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Abstract. In future Industry 4.0 manufacturing systems reconfigura-
bility and flexible material flows are key mechanisms. However, such
dynamics require advanced methods for the reconstruction, interpreta-
tion and understanding of the general material flows and structure of the
production system. This paper proposes a network-based computational
sensemaking approach on attributed network structures modeling the
interactions in the event log. We apply descriptive community mining
methods for detecting patterns on the structure of the production sys-
tem. The proposed approach is evaluated using two real-world datasets.

1 Introduction

In the context of Industry 4.0, future manufacturing systems will be more flexi-
ble in order to answer more readily to changing market demands [24] as well as
disturbances in the production systems. In particular, this is one of the key as-
pects in the concept of Industry 4.0 [26] or Cloud Manufacturing [27]. Important
capabilities of such flexible and robust manufacturing systems are reconfigurabil-
ity and flexible material flows [27]. As a consequence, the relationships between
elements in the production systems like industrial robots, machining centers and
material handling systems become more dynamic as well and the interaction be-
tween the (resource) elements becomes thus also more di�cult to comprehend.
On the other hand, understanding the general material flow and the structure
of the production systems is required for continous improvements processes, for
instance process mapping is a key activity in the six-sigma process [11].

This paper proposes a network-based approach to recreate the material flow
and resource interactions from the log files of the individual components of a pro-
duction systems. We model log-files as attributed network structures, connecting
devices by links labeled with log statements. This allows to detect densely con-
nected groups of devices with an according description of (log) statements. In our
experiments, we apply two real-world datasets from serial production systems
with a clear hierarchical structure providing a ground truth for evaluating the
performance of the proposed algorithmic approach. Our results show the impact
and e�cacy of our novel network-based analysis and mining approach.
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2 Related Work

Below, we discuss related work concerning the analysis of industrial (alarm)
event logs, i. e., in alarm management and in the context of process mining.

2.1 Analysis of Alarm Event Logs

Analysis of event logs has been performed in the context of alarm manage-
ment systems, where sequential analysis is performed on the alarm notifications.
In [13], an algorithm for discovering temporal alarm dependencies is proposed
which utilizes conditional probabilities in an adjustable time window. In order
to reduce the number of alarms in alarm floods, [2] also performed root cause
analysis with a Bayesian network approach and compared di↵erent methods for
learning the network probabilities. A pattern-based algorithm for identifying
causal dependencies in the alarm logs is proposed in [25], which can be used to
aggregate alarm information and therefore reduce the load of information for
the operator. Furthermore, [6, 10] target the analysis of sequential event logs in
order to detect anomalies using a graph-based approach. Finally, [21] investigate
the prediction of the risk increase factor in nuclear power plants using complex
network analysis using topological structure.

In contrast to those approaches, the proposed approach is not about sequen-
tial analysis of event logs, nor on the given static network structures. Instead,
we provide a network-based approach transforming event logs into (attributed)
networks capturing the static interactions and dependencies captured in the
event log. The goal is to identify structural dependencies and relations of the
production process. Thus, similar to evidence networks in the context of so-
cial networks, e. g., [18], we aim to infer the (explicit) structural relations given
observed (implicit) interactions between the industrial equipment and devices.

2.2 Analysis of Event Logs using Process Mining

Process Mining [1] aims at the discovery of business process related events in
a sequential event log. The assumption is that event logs contain fingerprints
of business processes, which can be identified by sequence analysis. One task of
process mining is conformance checking [19, 22] which has been introduced to
check the matching of an existing business process model with a segmentation
of the log entries. Furthermore, for process mining and anomaly analysis there
have been approaches based on subgroup discovery, e. g., [23], and subgraph
mining, e. g., [14] based on log data; while these neglect the temporal (sequential)
dimension, they only focus on the respective patterns not including a priori
knowledge, while not including relational, i. e., network modeling.

Compared to these approaches, we do not use any apriori (process) knowledge
for our analysis. In contrast, we use a purely data-driven approach, where we
perform a feature-rich network-based approach on the event log data. For that,
we transform the (event log) interaction data into an attributed interaction net-
work which is then exploited for mining cluster/community structures together
with an explicit description – enhancing interpretation and understandability.



