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Abstract—We present a new method for detecting descriptive
community patterns capturing exceptional (sequential) link
trails. For that, we provide a novel problem formalization:
We model sequential data as first-order Markov chain models,
mapped to an attributed weighted network represented as a
graph. Then, we detect subgraphs (communities) using excep-
tional model mining techniques: We target subsets of sequential
transitions between nodes that are exceptional in that sense
that they either conform strongly to a specific reference or
show significant deviations, estimated by a quality measure. In
particular, such a community is described by a community
pattern composed of descriptive features (of the attributed
graph) covering the respective community. We present a com-
prehensive modeling approach and discuss results of a case
study analyzing data from two real-world social networks.

1. Introduction

Sequential social data can be generated in various forms,
e. g., by establishing connections within a social network,
by observing alarm sequences in industrial plants, or by
visiting specific locations in a location-based social network.
Sequences specific for a certain actor can then be repre-
sented as sequential link trails, i. e., as transitions between
states, denoted by nodes of a network (e. g., alarms, contacts,
locations), that the respective actor is interacting with. The
analysis of such (sequential) link trails has broad applicabil-
ity, including the exploration of web navigation patterns [1],
patterns in industrial networks, as well as mobility patterns
[2], or the detection, analysis and explanation of anomalies.
Problem. We formalize the novel problem of detecting
descriptive community patterns [3] in the context of ex-
ceptional (sequential) link trails: We aim to detect sub-
graphs of an attributed weighted graph, i. e., communities
of sequential transitions (between nodes of a network) that
are exceptional in that sense that they either conform to
a specific behavior model or show significant deviations.
Such a community is described by a specific community
pattern which is composed of descriptive features that are
common to all members of the respective community, i. e.,
covering all involved sequential transitions. We could detect,
for example, that participants of a distributed event being
interested in classical and latin music show a significantly
deviating behavior than all participants.

Objectives. We tackle the problem of detecting descriptive
community patterns capturing subsets of sequential (link)
transitions that show an exceptional behavior compared to
some reference behavior (model). We present a novel ap-
proach using first-order Markov chain models [1], [2] com-
bined with exceptional model mining techniques [3], [4],
[5] for that task. Further, we discuss estimation methods for
ranking exceptional patterns, exemplified by two proposed
quality measures, for a general solution to this problem.

Approach & Methods. Based on description-oriented com-
munity detection techniques, cf., [3], we investigate subsets
of sequential transitions, i. e., sequences of states, captured
by sequential trails in order to detect exceptional community
patterns. We present a method based on the DASHTrails
approach [2] for distribution-adapted modeling and compar-
ison of hypotheses with sequential trail data, and propose
suitable quality measure for estimating the exceptionality.
Modeled as first order Markov chains, those patterns can
then be identified that e. g., show the largest evidence con-
cerning the observed data, i. e., the reference model given by
all transitions. The approach proposed in this paper identifies
community patterns capturing a set of sequential transitions
that are exceptional compared to that reference model.

Contributions. Our contribution is summarized as follows:

1) We provide a novel problem formalization and present
a framework for detecting descriptive community pat-
terns capturing exceptional sequential trails compared
to a reference model, as estimated by a quality function.

2) Based on first order Markov chain models and excep-
tional model mining techniques, we propose a flexible
modeling approach, and show how to embed the recent
DASHTrails [2] approach in our context of detect-
ing exceptional community patterns. Furthermore, we
present suitable quality measures for estimating their
quality in order to generate a ranking of the patterns.

3) We demonstrate the applicability of our proposed
framework and the presented measures using a case
study on two real-world social network datasets.

Structure. Section 2 discusses related work. After that,
Section 3 outlines the proposed approach. Next, Section 4
presents results of a case study utilizing two real-world
social network datasets. Finally, Section 5 concludes with
a discussion and interesting directions for future work.
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2. Related Work

In this section, we summarize related work on com-
munity detection, exceptional model mining and sequential
analysis, and put our proposed approach into context.

