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Abstract—This paper focuses on the analysis of socio-spatial
data, i. e., user–performance relations at a distributed event.
We consider the data as a bimodal network (i. e., model it as a
bipartite graph), and investigate its structural characteristics
towards a social network. We focus on plans of the participants
(expressed by preferences) and their fulfilment, and propose
measures for matching preference and reality. We specifically
analyse behavioural patterns w.r.t. distinct user and perfor-
mance groups. We utilise real-world data collected at the Lange
Nacht der Musik (Long Night of Music) 2013 in Munich.

1. Introduction

In cities, distributed cultural events are becoming more
and more widespread - enabling the selection and involve-
ment in a large variety of performances for the participants.
The analysis of the respective relations between participants
and particular parts of an event (performances) can yield
important insights into the event structure, as well as provide
a detailed view on user interests (expressed by preferences)
and individual/collective behavioural attendance patterns.

Objectives. Both perspectives, i. e., structure and be-
haviour, are the two main research foci addressed in this
paper. We analyse data collected from a distributed event, the
Lange Nacht der Musik, Long Night of Music - a cultural
event organised in the city of Munich, Germany, which we
model using methods from social network analysis. We model
user–performance relations corresponding to the planned
behaviour (preference) and the real behaviour as bipartite
graphs. Then, we analyse these concerning their structural
characteristics. In addition, we analyse behavioural patterns
with respect to the fulfilment of the planned behaviour using
formal concept analysis [1] and subgroup discovery [2].

Contribution. (1) We focus on the social structure of the
distributed event where preferences and visiting behaviour
can be regarded as expressing socio-spatial characteristics
of the users. We analyse the bimodal network of user–
performance relations, and show that this social event
network conforms to the characteristics of a social network.
(2) In addition, we demonstrate that we can identify distinct
behavioural patterns w.r.t. groups of users and performances.
(3) In doing that, we furthermore propose and demonstrate
a set of methods for the analysis of such network models.

The rest of the paper is structured as follows: Section 2
discusses related work. Then, Section 3 describes our data.
Sections 4-5 tackle the structural and behavioural analysis
tasks, respectively. Finally, Section 6 concludes with a
discussion and outlines interesting directions for future work.

2. Related Work

Event-based networks are captured by interactions be-
tween people, either online [3] or offline, e. g., [4], [5]. A gen-
eral view on modelling and mining of ubiquitous and social
data is given in [6] focusing on social interaction networks
captured during certain events, e. g., during conferences.
Offline contact patterns, and their underlying mechanisms
are analysed, e. g., relating to roles and interactions between
communities [7], or their dynamics [4]. In contrast to those
approaches, we do not focus on explicit offline event-based
networks, nor on (location-based) online social networks. We
consider implicit location-based networks that are formed by
participants of a distributed cultural event that visit different
performances. We show that different induced networks, e. g.,
links between users or performances, contain important socio-
spatial characteristics. A similar approach has been conducted
in [8], however concerning the semantics of implicit online
user interactions, in contrast to our offline setting. In addition,
we do not consider the semantics of the (implicit) interactions,
but focus on structural aspects as well as behavioural patterns.

In [9], [10], the authors investigated how the information
search behaviour of individual users utilizing an electronic
guide influences the behaviour while planning the attendance
of a distributed event and the behaviour while visiting it.
Furthermore, the authors provide evidence that during the
event the information search behaviour induces modifications
of the attendance behaviour with respect to the planning
behaviour. Here, we extend this kind of behavioural analysis
of individual users to behavioural patterns: We first build
a social network from log data of users observed during a
distributed event. Then, we reconstruct typical behaviour of
user groups from properties of that social network.

Furthermore, we do not only focus on the analysis:
Instead, we present a methodology for the analysis of such
social (distributed) event networks, e. g., concerning structure,
social characteristics, and distinct behavioural patterns.
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3. Description of Data and Modelling

The Lange Nacht der Musik (Long Night of Music; LNM)
is an annual cultural event organised in the city of Munich.
In addition to a diverse range of pubs, discotheques and
clubs, other cultural venues, such as churches and museums
open their doors for one evening in May to host musical
performances. On May 11th 2013, approximately 20,000
people visited a total of 212 available performances at 113
distinct locations, that were dispersed across the city.

