the developer nodes is
assigned to the 2nd phase’s PageRank’s random surfer vector
~q, which again has a 1-norm of 1.

In phase two we apply PageRank with α = 0.4 and
the previously defined ~q until convergence. The developers
propagate their CVS activity related probability values over the
communication edges to the people who helped them, because
the requested resource also depends on their knowledge. The
higher the probability distribution for a developer d in G∗D, the
higher the dependency of the queried set of resources on d.
The ranking produced by sorting D descending according to
the calculated distribution is interpreted as the order in which
a recommender would present the developers to a user who is
looking for help.

C. Profiler

The next application is an automated profiler, which is ap-
plied for a given developer d and a set of relevant resources R.
For the first phase, we remove all edges (d, f) ∈ ECr ∩D×F
between developers and files and apply PageRank to GCR

with ~qi = 1, if i is the dimension of ~q that is associated
with vertex d and ~qi = 0, else. The result is a contribution
ranking, indicating how much d contributed to the work of
his colleagues represented as a probability distribution over
D. In phase two we return all previously removed edges and
remove all communication edges. We derive the contribution
of d to a given resource r ∈ R by summing the rank of all
developers, who are predecessors of r in the resulting graph.
These profiles can be used as input for algorithms like the one
presented in [17] in the environment of development teams.
This work targets the prediction of the productivenes of teams
based on certain communication and team structure measures
as well as a manually maintained set of skills. Our approach
can be used to generate a profile containing the projects or
modules, a developer is familiar with based on his contribution
to them. Figure 5 shows a developer profile of the first author

Fig. 5. A developer profile of the Conferator use case. The size of the pieces
of the pie chart indicate the relative amount of effort the developer has put
into coding or helping others with the observed resources.

of this paper, that was generated using the contribution tree as
discussed above.

V. EVALUATION

We now compare the page rank algorithm results with the
ones we generate by creating a ranking dependent only on
the number of committed line changes of the queried project
over all developers. By comparing the different results with
a ground truth we measure how much information can be
gained by inspecting the influences of communication on the
experience somebody has with a given set of code.

A. Use Case - Conferator

We evaluate our approach with the development of the first
version of the social conference system Conferator [2], which
enables the participants to create their personal schedule by
picking talks, they are interested in, adding friends, sharing
their social contact information and recalling the persons they
met, by viewing their own contact history during the event,
which gets automatically created by the same RFID technol-
ogy that was used for our approach to capture conversations.
The team consists of 10 developers, whose social and devel-
opment activities were observed for about 3 months. There
were about 9119 commits with 110770 changed lines of code
in total. The number of observed conversations during that
time is 65668. The system itself consists of nine Java based
projects of several different kinds: RFID streaming processes,
localization and contact recognition libraries as well as the
web application front end.

B. Ground Truth

As ground truth, we rely on an expert ranking, that can take
more external unprotocoled information into account.
In the evaluated Conferator case, all developers are part of the
same research team. Its members at the same time are part of
both groups: the experts and the ones being rated. Since rating
and ranking people is a socially challenging task, especially if

you work together with them, we had to find a more respectful
way with regard to privacy, that does not require the expert to
order a list of people or directly choose between any two of
them. After discussing the risen opinions to the possible social
implications, all agreed on the following voting system.
For every step of the process, four sets containing three
developers will be presented to the expert as well as the name
of a project. The expert is now required to choose one of
those four sets, answering the question which of these three-
people-teams could help best with a problem concerning the
given project. The expert has also the possibility to take none
of them, if he or she is uncertain. If a team is elected, every
member will gain one vote. At the end of the process, the
ranking is produced by ordering the developers by the sum
over all votes for every project.
In order to provide a uniform distribution of developers over
the teams, we created the set of all possible team and project
combinations to rule out artifacts in the data like the following:
if someone with high experience with the queried source code
is too often presented to the voting expert together in one
team with somebody with low or none experience, the low
experienced developer is ranked too high. The first team is
uniformly sampled without replacement from the set of all
possible teams. The next three are chosen the same way,
but from the subset, containing only those teams with the
same project associated as the first one. This ensures, that
all combinations are presented before one team gets picked
more often by chance, while other developers are totally
underrepresented. As soon as no teams can be drawn from
the set, it gets refilled.
The total number of casted team-votes from 8 experts was
247 so that the total count of developer votes is 741 in our
use case.

Definition 6 (Ranking rloc): The LOC based ranking rloc
for a queried resource r is created as follows:

rlocr(d) =
∑

f∈F :r≤f

loc(d, f)

Since this ranking can only recommend people based on
their commits, non-committing team members will never be
included within an rloc ranking. Since there are several
projects, where only very few people committed code, which
results into very short rankings and low overall significance,
the developers who obtained the ranking value 0 are ordered
by their total amount of committed LOC in all resources.

Definition 7 (Ranking pr): The contact and LOC based
ranking pr is produced via n iterations of PageRank on a
dependency graph GD for a queried resource r.