2.1. Community Detection

Communities and cohesive subgroups have been exten-
sively studied in social sciences, e. g., using social network
analysis methods [6]. Fortunato [7] presents a thorough
survey on the state of the art community detection algo-
rithms in graphs, focussing on detecting disjoint commu-
nities, e. g., [8], [9]. In contrast to those, our proposed
approach detects overlapping community patterns, such that
a node can be included in different community assignments.
In general, overlapping communities allow an extended
modeling of actor–actor relations in social networks: Nodes
of a corresponding graph can then participate in multiple
communities, e. g., [10], [11]. A general overview on al-
gorithms for overlapping community detection is provided
by Xie et al. [12] as comprehensive survey. In contrast to
the algorithms and approaches discussed above, the pro-
posed approach utilizes further descriptive information of
attributed graphs, e. g., [13].

Attributed (or labeled) graphs as richer graph represen-
tations enable approaches that specifically exploit the de-
scriptive information of the labels assigned to nodes and/or
edges of the graph. Overall, there are several methods that
consider community detection and description, i. e., that
focus on generating explicit descriptions connected with
the graph structure. Most methods aim at detecting dense
structures based on quasi-cliques that somehow correlate
with respective descriptive patterns, e. g., [14], [15], [16].
In [3], we focus on description-oriented community detec-
tion and present the COMODO algorithm using subgroup
discovery techniques [4], [17]. For providing both struc-
turally valid and interpretable communities we utilize the
graph structure as well as additional descriptive features
of the graph’s nodes. Using additional descriptive features
of the nodes contained in the network, we approach the
task of identifying communities as sets of nodes together
with a description, i. e., a logical formula on the values of
the nodes’ descriptive features. Such a community pattern
then provides an intuitive description of the community,
e. g., by an easily interpretable conjunction of attribute-value
pairs. COMODO is able to identify communities according
to standard community quality measures, while providing
characteristic descriptions at the same time.

Here, in contrast, we do not only focus on the graph
structure, but compare a weighted subgraph (modeling a
subset of sequential transitions) to a reference model in order
to identify conforming or deviating community patterns
covering the respective subgraph. In this paper, we provide
a general framework for obtaining the k-best community
patterns capturing exceptional sequential link trails. To the
best of the authors’ knowledge, no community detection
approach tackling this problem has been proposed so far.

2.2. Exceptional Model Mining

The detection and analysis of irregular or exceptional
patterns, e. g.,, anomalies, in network-structured data is a
novel research area, e. g., for identifying new and/or emerg-
ing behavior, or for identifying detrimental or malicious
activities. The former can be used for deriving new infor-
mation and knowledge from the data, for identifying events
in time or space, or for identifying interesting, important or
exceptional groups [18], [19].

In the context of descriptive pattern mining, the con-
cept of exceptional model mining has recently been intro-
duced [5]. It can be considered as a variant of subgroup
discovery for detecting interesting subgroups, e. g., [4], [17],
[20], [21], enabling more complex target properties. Essen-
tially, exceptional model mining tries to identify interesting
patterns with respect to a local model derived from a set
of target attributes, e. g., a correlation or a linear regression
model. The interestingness can be flexibly defined, e. g., by
a significant deviation from a model that is derived from
the total population. Possible applications include the iden-
tification of characteristic patterns [22], network analysis of
node information [23], [24], [25], or descriptive community
mining [3], [26], [27]. Here, we adapt exceptional model
mining techniques to our sequential trail problem setting.

2.3. Sequential Analysis

A general view on modeling and mining of ubiquitous
and social multi-relational data is given in [28] focus-
ing on social interaction networks captured during certain
events, e. g., during conferences. Here, contacts patterns,
for example, and their underlying mechanisms, e. g., [29]
are analyzed. Furthermore, [25] describe the dynamics of
community structures and roles at conferences, while [30]
focuses on their evolution. However, the analysis in these
contexts targets aggregated sequential data. Navigational
patterns, as sequential (link) patterns in online systems,
have been analyzed and modeled, e. g., in [1], [31]. [32]
defines a sequence-based representation of networks, where
sequential patterns are used to characterize communities.