LNM App. Since each individual visitor can only visit
a small fraction of these performances, careful planning is
necessary. For this task, an Android app was developed by
the University of Erlangen-Nuremberg that assists in finding
performances of interest and creates itineraries that minimise
travel time while maximising time spent at a performance.
The app provides personalised recommendations to the
user [11], allows faceted browsing of the performances
and finally creates a personalised plan for visiting a set
of performances based on the user’s preferences. At any
moment the user can decide to edit the remainder of the plan,
e. g., by removing a performance, inserting an performance
at a specific position/at its best position, rearranging the
order of performance visits or by changing a performance’s
visit duration. The app was offered in the Google Play Store.

Data. Overall 1159 visitors used the app, shaping the set
of all user IDs U . For those we logged all user interactions.
Of all users, 612 actually rated performances from the
performance set H for possible tour inclusion. They did
so by assigning a preference value from the preference set
P = {−1, 0, 1, 2}, where −1 = “no rating”, 0 = “Don’t
want to visit”, 1 = “Would like to visit, if it fits into the
tour”, and 2 = “Want to visit in any case”, meant. This
ascending encoding will enable us to calculate easily with
the preferences later on, especially to omit “no rating”. We
further call this data set the preference data set (DBP ).
Additionally, we logged GPS (Global Positioning System)
data in order to track users’ actual visits. As not all users
had their GPS enabled, we were only able to reconstruct
the visits of 111 out of the 1159 visitors. We call this the
attendance data set (DBA).

Modelling. From the data described above we inherit
multiple graph structures. In particular we model DBP as
an edge-weighted bipartite graph with U ∪ H as the set
of vertices and some edge set E ⊆ U × H . The weight
function will be w : U ×H → P , which maps a user u and
a performance h to the preference value p ∈ P , which was
assigned by u to h prior to the LNM. Using this we define the
edge set E := {(u, h) ∈ U ×H | w(u, h) ≥ 0}, i. e., there
is an edge between u and h if u assigned a preference to h.
Obviously, taking users without any preference value into
account would lead to a vast amount of singleton components.
They are therefore omitted, as well as performances not
preferred by any user. We model this by the restricted subsets
UP ⊆ U and HP ⊆ H . This results in the preference graph
P := (UP ∪ HP , Ep, w) where EP ⊆ E is the induced
subset on UP ∪HP . This graph is connected and has 824
vertices (612 users and 212 performances).

By focusing on the set of positive preferences, i. e.,
ED := {(u, h) ∈ U × H | w(u, h) ≥ 1}, we obtain a
bipartite graph that consists of 554 components of which
only one is not a singleton. This particular component has 818
vertices (607 users and 211 performances). Again, we omit
the singletons by restricting U to UD as well as H to HD

and define the deliberation graph: D = (UD ∪HD, ED, w).
In this graph an edge represents that a user was at least
moderately interested in going to a performance.

Finally, the third graph we want to construct using the
given data is the attendance graph inherited from the DBA.
We use the edge set EA ⊆ U×H defined by (u, h) ∈ EA iff
u attended performance h. The only non-singleton component
has 245 vertices (111 users and 134 performances). By
restricting U and H to UA and HA we define the bipartite
attendance graph as follows: A = (UA ∪HA, EA).

All those graphs were thus constructed using data pro-
vided by the users. They represent various kinds of user
interactions with performances. This is not unlike, e. g., users
of the twitter platform1 interacting with tweets, for which
some social network character was shown, cf., [12]. Hence,
below we target the naturally emerging question, i. e., whether
the constructed graphs have the social network property.