The problem with 0-ranked developers (as it applies for
rloc) occurs very seldom for pr, because the communication
structure is so dense, that is very unlikely, that there exists
no path from a committing to a non-committing developer. In
general one should choose the number of iterations n greater
than the length of the longest path in GD to make sure the

��

����

�����
���

Fig. 7. The plot of τ comparing rloc and pr with the ground truth for
all projects. The projects are sorted in ascending order over their value
τ(prP , gtP)− τ(rlocP , gtP).

probability gets distributed over all edges. Normally finding
the longest path in a graph is an NP hard problem, but since
GD mainly consists of a forest whose |D| leafes are connected
with each other, the longest path can be approximated with
|D|. In our experiments we used n = 20, because as already
mentioned before, there are 10 developers (|D| = 10) within
the Conferator team. Of course the termination parameter ε of
page rank can also be used.

C. The Surplus of Communication

The target application of the page rank algorithm on the
dependency graph is to assign priorities to developers for a
recommender. Therefore, we calculated the top-k precision
values preck for our previously discussed ground truth gt,
every project p ∈ PJ and recommender ranking ra, with
ra(i) > ra(j), i < j:

preck(rap) =
|(
⋃

1≤i≤k rap(i)) ∩ (
⋃

1≤i≤k gtp(i))|
k

Figure 6 illustrates the obtained results. As shown in the
figure, the top-1 precision values of both recommenders are
the same: they detect the best recommendation in 7

9 of all
cases, which intuitively makes sense, since the top committer
certainly do have the most experience with the queried set
of code. For k = 3 the pr ranking outperforms rloc in 1

3
of all cases; otherwise, it is at least as good as rloc. For
peerRadar-webapp, rloc could provide a better result top-
5, while pr is more similar to the ground truth in nearly
half of the projects. We also applied Kendall’s τ to our
rankings and computed the p-value. Kendall’s τ ranges from
−1, meaning the compared rankings are inversely correlated,
to 1, which means that they are positively correlated. The plots
of τ are given in Figure 7. We can see, that pr is closer
to the ground truth than rloc for five of the nine projects,
while in two cases rloc produces a closer ranking. Another
measure for relatedness is the p-value, that determines, if the
null hypothesis ”the given rankings are uncorrelated”, can be
rejected, which is the case, if p is smaller than 5%. Alltogether,
seven of the pr rankings are significantly correlated with the
ground truth, while this also applies for four of the nine rloc
rankings. As discussed above the interpretations of the top-k
precision and the corresponding τ and p-values obviously both
speak for pr.

����

��

�����
���

Fig. 8. The plot of the p-value. Statistical significant relatedness to the
ground truth is proven for all rankings with the appropriate value under the
dotted red mark at 5%.

As a summary it can be said, that for our use case pr
outperformed rloc in the majority of recommender queries
for all measures applied. This indicates, that conversation logs
indeed carry important information.

VI. CONCLUSIONS

In this paper, we have presented an approach for analyzing
the communication and commit structure of a development
group using reality mining techniques. We proposed two
graph models that capture the information collected by mining
software repositories combined with the analysis of RFID logs
of human face-to-face contacts. These models enable profiling
and recommendation applications for software developers. As
shown in the evaluation, the explanatory and predictive power
of exogenous experience captured by CVS logs combined
with the endogenous flow of experience captured by logged
communication yields very promising results for future use
cases. Of course other sources of data can be used in very
similar ways such as SVN, GIT or other versioning systems.
It is also possible to use email, chat logs or other kinds of
communication protocols to model knowledge transfer, but
since this kind of information has different properties and can
even be exploited by analyzing the content of a conversation,
the creation of edges should also differ from our proposed
approach.

In the future, we aim to address the questions of further
evaluation as well as allowing a finer resource granularity
on the function level, which enables us to add call graph
edges between nodes of different resources. We expect, that by
adding this relationship, the result of the queries will capture
the knowledge of a developer about how to use the code
somebody else has written, which also is of great importance
for a more complete picture of a developer’s experience with
software.

Although the rankings produced by our applications did not
vary too much by changing α, we aim to explore this issue
further. Also, it seems also very promising to personalize the
modelled communication behaviour by defining φ for every
pair of developers in order to capture the individual develop-
ment relatedness of their conversations. Furthermore, we plan
to generate rankings using sliding windows for identifying
phases of collaboration as presented in [12] in order to support
project managers in their work.

����������	�
��� ���������	�
��� �������������
��� �
������������������ �
��������������� �
�����	�
���������� �
�����
 �
������������������� �
�����������������

��
��
�

��
��
�

��
��
� ����

��

Fig. 6. The top-k (k =1, 3 and 5) precision values for the rankings pr and rloc on all projects.

VII. ACKNOWLEDGMENTS

This work has been supported by the VENUS research
cluster at the interdisciplinary Research Center for Information
System Design (ITeG) at Kassel University.

We utilized active RFID technology which was developed
within the SocioPatterns project, whose generous support
we kindly acknowledge. Our particular thanks go the So-
cioPatterns team, especially to Ciro Cattuto, who enabled
access to the Sociopatterns technology, and who supported us
with valuable information concerning the setup of the RFID
technology.