In contrast to that, our approach focuses on the detection
of community patterns capturing sequential transitions. Sim-
ilar to evidence networks in the context of social networks,
e. g., [33], [34], we model transitions assuming a certain
interpretation of the data towards a sequential representa-
tion. Then, we can identify exceptional patterns given by
characterizing descriptions.

For comparing hypotheses and sequential trails, the Hyp-
Trails [35] algorithm has been applied to web data and
recently to geo-spatial trajectory data [36]. In [2] we have
presented the DASHTrails approach that incorporates prob-
ability distributions for deriving transitions. Using general
weight-attributed network representations, we can infer tran-
sition matrices as graph interpretations, relying on Markov
chain modeling [1], [37] and Bayesian inference [1], [38]. In
this paper, we adapt and extend that for detecting community
patterns capturing exceptional sequential link trails.



3. Method

We first provide an overview on the proposed approach.
Then, we present modeling and estimation in detail.

3.1. Overview

In the following, we provide an overview on the pro-
posed approach for detecting community patterns capturing
exceptional (sequential) link trails. Our subject of analysis is
given by an attributed graph that models the link trails in the
following way: Nodes of the graph denote actors of a social
network, e. g., users of a social system or locations in a
location-based social network. The edges of the graph model
the links between the nodes – as we will see below as transi-
tions between these. As a simple example, we consider a set
of users and a set of locations. Each user visits a sequence
of locations – in a location-based social network. Then, we
are interested in modeling these sequences (of locations),
and in detecting exceptional groups of transitions (between
locations) w.r.t. users and their properties, respectively. At a
music event festival, for example, possible characterizing
factors describing certain users groups could be specific
music genres. Here, exceptional patterns could include, for
example, users being interested in rock music and dance
visiting only a very specific selection of performances in
characteristic sequences, compared to the behavior of all
users covering the total set of sequential link trails.

For modeling sequences of such actors we resort to a
Markov chain approach, and model sequences as first-order
Markov chains. Essentially, this comes down to transitions
between individual states (corresponding to nodes of a net-
work) where links between nodes make up the respective
transitions. The weights of these links are then given ac-
cording to the respective transition probabilities (observed
in the Markov chain). Adapting the modeling principles of
the DASHTrails approach that we have presented in [2]
to our network formalism, we model transition matrices
according to sequential link trails in a first-order Markov
chain representation. We assume a discrete set of states Ω
corresponding to the nodes of the network (without loss
of generality Ω = {1, . . . , n}, n ∈ N, |Ω| = n). Then,
assuming a certain network interpretation of the weights
of the edges, we construct transitions between states. Using
a transition modeling function τ : Ω× Ω→ R ., transitions
between sequential states i, j ∈ Ω are captured by the ele-
ments mij of the transition matrix M , i. e., mij = τ(i, j) .

For incorporating properties (or features) into the net-
work (graph), we include edge labels. That is, the edges of
the graph (modeling specific transitions between nodes) are
labeled according to descriptive properties, e. g., capturing
properties of the specific sequences the transitions were
derived from. Then, using a specific set of labels we can
select a set of edges, i. e., all edges having the respective
label set, inducing a subgraph, i. e., a community. A com-
munity pattern is then given by the respective label set and
its corresponding (induced) subgraph, covering a subset of
nodes and transitions (i. e., edges), respectively.

3.2. Modeling Patterns

Let L denote a set of labels, e. g., binary features.
Intuitively, in our context a pattern is made up of a collection
of labels that are being combined in a conjunction. The
pattern can then also be interpreted as a predicate that is
true for an object, if the pattern covers the object, i. e., all
the labels contained in the pattern are also contained in the
description of the object. Then, for a specific community
pattern P , a community CP is the set of all objects (e. g.,
nodes/edges) that are covered by that pattern. In our context,
a pattern covers a set of edges, inducing a subgraph.