4. Social Network Graph

In this section, we analyse if the social event network
can be treated as a social network as defined in [13]. For
that, we need to show in particular that projections of the
just constructed bipartite graphs have characterising values
in terms of average path lengths and average local clustering
coefficients. If so, this would enable researchers to apply
tools and theories developed for such networks. Even more,
so far undiscovered differences in social networks could be
revealed by comparing this alleged social network to others.

At first we take a closer look at the bipartite graphs
themselves. Thereafter, we will project the bipartite graphs
onto their user sets, to show that the required defining
properties for a social network, as stated in [13], are present.

4.1. Bipartite properties

In the following, we study structural properties of the
deliberation and the attendance graphs. In particular, we aim
at providing an indication about the macroscopic connectivity
structure in the bipartite graphs, e. g., regarding characteristic
numbers of user–performance connections. For that, we ex-
tend methods for visualizing the k-neighborhood-connectivity
(KNC) [14] for a bipartite graph. Given a bipartite graph
G = (U ∪H,E) with a set of vertices U and H and edges
E, two vertices in U are k-neighbours if there are at least k
distinct paths of length two between them (analogously for
H). A k-neighborhood graph is then induced on U (or H)
by this k-neighborhood-relation. Then, the KNC-plot shows
the degradation of connectivity with increasing k.

1. www.twitter.com
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(a) D: user degree distribution
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(b) D: user KNC-plot
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(c) D: performance KNC-plot

Figure 1: User degree distribution and KNC-plots for the deliberation graph D: We show user and performance connectivity, plotting the size of
the largest and second largest component, respectively, and the number of connected components in the induced KNC-graphs, respectively. In
the user KNC-plot, we observe that with an increasing threshold on jointly visited performances, the number of components increases strongly
from the start: However, there is only one large component, while the remaining components have a size between 1 and 2. A joint number of
five performances still captures about 50% of the total set of users which shows the strong connectivity. We observe similar findings for the
performance KNC-plot: Until 7 common users, the largest performance component captures about 50% of the total set of performances; here the
remaining components are always at most singletons.
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(c) A: performance KNC-plot

Figure 2: User degree distribution and KNC-plots for the attendance graph A: We show user and performance connectivity, plotting the size of
the largest and second largest component, respectively, and the number of connected components in the induced KNC-graphs, respectively. In
the User-KNC-Plot, we observe that with an increasing threshold on jointly visited performances, the number of components increases, even
more strongly than in the deliberation graph D. There is also only one large component, while the remaining components have a relatively
small size. A joint number of four performances still captures about 50% of the total set of users which shows the strong connectivity. For the
performance KNC-plot, until 3 common users, the largest performance component captures about 50% of the total set of performances; the
remaining components are relatively small similar to the user KNC-plot.

The original KNC-plot contains the number of connected
components as well as the size of the largest component.
In addition, we also plot the size of the second largest
component in order to obtain a more comprehensive view
on the component structure, i. e., for studying whether the
split for larger values of k occurs uniformly or not.

Figures 1 and 2 show the degree distributions of the users,
and KNC-plots for users and performances, respectively. In
the deliberation graph, we observe a skewed distribution,
which however, conforms to the (behavioural) trends consid-
ering the degree distribution of the attendance graph.

On average about five performances are visited – this is
also reflected by the number of performances assigned with
preferences in the deliberation graph. Further, we observe a
strong connectivity structure both for the deliberation and the
attendance graph. With increasing k the largest component
breaks up only gradually. This already indicates interesting
socio-spatial characteristics towards those of a social network,
since we can assume a strong (local) clustering structure. We
will analyse that in more detail in Section 4.2. Furthermore,
we observe a “meaningful” number of performances for a
user up to five performances for that social structure.



TABLE 1: Quantitative properties of the projected graphs.