REFERENCES

[1] O. Arafat and D. Riehle. The commit size distribution of open source
software. In HICSS, pages 1–8. IEEE Computer Society, 2009.

[2] M. Atzmueller, D. Benz, S. Doerfel, A. Hotho, R. Jäschke, B. E. Macek,
F. Mitzlaff, C. Scholz, , and G. Stumme. Enhancing Social Interactions
at Conferences. it - Information Technology, 53(3):101–107, 2011.

[3] R. Baeza-Yates, P. Boldi, and C. Castillo. Generalizing pagerank:
damping functions for link-based ranking algorithms. In Proceedings
of the 29th annual international ACM SIGIR conference on Research
and development in information retrieval, SIGIR ’06, pages 308–315,
New York, NY, USA, 2006. ACM.

[4] O. Baysal and A. J. Malton. Correlating social interactions to release
history during software evolution. In Proceedings of the Fourth Inter-
national Workshop on Mining Software Repositories, MSR ’07, pages
7–, Washington, DC, USA, 2007. IEEE Computer Society.

[5] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan.
Mining email social networks. In Proceedings of the 2006 international
workshop on Mining software repositories, MSR ’06, pages 137–143,
New York, NY, USA, 2006. ACM.

[6] S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web
Search Engine. Computer Networks and ISDN Systems, 30:107–117,
1998.

[7] C. Cattuto, W. V. den Broeck, A. Barrat, V. Colizza, J.-F. Pinton,
and A. Vespignani. Dynamics of person-to-person interactions from
distributed rfid sensor networks. CoRR, abs/1007.3680, 2010.

[8] K. Crowston and J. Howison. The social structure of open source
software development teams. In First Monday, 2003.

[9] M. D’Ambros. Commit 2.0: enriching commit comments with visualiza-
tion. In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 2, ICSE ’10, pages 529–530, New
York, NY, USA, 2010. ACM.

[10] C. R. de Souza, S. Quirk, E. Trainer, and D. F. Redmiles. Supporting
collaborative software development through the visualization of socio-
technical dependencies. In Proceedings of the 2007 international ACM
conference on Supporting group work, GROUP ’07, pages 147–156,
New York, NY, USA, 2007. ACM.

[11] B. Dom, I. Eiron, A. Cozzi, and Y. Zhang. Graph-based ranking
algorithms for e-mail expertise analysis. In Proceedings of the 8th ACM
SIGMOD workshop on Research issues in data mining and knowledge
discovery, DMKD ’03, pages 42–48, New York, NY, USA, 2003. ACM.

[12] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse. How developers
drive software evolution. Principles of Software Evolution, International
Workshop on, 0:113–122, 2005.

[13] A. E. Hassan. The road ahead for mining software repositories. In
Proceedings of the Future of Software Maintenance (FoSM) at the 24th
IEEE International Conference on Software Maintenance (ICSM), 2008.

[14] A. E. Hassan and R. C. Holt. Predicting change propagation in software
systems. In Proceedings of the 20th IEEE International Conference on
Software Maintenance, pages 284–293, Washington, DC, USA, 2004.
IEEE Computer Society.

[15] A. Hindle, D. M. German, and R. Holt. What do large commits tell
us?: a taxonomical study of large commits. In Proceedings of the 2008
international working conference on Mining software repositories, MSR
’08, pages 99–108, New York, NY, USA, 2008. ACM.

[16] L. Isella, J. Stehle, A. Barrat, C. Cattuto, J.-F. P. Pinton, and W. V.
den Broeck. What’s in a crowd? analysis of face-to-face behavioral
networks, 2010. cite arxiv:1006.1260.

[17] T. Lappas, K. Liu, and E. Terzi. Finding a team of experts in social
networks. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’09, pages
467–476, New York, NY, USA, 2009. ACM.

[18] D. Mcdonald and M. Ackermann. Just talk to me: A field study of
expertise location, 1998.

[19] D. W. McDonald and M. S. Ackerman. Expertise Recommender: A
Flexible Recommendation System and Architecture. In Proc. 2000 ACM
Conference on Computer Supported Cooperative Work, pages 231–240.
ACM, 2000.

[20] S. Minto and G. C. Murphy. Recommending emergent teams. In
Proceedings of the Fourth International Workshop on Mining Software
Repositories, MSR ’07, pages 5–, Washington, DC, USA, 2007. IEEE
Computer Society.

[21] M. E. J. Newman. Scientific collaboration networks. I. Network con-
struction and fundamental results. Physical Review E, 64(1):016131+,
June 2001.

[22] L. Zenk and C. Stadtfeld. Dynamic organizations. how to measure evo-
lution and change in organizations by analyzing email communication
networks. Procedia Social and Behavioral Sciences, 4:14–25, 2010.

[23] M. Zhou and A. Mockus. Growth of newcomer competence: challenges
of globalization. In Proceedings of the FSE/SDP workshop on Future of
software engineering research, FoSER ’10, pages 443–448, New York,
NY, USA, 2010. ACM.