It is easy to see, that a pattern describes a fixed set
of objects (community), while a community can also be
described by a set of patterns, if there are different options
for covering the objects contained in the community. In the
following, we define these concepts more formally.
Definition 1. A (complex) community pattern P is given

by a set of basic community patterns P = {l1, . . . , lm} ,
where li ∈ L, i ∈ [1;m], which is interpreted as a con-
junction, i.e., P(I) = l1∧ . . .∧ lm, with length(P) = m.
We call a pattern P ′ a superpattern (or refinement) of a

subpattern P , iff P ⊂ P ′.
Definition 2. A community (extension)

CP := ext(P) := {o ∈ O|P(o) = true}
is the set of all objects o from a given universal set O
which are covered by the community pattern P .
As search space for description-oriented community de-

tection the set of all possible patterns 2L is used, that is, all
combinations of the basic patterns contained in L. Typically,
exceptional model mining approaches apply a general-to-
specific search strategy, such that search traverses (complex)
patterns and according superpatterns recursively. A similar
strategy can be applied for description-oriented community
detection, e. g., using the COMODO algorithm [3] as de-
scribed below, also in our context. For mining community
patterns we utilize both the link structure of the attributed
weighted graph, as well as its descriptive information, i. e.,
the label information of the attributed graph.

For ranking a specific pattern, we utilize a quality mea-
sure that estimates the interestingness of the pattern.
Definition 3. A quality measure q : 2L → R maps every

pattern in the search space to a real number that reflects
the interestingness of a pattern (or the extension of a
pattern, respectively).
The result of top-k community detection is the set of

the top-k patterns P1, . . . ,Pk , where Pi ∈ 2L with the
highest interestingness are selected according to the applied
quality measure. Since the patterns can contain redundancy
in the descriptions, typically redundancy management is
applied [4], [17]. A simple but quite effective approach
utilizes a minimal improvement filter [39]: A pattern is
then removed from the result set, if that set contains a
corresponding subpattern, i. e., a pattern that is described by
a subset of labels, with a similar quality – within a certain
interval – e. g., up to a 1% lower value, or a higher quality.



3.3. Modeling Sequential Trails

In the following, we describe our modeling method for
capturing sequential trails in the form of attributed networks
(modeled as attributed graphs). We start with a description
of modeling the complete network before we tackle the issue
of comparing subgraphs induced by community patterns.

Overall, for modeling we map a set of sequential trails
to a transition matrix using principles of first-order Markov
chain modeling. That transition matrix can then also be
interpreted as a weighted adjacency matrix of an (attributed)
graph, where the individual values of an entry (i, j) corre-
spond to the weight of the link between nodes i and j;
at the same time, this can be interpreted as the transition
probability between two states i and j. For our attributed
graph model, we label the links according to the descriptive
information of the sequential trail. Then, we identify excep-
tional community patterns based on the labels and structure
of the contained links using exceptional model mining.

Reference Model. As outlined above, we derive transi-
tion matrices (modeling transitions between states) for a
sequential trail using a certain transition modeling function
τ : Ω × Ω → R. Using τ , we can model transition
matrices corresponding to the observed data. Concerning
all sequential trails that make up our reference model, we
construct an according matrix MN with mN

ij = τ(i, j): For
those observed sequences we can simply construct transition
matrices counting the transitions between the individual
states. Then, τ(i, j) = |suc(i, j)| , where suc(i, j) denotes
the successive sequences from state i to state j contained in
the sequence. For constructing more complex transition ma-
trices from a probability distribution over events or subsets,
for example, we need to apply a more complex modeling
approach. We refer to [2], [35] for more details on modeling
and inference, respectively. For comparing the model to
matrices induced by community patterns, we can either pro-
vide the matrix itself, or use an adapted (e. g., normalized)
matrix depending on the requirements of the applied quality
measure. We can assess, for example, the model and the
community pattern using an approach based on comparing
network structures. Furthermore, we can apply a Bayesian
approach and compare the model to induced hypotheses.