Graph Vertices Edges Edge-density

PU 612 78415 0.42
DU 607 69198 0.38
AU 111 1145 0.19
D∗

U 79 1341 0.44
A∗

U 78 586 .20

4.2. User-Projections

We project all mentioned bipartite graphs on their set of
users U to obtain simple undirected graphs, cf., Table 1
for an overview. This approach is common to analyse
bipartite networks for social network properties, cf., actor
collaboration in [13]. For P we construct PU := (UP , E

U
P )

with EU
P := {(u, v) ∈ UP | ∃h ∈ H : (u, h) ∈ EP ∧ (v, h) ∈

EP }, for DU and AU analogously. The analysis would be
more straightforward if the sets UA and UD were identical.
However, this is not the case. In fact the intersection of those
user sets has 79 users. The restrictions of the projections of
the deliberation graph as well as of the attendance graph to
those 79 users, are indicated by D∗U and A∗U respectively2.

Watts stated in [15] that social network like graphs have
specific characteristics in terms of local clustering and global
separation, cf., [16] for a comparison. This also holds for
graph projections from a social bipartite graph [17].

Graph properties. Social networks in general show
the small-world effect, i. e., small average shortest path
lengths [15], and high average local clustering coeffi-
cients [13]. Many observations of network properties can be
explained just by the network’s degree distribution [18].
It is therefore important to contrast the observed small-
world properties to the according results obtained from a
random graph (i. e., a null model) sharing the same degree
distribution. To obtain such null models for our graphs we
use the algorithm from [19], which shuffles the edges of a
given graph G preserving the degree of every vertex, i. e., the
number of edges intersecting with the vertex. This process
is typically repeated a multiple of the graph edge set’s
cardinality [20]. In our experiments we shuffled as often
as 100 times the cardinality of the edge set.

Average Shortest Path Length. A path v0 →G vn
of length n in a graph G = (V,E) is a vertex sequence
(v0, . . . , vn) ∈ V n+1 , n ≥ 1 and {vi, vi+1} ∈ E for all
i = 0, . . . , n− 1. A shortest path between nodes u and v is
a path u→G v of minimal length.

The average shortest path length for a social network,
i. e., the mean of shortest path lengths for any two vertices in
a graph, is significantly low for social network graphs. The
follower graph of the social network twitter, for example, has
an average path length of 4.17, see [12]. A data set which
is even more comparable to our investigated data, but rather
small, is the southern woman data set [21]; it recorded the
participation of 14 persons to 18 events. Here, the average
shortest path length is 1.09. In contrast, the Internet router
network [22] has an average shortest path length of 9.51.

2. A∗
U has two connected components, one with 78 vertices, the other

one being a singleton only. We ignore the latter in the subsequent analyses.

TABLE 2: Average shortest path lengths (ASP) of our projected graphs
compared to comparable Watts-Strogatz-Graphs with p = 0 (WSG0)
and p = 0.1 (WSG1), random graph R, and null model (NM ).

Graph ASP WSG0 WSG1 R NM

PU 1.58 1.74 1.58 1.58 1.58
DU 1.63 1.87 1.62 1.62 1.62
AU 2.02 3.27 2.12 1.82 1.92
D∗

U 1.58 1.69 1.56 1.56 1.58
A∗

U 2.05 2.92 2.07 1.84 1.99

For the investigated projections we obtained low average
shortest path lengths, between 1.58 for PU and 2.05 for A∗U ,
see Table 2. For every graph we compute the following list
of graphs and compare their properties with original one:
the Watts-Strogatz [13] model (WSG) using p = 0.0 and
p = 0.1, a random graph with the same amount of vertices
and edges, and the null model. For the projections of P and
D we observed almost identical values for WSG in average
shortest lengths for p = 0.1. The other projections seem
to be closely reproduced in terms of average shortest path.
The null model behaves alike but the discrepancy for AU

and A∗U is distinct. So the graphs that emerged from the
initial data sets, the graphs constructed by the Watts-Strogatz
model, and the null model graph have no distinct demeanour
in terms of average shortest path length for graphs of this
size. Given these results we may claim that this definitional
requirement for a small-world network, which is necessary
to qualify as a social graph, is satisfied. However, we need
to check the other requirement for small-world networks to
substantiate our initial assumption.