3 Method

In Industry 4.0 environments like complex industrial production plants, intelli-
gent data analysis is a key technique for providing advanced data science capa-
bilities. In that context, computational sensemaking [5] aims to develop methods
and systems to “make sense” of complex data and information – to make the im-
plicit explicit; important goals are then to comprehensively model, describe and
explain the underlying structure in the data [4]. This paper presents a compu-
tational sensemaking approach using descriptive pattern mining. The proposed
approach consists of three steps: (1) We model the event log as a bimodal net-
work represented as a bipartite graph. (2) We create an attributed graph struc-
ture using a projection operator with labels taken from the bimodal structure.
(3) Finally, we apply pattern mining (i. e., descriptive community mining) on
the attributed graph, in order to detect structural patterns and relations.

3.1 Modeling Attributed Interaction Networks from Event Logs

In the following, we use the data shown in Table 1 as an example for demon-
strating the individual steps of the proposed approach. As can be seen in the
table, it considers log entries corresponding to a certain device and event type

in addition to a timestamp. We focus on the device and event type information
creating a bimodal network. However, first we aggregate the event type informa-
tion for a device, such that equal event types for a specific device are merged into
a single link between device and the corresponding event type, respectively. In
our example, line #1 and line #13 would thus be merged into a single link. The
resulting bipartite graph is shown in Figure 1. This can already be considered
as an attributed graph, where we interpret links between the devices labeled by
their common event types. In our example, every device is connected to every
other device with a link labeled with the common 0 : 0 (“Safety Stop Activate”)
and 1 : 1 (“System is in Safety Stop”) event types.

# Device Event_Type Timestamp
1 0 0:0 12.08.12	07:23
2 1 1:1 12.08.12	07:23
3 2 1:1 12.08.12	07:23
4 2 0:0 12.08.12	07:23
5 0 1:1 12.08.12	07:23
6 1 0:0 12.08.12	07:23
7 3 1:1 12.08.12	07:24
8 4 0:0 12.08.12	07:24
9 4 1:1 12.08.12	07:24
10 5 1:1 12.08.12	07:24
11 5 0:0 12.08.12	07:24
12 3 0:0 12.08.12	07:24
13 0 0:0 12.08.12	10:59

Table 1. Exemplary (anonymized)
log event data, visualized by the bi-
partite graph to the right.
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Fig. 1. Bipartite graph (example
data, left): devices (orange circles)
and linked event types (gray squares).



3.2 Descriptive Community Mining

Community detection [20] aims at identifying densely connected groups of nodes
in a graph; using attributed networks, we can additionally make use of informa-
tion assigned to nodes and/or edges. For mining attributed network structures,
we apply the COMODO algorithm presented in [7]: It focuses on description-

oriented community detection using subgroup discovery [3], and aims at discov-
ering the top-n communities (described by community patterns). COMODO
utilizes e�cient pruning approaches for scalability, for a wide range of stan-
dard community evaluation functions. Its results are a set of patterns (given
by conjunctions of literals, i. e., attribute–value pairs) that describe a specific
subgraph – indicating a specific community consisting of a set of nodes. An
example in the context of the analysis of event logs is given by the pattern:
event1AND event2 AND event5 indicating the event (types) event1, event2, and
event5 being jointly connected to the same set of devices. This pattern then di-
rectly corresponds to the (covered) subgraph.

Algorithmic Overview COMODO utilizes both the graph structure, as well
as descriptive information of the attributed graph. As outlined above, we trans-
form the graph data into a new dataset focusing on the edges of the graph G:
Each data record in the new dataset represents an edge between two nodes.
The attribute values of each such data record are the common attributes of the
edge’s two nodes. For e�ciency, COMODO utilizes an extended FP-tree (fre-
quent pattern tree) structure inspired by the FP-growth algorithm [15], which
compiles the data into a prefix pattern tree structure, cf. [9,17]. Our adapted tree
structure is called the community pattern tree (CP-tree) that allows to e�ciently
traverse the solution space. The tree is built in two scans of the graph dataset
and is then mined in a recursive divide-and-conquer manner. E�cient pruning
is implemented using optimistic estimates [7]. For community evaluation a set of
standard evaluation functions exists, including the Modularity function [20]. As
a result, COMODO provides the top-n patterns according to a given community
evaluation function. For a more detailed description, we refer to [7].

Community Postprocessing As a final result, we aim at a disjoint partition
of the set of nodes in our input graph – which should correspond to the di↵er-
ent levels (and category groups). However, the set of communities (or clusters)
provided by COMODO can overlap. For the industry 4.0 use case this property
is very useful, because overlapping resource communities are expected due to
reconfigurability and flexible material flows. In the given dataset, however the
devices in the production system are organized in a two-level hierarchy with non-
overlapping groups. Thus, we apply a postprocessing step, in order to obtain a
disjoint partition of the graph from the given set of top-n patterns. Essentially,
given the communities, we construct a similarity graph for the set of nodes: For
each pair of nodes, we check the number of times they are contained in a commu-
nity (pattern), and create a weighted edge accordingly, normalized by the total
number of patterns. Then, we uncover (disjoint) communities on the (pruned)
similarity graph by a further community detection step.