Community Pattern. A community pattern P induces a
subgraph (community) CP given a set of labels P , selecting
all links that are covered, i. e., that share a label contained
in P . Then, all transitions in the matrix MN are selected
(corresponding to a set of links of the network) that are cov-
ered by the pattern P . Using that, we construct an according
transition pattern matrix MP based on the respective counts
of the covered transitions. Intuitively, the matrix MP can
then be regarded as some kind of “projection” of matrix
MN given the pattern P using our modeling approach. In
the simplest case, we can just transfer the weighted links of
the subgraph CP . Now, given the (row-normalized, where
required) transition matrix for P we need to rank it in
relation to the network data and other community patterns.
For that, we apply a quality measure as described below.

3.4. Quality Measures

For ranking a set of community patterns, we propose
two quality measures for our modeling context.

QAP. The quadratic assignment procedure [40] (QAP) is a
standard approach for comparing network structures, e. g.,
using a graph correlation measure: For comparing two
graphs G1 and G2, it estimates the correlation of the re-
spective adjacency matrices M1 and M2 and tests that graph
level statistic against a QAP null hypothesis [40]. QAP
compares the observed graph correlation of (G1, G2) to
the distribution of the respective resulting correlation scores
obtained on repeated random row and column permutations
of the adjacency matrix of G2. As a result, we obtain a
correlation and a statistical significance level according to
the randomized distribution scores. For deriving a quality
measure based on QAP and graph correlation, we compare
the reference matrix MN and the matrix MP for pattern P :

qQ(P ) = QAP(MN ,MP ) =
cov(MN ,MP )√

var(MN ) · var(MP )
,

where MN is the transition matrix induced by the reference
model (as described above), MP is the transition matrix
induced by pattern P , cov indicates the covariance of the
matrices, and var(M) = cov(M,M) the variance, e. g.,
cf., [40] for more details on QAP.

Bayesian Estimation. Using our Markov chain modeling
formalism, we can also take a Bayesian modeling view and
utilize the community pattern for constructing a hypothesis,
in order to check how well it explains the behavior of the
transitions of the reference model. On the one hand, if the
hypothesis does not explain the behavior of the model well,
then we observe a deviating behavior. On the other hand,
if the hypothesis explains the transitions contained in the
model well, then we observe conforming behavior.

For estimation, we apply the core inference step of
DASHTrails [2] on our first-order Markov chain model [35].
As an input, we provide a hypothesis constructed using the
row-normalized transition matrix covered by the pattern,
containing the transitional information (frequencies) of tran-
sitions between the respective states. In principle, in this step
we can also include further transformations of the matrix,
if required. In addition, we utilize the according transition
matrix of the reference model. Following [35], we elicit a
conjugate Dirichlet prior given the data (matrix) and finally
obtain the evidence using marginal likelihood estimation.
Here, the evidence denotes the probability of the model
(data) given a specific hypothesis. Thus, this can also be
interpreted as the relative plausibility of a hypothesis. Then,
the hypotheses can be ranked in terms of their evidence.

A central aspect of the method is an additional parameter
(b) indicating the belief in a given hypothesis: The higher
b the higher the belief in the respective hypothesis matrix.
Given a lower value of b the hypothesis is assigned more tol-
erance, such that other (but similar) parameter configurations
become more probable. We then assess the performance



of a hypothesis with increasing b, typically relative to the
uniform hypothesis (as a baseline) and further hypotheses.

For obtaining a quality measure, we first estimate the
evidence of the hypothesis constructed using pattern P
relative to the reference model for a given b:

qE(P, b) = Evidence(MP ,MN , b) = ML(MN |M b
P ) ,

where ML(MN |M b
P ) computes the marginal likelihood (ev-

idence) of the data (MN ) given a hypothesis M b
P (derived

from MP with belief b), with the transition matrix MP for
the community pattern P and the normalized matrix MN of
the reference model. We refer to [35], [38] for a derivation
of ML(MN |M b

P ) and M b
P .