Average local clustering coefficient. Small-world net-
work graphs tend to have a high average local clustering coef-
ficient (alcc), see [13]. That is 1

n ·
∑n

i=1 Ci where Ci is the lo-
cal clustering coefficient for the vertex vi. This coefficient can
be computed as follows. Let Ni := {v ∈ V | {vi, v} ∈ E},
the neighbourhood of vi. We then compute:

Ci =
2|{eij | vi, vj ∈ Ni, eij ∈ E}|

|Ni|(|Ni| − 1)

For example, the aforementioned Internet router network has
an alcc of 0.03, see [13], the graph of twitter followers has
an alcc of 0.3 (see [12]) and the social network formed by
actors has an alcc of 0.79, see [13].

Table 3 presents the clustering coefficients for all projec-
tions, the Watts-Strogatz model, a pure random graph, and
the null model. For all graphs emerging from DBP and DBA

we find a high alcc. Like [5], we note that alcc is smaller
for offline than online networks. We further observe the
necessary property that for all projections the alcc obtained
from the degree-preserving randomised graphs decreases.
Especially for AU and A∗U this decrease is very high.

Summary. Our results concerning the average shortest
path length combined with the results for the clustering
coefficient underpin the claim that the LNM event can be
treated as a social network. Hence, the investigation of the
LNM dataset in the realm of social networks is meaningful.



(a) Histogram for pf(u) for all 79 users in UB . (b) Histogram for the pre and rec measure for all 79 users in UB .

Figure 3: Histograms for the user-based plan fulfilment measures, for all 79 users (UB) where deliberation and attendance is known.

TABLE 3: Clustering coefficient (CC) of our projected graphs compared
to comparable Watts-Strogatz-Graphs with p = 0 (WSG0) and p = 0.1
(WSG1), random graph R, and null model (NM ) .

Graph CC WSG0 WSG1 R NM

PU 0.75 0.75 0.60 0.42 0.70
DU 0.71 0.75 0.60 0.38 0.63
AU 0.52 0.71 0.54 0.19 0.30
D∗

U 0.74 0.73 0.60 0.43 0.69
A∗

U 0.49 0.70 0.52 0.19 0.31

5. Behaviour Analysis

This section investigates the deliberation vs. the atten-
dance graph, i. e., to what extent the deliberation determines
the attendance, and proposes suitable measures. Further, we
introduce newly developed methods to discover particular
interesting groups of users and groups of performances.

5.1. Plan Fulfilment: Intention vs. Reality

For comparing A and D, we restrict the set of users U
to users where both, attendance and deliberation, is known.
This is true for 79 users. We denote this set by UB . Using
both graphs we use the Jaccard-Distance to compare the
deliberation to the actual attendance of a user u ∈ UB . For
that let

pf(u) :=
|NA(u) ∩ND(u)|
|NA(u) ∪ND(u)|

,

where ND = {h ∈ V | (u, h) ∈ ED}, i. e., the set of
performances u was planning to go to, and NA = {h ∈ V |
(u, h) ∈ EA}, i. e., the set of performances u actually went
to. This measure does not take into account that there are
different levels of deliberation to a performance. Therefore,
we call it simple plan follow measure. A histogram for this
measure using ten bins is shown in Figure 3a. We find the
number of visitors that actually completely fulfilled their plan
is one. The number of visitors with a fulfilment of up to 0.5
is 73. But only 8 users did have a pf(u) of zero, i. e., they did
not attend any of the planned performances. However, as we
looked them up we found that they in fact attended between
one and nine performances. The average fulfilment for all
users is 0.23; this (low) number can be partially attributed to
the tour planning app for generating a plan from a (larger) set

of preferences. Therefore, since the pf(u)-measure does not
explain if the reason for a low value is due to participating
in fewer performances or to participating in not planned
performances. To answer this striking question we adapt two
measures known from information retrieval, i. e., precision
(pre) and recall (rec):