Since qE depends on a parameter b we also need to
obtain an overall picture for different values of b indicating
different beliefs in our reference model. Typically, different
values b = 1, . . . , n are provided in order to show the
trends of the evidence computation. For more details, we
refer to [2]. For obtaining a comprehensive view on qE for
a set of values for b we can now combine the different
contributions of the qE values. In order to do that, we
compute the evidence area under the curve qC , similar to the
area under the curve (AUC), for predictive applications [41].
The quality measure qC (for a given n) is defined as follows:

qC(P ) = qE(P, 1) +

n∑
b=2

qE(P, b) + qE(P, b− 1)

2
,

where MP denotes the transition matrix for the com-
munity pattern P and MN the normalized matrix of the
reference model.

For the assessment of qC(P ) for a community pattern
P we can compare it relative to other patterns. Further-
more, we also take into account a random baseline, i. e.,
the uniform hypothesis (square matrix, all entries being 1).
Then, a conforming hypothesis should exhibit large evidence
values, i. e., a large qC value (and accordingly large qE
values). In addition, it should also be “well away” from the
random baseline, cf., [1], [35]. For the uniform hypothesis
we can obtain according values for the evidence area under
the curve analogously, as described above. For different
patterns, qC and qE can be compared using Bayes factors
analysis [42] in order to identify significant differences.

A further option for (interactive) assessment is given
by a visualization of the obtained evidences. Here, we plot
the distinct evidence values of the respective hypotheses.
In addition, we can also plot the evidence area under the
curve values into a single plot for a comprehensive visual
overview on the relations between the different hypotheses,
the pattern hypothesis, and the (uniform) baseline.

4. Results

In the following, we describe two case studies using real-
world social network datasets focusing on location-based
social networks. We first describe the applied datasets before
we present the results of our experiments. After that, we
provide a detailed discussion.

4.1. Datasets

We applied two location-based social network datasets.
The first dataset is given by a bimodal network of user–
performance visits at a distributed event, where a timestamp
is assigned to each link accordingly. Then, we can construct
sequential (visit) trails for each user given these timestamps.

The second dataset considers environmental noise mea-
surements, in a bimodal network of user–location relations,
where here a timestamp is assigned to each measurement (of
environmental noise) as well. We can accordingly construct
sequential (measurement) trails for each user given the
respective measurements and timestamps.

For both datasets, we construct transition matrices as
discussed above, and label the transitions of each trail given
the respective properties of the users, i. e., interests and tags,
respectively. In the resulting attributed graphs a link between
two nodes indicates a transition between the respective
locations with a probability according to the link’s weight.

4.1.1. LNM 2013. The Lange Nacht der Musik (Long Night
of Music; LNM), e. g., [43], [44], is an annual cultural event
that is organized in the city of Munich. At one evening
in May, a diverse range of pubs, discotheques and clubs,
and other cultural venues, such as churches and museums
are hosting various musical performances. On May 11th
2013, approximately 20,000 people visited a total of 212
available performances at 113 distinct locations, that were
dispersed across the city. For supporting the participants, a
targeted app for event planning was offered in the app store;
a total of 1159 users downloaded and used that app. For
location-based assessment, also GPS (Global Positioning
System) of the app data was logged for tracking users’
actual (time-based) visits. As not all users had their GPS
enabled, only the visits of 111 out of the 1159 visitors could
be reconstructed. For more details on the dataset and its
collection, we refer to [43], [44].

Given that data, we construct a bipartite graph, creating
an edge between user u and performance h, if u attended h.
We assign the timestamp when user u entered performance
h to that edge. There are 245 nodes (111 users and 134
performances) – as the only non-singleton component [44].
Then, we can naturally collect sequential trails by ordering
the sets of edges for each user. Thus, the dataset contains
111 trails, with a mean length of about 5 performances. The
transitions (links) of these trails are then labeled with labels
using categories and descriptions about the performances.

Concerning the descriptive information, i. e., the labels
that are assigned to the edges of our final attributed graph
modeling the location-based social network, we extracted
descriptive information from the textual information of the
event: This included genre categories as well as descriptions
(free text) of the individual performances. We applied typical
data preprocessing steps such as stemming and stop word
removal, e. g., [45]. On average, 45.50 features are assigned
to each trail. We furthermore filtered words below a minimal
frequency threshold τ = 5 reducing a total number of 2767
to 180 descriptive words (features) in total.



4.1.2. EveryAware – WideNoise Plus. As our second real-
world dataset, we furthermore utilize data from the Ev-
eryAware1 project, e. g., [46]. Specifically, we focus on
collectively organized noise measurements collected using
the WideNoise Plus application between December 14, 2011
and June 6, 2014, cf., [47]. WideNoise Plus allows the
collection of noise measurements using smartphones. It in-
cludes sensor data from the microphone given as noise level
in dB(A), the location from the GPS-, GSM-, and WLAN-
sensor represented as latitude and longitude coordinate, as
well as a timestamp. In addition, tags can be assigned to
the recording. We collected data from all around the world
using iOS and Android devices. The data are stored and
processed using the EveryAware backend which is based on
the UBICON software platform [46], [48].

The applied dataset contains 6,069 data records, i. e.,
noise measurements of 635 users (i. e., 635 trails, with an
average trail length of about 10) and 2,009 distinct tags:
The available tagging information was cleaned such that
only tags with a length of at least three characters were
considered. Only data records with valid tag assignments
were included. Furthermore, we applied stemming and split
multi-word tags into distinct single word tags. Each trail
contains 34.31 tags on average. We also filtered words below
a minimal frequency threshold τ = 5 reducing the total
number of tags to 288 features. Concerning the GPS data
we identified 249 locations in a grid-based approach.

4.2. Case Studies

Below, we present the results of our case studies on
the LNM 2013 and the WideNoise Plus datasets. For the
pattern detection step, we applied an adapted version of
the COMODO algorithm for description-oriented commu-
nity detection. It aims at discovering the top-k communi-
ties (described by community patterns) with respect to a
number of standard community evaluation functions [3].
The method is based on a generalized subgroup discovery
approach [26], [49] adapted to attributed graph data for
detecting description-oriented community patterns. In our
setting, COMODO works on the respective transition ma-
trices. The descriptive information is provided in the form
of an edge dataset, where a set of labels is assigned to each
edge (indicating the incident edges). Then, each row of the
dataset contains the edge, as well as the set of labels. Using
that data representation, we can apply the proposed quality
measures in order to mine the top-k community patterns.

We applied both the qC and the qQ measures for eval-
uation: We considered qQ as a baseline, since it relies
on a well-established technique for detecting associations
between adjacency matrices. Therefore, for community de-
tection we applied the proposed qC measure, and put it
into relation to qQ concerning ranking consistency, and
its effectiveness w.r.t. the identification of conforming and
deviating patterns. In addition, we also outline a detailed
view on the results of qC using the respective values of qE .

1. http://www.everyaware.eu
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Figure 1: Detailed view on the quality of the community patterns in
Table 1. We show the individual quality values obtained using qE for
increasing b (degree of belief in the pattern).

Table 1 shows exemplary exceptional conforming and
deviating patterns for the LNM 2013 dataset, using qC
(n = 10) and qQ as quality measures; in addition, it
shows the sizes of the covered subsets. When constructing
the hypotheses given the community patterns, we applied
normalization using the distribution-adapted modeling ap-
proach discussed above; transitions were modeled respecting
self loops, and reset state, cf., [35]. Figure 1 provides a
detailed view on the performance of the patterns regarding
qE (and thus also qC), and allows a fine-grained analysis
for comparing the different patterns. Table 2 and Figure 2
show the respective results for the WideNoise Plus dataset.