pre(u) :=
|ND(u) ∩NA(u)|
|ND(u)|

, rec(u) :=
|NA(u) ∩ND(u)|
|NA(u)|

The rec-measures yields 1.0 for a user u if she attended
only intended performances; the pre-measure yields 1.0 for
a user u if she attended all performances she had planned to
go to. From the plots shown in Figure 3b we may conclude
the following statements for LNM. The majority of users
attended to performances they planned beforehand to some
extent. In particular, for a lower recall bound in rec of 0.6
there are 39 users. Further, the vast majority did not go where
they planned to. Only 20 users have a precision of at least
0.5, i. e., went at least to half of the planned performances.

5.2. Analysis of Group Individuality

A clique, i.e., a vertex subset of an undirected (bipartite)
graph such that its induced subgraph is edge-complete, is an
object of research for group detection for about 70 years [23].
During the early 1980s, Wille and Ganter developed a theory
of data analysis suitable for bipartite graph-like data that
is able to order maximal cliques, called formal concept
analysis (FCA), see [1]. Here, maximal cliques are regarded
as formal concepts, which form a partially ordered set: For
each pair of elements this set has a unique least upper
bound and a unique greatest lower bound, characterizing
the mathematical structure of a lattice. One of the first
lattice-based investigations to represent a social network
and detect groups in it was done by Freeman [23], [24].
Below, we characterise the user group as a whole and depict
particular interesting subsets of users in terms of performance
participation behaviour.

We provide a very brief introduction to FCA. The analysis
is based on a formal context that is a triple K = (G,M, I)
which consists of an object set G, an attribute set M and
an incidence relation I ⊆ G ×M . We say that an object
g ∈ G has an attribute m ∈ M iff (g,m) ∈ I . The formal



TABLE 4: Formal context example taken from DBP .

K Carl Orff Wild Society Cafe Camera Caribbean

userA X X
userB X X X
userC X X
userD X

context is often represented utilising a cross table, see Table 4
for an example. A formal concept then is a pair (X,Y )
with X ⊆ G, Y ⊆ M , such that X ′ = Y and Y ′ = X ,
where X ′ := {m ∈ M | (x,m) ∈ I for all x ∈ X} and
Y ′ := {g ∈ G | (g, y) ∈ I for all y ∈ Y }. For example,
for the context shown in Table 4, a formal concept would
be ({userB, userC}, {Carl Orff,Caribean}). In words, the
maximal set of attributes userB and userC have in common
is the attribute set containing Carl Orff and Caribean. On the
other hand, the maximal set of objects the attributes Carl Orff
and Caribbean have in common is the object set containing
userB and userC. Another formal concept in K from Table 4
would be ({userA}, {Carl Orff,Wild Society}). We denote
with B(K) the set of all formal concepts emerging from
the formal context K. We may order formal concepts using
(X1, Y1) ≤ (X2, Y2) : ⇔ X1 ⊆ X2 for all X1, X2 ⊆ G and
Y1, Y2 ⊆ M . The ordered set B(K) is a complete lattice,
called the concept lattice of K.

Figure 4: Number of concepts for particular sizes of extents for K.

We present some insights into the behaviour of the users
that FCA can provide very easily. For that, we apply FCA
to the attendance graph restricted to the user set UB . The
formal context KLNM = (UB , HA, EA ∩ (UB ×HA)) results
in 79 objects (the users) and 121 attributes (performances).
The associated concept lattice has 212 formal concepts. A
visualisation of a concept lattice this size would be unhelpful.
We therefore want to analyse properties of the obtained
concepts. In Figure 4 we plotted a histogram for the number
of formal concepts according to the size of its extent, i. e., the
number of users. The biggest column is for extent size one,
in particular there are 74 concepts. By this we learn that there
are 74 unique combinations of performances which were
realised by those 74 individuals during LNM. Obviously,
the number of users is an upper bound for formal concepts
with extent size one. This fact can be used intuitively to