TABLE 1: Exemplary exceptional conforming/deviating community
patterns for LNM 2013. Patterns #1-#3 tend rather to conform to the
reference model, while patterns #4-#5 show a deviating behavior.

# qC qQ Size Description

1 -7992 0.99 434 music
2 -12240 0.86 310 rock
3 -13632 0.81 277 night
4 -22478 0.48 73 classic ∧ latin
5 -24996 0.20 20 handmade ∧ modern

TABLE 2: Exemplary exceptional conforming/deviating community
patterns for WideNoise Plus. Patterns #1-#3 tend rather to conform
to the reference model (especially #1 and #2), while patterns #4-#5
(increasingly) show a deviating behavior.

# qC qQ Size Description

1 -42326 0.94 5078 traffic
2 -61574 0.89 3990 car
3 -65589 0.76 3326 noise
4 -90381 0.43 707 bird ∧ courtyard
5 -110520 0.24 600 background ∧ quiet
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Figure 2: Detailed view on the quality of the community patterns in
Table 2. We show the individual quality values obtained using qE for
increasing b (degree of belief in the pattern).

4.3. Discussion

Considering Tables 1-2 we observe that the ranking
between qC and qQ is consistent for the conforming and the
deviating patterns. Furthermore, both for the conforming as
well as the deviating patterns the ranking is always clearly
distinguishable using qE (also being consistent with qQ). As
can be observed especially for the conforming patterns, the
evidence plot enables a detailed view on the behavior, as
also supported by using Bayes factors analysis [42]. These
trends also confirm ranking consistency and validity.

Alltogether, our results demonstrate the potential of
the proposed approach and the presented quality measures.
Specifically, the quality measure qC provides a comprehen-
sive view on the patterns, and induces a consistent ranking
of the patterns compared to our baseline qQ utilizing the
QAP test. Furthermore, it allows a detailed inspection using
the values of qE for comparing patterns in detail. When the
qQ values are relatively close, for example, qC still enables
a convincing decision on the ranking by visual inspection
using Bayes factor analysis [42]. In particular, we can then
conveniently apply the evidence plot qE and compare the
individual patterns and their induced transition matrices,
respectively, to the uniform transition matrix.

From a qualitative point of view, the patterns shown in
the Tables 1-2 are intuitive to interpret and also tend to con-
form to our expectations concerning the reference behavior
of both datasets: For the patterns in Table 1 we observe
conformance for labels that are quite general for LNM 2013,
while there are deviations for specialized ones. In addition,
for the WideNoise Plus dataset we observe similar trends
concerning noisy and relatively quiet environments.

5. Conclusions

In this paper, we provided a novel problem formaliza-
tion for detecting descriptive community patterns capturing
exceptional sequential trails. We presented a framework for
comparing such patterns to a specific reference model, and
for identifying the top-k patterns, and proposed suitable
quality measures. We demonstrated the applicability of our
proposed framework using a case study on two real-world
social network datasets. In our experiments, we observed the
strengths of the Bayesian inference approach (captured by
the novel quality measures qC and qE) compared to a base-
line (qQ), also regarding visual inspection. Alltogether, the
presented results showed the applicability and benefit of the
proposed approach for detecting the top-k patterns and for
obtaining a comprehensive view on those. Complemented by
flexible visualizations, e. g., [2], [47], the patterns and their
ranking can also be inspected for a detailed assessment.

For future work, we aim to extend the analysis using
more (diverse) data, e. g., further behavioral [50], indus-
trial, and social media data, also enabled by information
extraction methods, e. g., [51]. Furthermore, we aim to in-
clude more background knowledge for refining the reference
models, e. g., by considering causal relations, e. g., [17], and
social distributional approaches, e. g., [29]. Supporting inter-
active visualization, introspection, and explanation methods
(e. g., [52]) are further interesting directions for future work.
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