informally define a coefficient for the user individuality of
a distributed social event as follows. Let K be the formal
context of a social event network graph defined in the way
above, then the user individuality measure is:

uic(K) =
|{(X,Y ) ∈ B(K) | |X| = 1}|

|UB |
In events where there is no concept of extent size one, this
coefficient would return zero. Then again, in events where
there are as many concepts with extents of size one as there
are users, the uic would yield 1.0. In the case of LNM this
coefficient is high: uic(KLNM) = 0.93. This indicates a high
level of individuality among the users. For example, if we
apply the same analysis to the event based southern woman
social network graph we get: uic(Ksouthern) = 0.22.

Figure 5: Number of concepts for particular sizes of intents for K.

We may apply a similar analysis for the intents as well,
see Figure 5: We observe 67 formal concepts with an intent
size of one. The maximal number can here be determined
by the size of the attribute set, i. e., 212. Based on that we
want to propose as performance individuality coefficient:

pic(K) =
|{(X,Y ) ∈ B(K) | |Y | = 1}|

|HA|
One might be easily misled by the thought that uic somehow
determines pic or vice versa. This thought can be refuted
by the following construction. An event may have 231
performances and 100 users. Let 22 of the 100 users share
precisely one performance, which is possible since there are(
22
2

)
possible combinations. From the remaining 78 users

take again a set of 22 users from which each user copies
the behaviour from exactly one user of the previous 22. The
rest of 56 users may copy the behaviour of some user from
the first 22. The constructed event network has a high pic
since all performances are attended by a unique group of
users. However, the uic would be zero since no user with a
unique set of attended performances is present.

The larger pic(KLNM), the more performances exist with
a unique set of participants, and the more individual the
whole event is. For LNM pic(KLNM) = 0.31, compared to
the southern woman social network where this coefficient is
0.28. So when looking on the event through the performances,
the event was not as individual as uic might indicate.
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Figure 6: Histograms for plan fulfilment pf , and the precision pre and recall rec measure adaptations with respect to performances.

These numbers reflect the intuition that different ’inter-
esting’ performances might be attended by the same set of
users, whereas all of those users might have very deviant
attendance for the evening. We suppose that pic is low for
social networks in general since the properties of LNM can
be mapped to properties of other social networks.

5.3. Characterising Performance Fulfilment

In the following, we first focus on the plan fulfilment from
the performances’ perspective. After that, we characterise
distinct subgroups of performances utilizing these measures.

5.3.1. Performance Fulfilment. We restrict our analysis
to the set of performances that is observed both in the
deliberation and the attendance graph, resulting in 117
performances. Analogously to the plan fulfilment measures
of a user (see above), we can define according measures with
respect to specific performances, e. g., the plan fulfilment
pf(h) for a performance h as:

pf(h) :=
|NA(h) ∩ND(h)|
|NA(h) ∪ND(h)|

,

where ND = {u ∈ V | (u, h) ∈ ED}, i. e., the set of users
that planned to attend h, and NA = {u ∈ V | (u, h) ∈ EA},
i. e., the set of users that actually attended to h.

Accordingly, we define a precision measure (pre(h)) and
recall measure (rec(h)):

pre(h) :=
|ND(h) ∩NA(h)|
|ND(h)|

, rec(h) :=
|NA(h) ∩ND(h)|
|NA(h)|

Intuitively, the maximal pre(h) value of 1.0 implies that
all users that attended h also had the intention to visit h,
while the maximal rec(h) value of 1.0 implies that all users
that intended to attend h really attended h. Conversely, the
minimal values of 0.0 indicate that there is a complete
mismatch between intention and reality concerning the set
of users of a specific performance h.

Averaging over all performances, we obtain the mean
values µ0(pf) = 0.24, µ0(pre) = 0.28, µ0(rec) = 0.51.

Figure 6 shows the respective distributions of these measures.
Essentially, these result support our findings discussed in
Section 5.1. However, they allow a fine-grained analysis from
the perspective of performances. We observe that complete
plan fulfilment is rare. Instead, users tended to enter a variety
of preferences, while they also tended to attend a significant
portion of their entered preferences. Nevertheless, we also
observe a large number of performances that were visited
in ad-hoc fashion (pre(h) = rec(h) = 0, for the specific
performance h).

5.3.2. Characterising Performance Subgroups. In order
to obtain a more detailed view on performance fulfilment,
we applied subgroup discovery in order to identify groups of
performances that exhibit a large (and deviating) value of the
pf , pre, or rec measure. Subgroup discovery, e. g., [2], aims
at identifying subgroups of individuals that are interesting
with respect to a certain target concept. For a numerical
target concept like pf , for example, we are interested in
large subgroups with a high share of individuals for which
the target concept deviates from the total population, e. g.,
estimated by comparing the respective mean values. Then,
we aim at discovering subgroup descriptions that are made up
by conjunctions of features (selection expressions), e. g., by
handmade AND music, or hit AND rock indicating interesting
groups of performances. The subgroups are then the groups of
performances covered by the respective subgroup description.

For characterising these groups, we extracted descriptive
information from the textual information of the event: This
included genre categories as well as descriptions (free
text) of the individual performances. We applied typical
data preprocessing steps such as stemming and stop word
removal, e. g., [25]. We also filtered words below a minimal
frequency threshold τ = 5 reducing a total number of
2767 to 180 descriptive words (features). For estimating
the interestingness of a subgroup S , we applied the simple
binomial quality function [2]: q(S ) =

√
n · (µS (t)− µ0(t)),

where µS (t) and µ0(t) denote the mean values of the target
concept t in the subgroup and in the total dataset, respectively,
and n indicates the size of the subgroup.



TABLE 5: Top subgroups w.r.t. measures of performance fulfilment.

# µ(pf) µ(pre) µ(rec) Size Description

1 0.8 0.78 0.67 5 handmade AND music
2 0.73 0.64 0.79 5 hit AND rock
3 0.31 0.32 0.93 7 traditional

Table 5 indicates the top subgroups with respect to
different performance fulfilment measures. Groups #1 and
#2 are the top-2 subgroups for the sum of all three measures
indicating a good overall plan fulfilment, i. e., a good
match between intention and reality. Subgroup #3 is the top
subgroup for recall: Performances described by traditional
score well only for that measure. This indicates, that here
mostly participants (with an interest in traditional music)
attended that had also the intention to attend.

6. Conclusion

In this paper, we focused on the analysis of the social
structure of a distributed event (LNM) considering prefer-
ences and visiting behaviour of the users. We assumed that
these can be regarded as expressing socio-spatial character-
istics, and analysed the corresponding bimodal network of
user–performance relations. Our novel results concerning this
type of data show, that this social event network conforms to
the characteristics of a social network. In addition, we demon-
strated that we can identify distinct behavioural patterns
concerning groups of users and performances, respectively.
We focused on the attendance behaviour of events and
the match between deliberation (intention) and attendance
for a certain performance. Performing our analysis, we
propose and demonstrate a set of methods for the analysis
of such network models: We applied the extended KNC-
plot method, and novel group description methods based
on Formal Concept Analysis for identifying and describing
characteristic user groups. Furthermore, we analysed plan
fulfilment concerning performances and their associated user
groups using subgroup discovery. Altogether, our results
indicate strong connectivity of the users and performances
(on common sets of performances and users, respectively),
while we also observe strong individuality of the users at the
same time. This indicates a certain common core behaviour,
which is further adapted according to individual interests.

For future work, we aim to study more networks on
distributed events, also integrating information from online
social networks. Furthermore, we plan to integrate our find-
ings into recommendation algorithms, and extend the analysis,
since the results on plan fulfilment provide indications on
necessary assistive functionality concerning sequences of
performances and the flexibility of plan adaptation. Also,
by utilizing the results on user and event (sub-)groups the
development of according personalization approaches (and
their analysis) is another interesting direction for future work.
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