4 Results

In this section, we first describe the characteristics and context of the applied
real-world datasets. After that, we present results and discuss them in detail.

4.1 Datasets

Two real-world datasets from the industrial domain are used in this work. Both
datasets are from serial production facilities with several production lines and
cell. The first dataset (Log-Data-A) contains data from 59 industrial machines
and devices from 8 di↵erent production lines and 7 production cells. The sec-
ond dataset (Log-Data-B) contains data from 48 machines and devices from
2 production lines with 16 production cells. Basically, each device is assigned
to a production line and production cell, where the production lines can be
considered as level 1 categories, and the production cells as level 2 categories,
representing the production hierarchy. In the dataset, this information can be
used as ground-truth in order to evaluate the mined patterns and communi-
ties, respectively. Since the community structures should represent the material
flows, this directly corresponds to the respective level 1 and level 2 categories.
It is important to note that these categories are a disjoint partitioning of the set
of devices, respectively. Therefore, as explained above, we also aim at a disjoint
partitioning of the graph given the set of communities.

The event logs contain both normal events, warnings and error events and
partially capture the standard activity of the devices (e.g. motor starts and
stops, program starts), operator interactions (e.g. safety stops, switching oper-
ation modes) and information of interactions with supplementary process like
cooling water supply. Due to serial production fashion, products pass through
the production lines in a sequential fashion. Consequently, activities of machines
and devices are triggered according to the production line and cell structure. Fur-
thermore, the product flow closely interlinks the industrial machines and devices
and failure and problems propagate usually forward through the production sys-
tems. These features make the two datasets ideal to develop a proof of concept
of recovering the flow of material in a production systems from the event log
data generated by the individual machines and devices. Table 2 summarizes the
characteristics of both datasets.

Table 2. Characteristics of the real-world datasets

Dataset #Devices #EventTypes #Prod. Lines # Prod. Cells # Events
Log-Data-A 59 356 8 7 50000
Log-Data-B 48 102 2 16 50000



4.2 Results and Discussion

First, we take a look at the connectivity structure of our attributed graphs.
Figures 2-3 depict according (extended) KNC-Plots [8, 16] that visualize the
number k of common neighbors of the nodes in the original bipartitate graph,
as well as the sizes of the largest and 2nd largest components. In our case, k
indicates the number of common event types connecting the respective device

nodes. Overall, the graphs exhibit a strong connectivity structure: As we can see
in the figures, there is strong connectivity up to 8 (16) common event types.
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Fig. 2.KNC-Plot: Log-Data-A Dataset.
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Fig. 3. KNC-Plot: Log-Data-B Dataset.

For community detection aiming at reconstructing the production system
structure in our application scenario, we applied the COMODO algorithm us-
ing the modularity evaluation function, with no minimal support threshold. Re-
garding the only parameter, i. e., determining n for the top-n patterns, we ex-
perimented with di↵erent selections, where we used n = 20 for interpretability.
However, with other selections the results as outlined below were quite stable.
Finally, for the postprocessing step constructing the similarity graph we pruned
edges with a weight below 0.1 such that edges needed to be “supported” by at
least 2 community patterns in order to be included in the final similarity graph.
For determining the final set of disjoint communities, we utilized the edge be-
tweenness [20] method.

Table 3 shows our results using the Normalized Mutual Information (NMI)
measure for comparing community structures using the (production line/cell)
category information as ground truth for the di↵erent communities/clusters.
We compared di↵erent baseline methods to our proposed approach using the
COMODO algorithm using standard algorithms as included in the igraph [12]
software package, i. e., edge betweenness, fast greedy, Infomap, label propagation,
leading eigenvector, and louvain. In particular, Infomap and label propagation
yielded NMI values of 0, detecting no structure. As we can observe in the ta-
ble, COMODO outperforms all the other algorithms, while the baselines yield
relatively low NMI values discovering no relations. Thus, in comparison to the
baselines the proposed approach using COMODO does not only outperform
standard community approaches, but also provides descriptive patterns that can
be used for inspection, interpretation and explanation.



Table 3. Results: NMI for Di↵erent Community Detection Approaches

Algorithm / NMI Log-Data-A Log-Data-B
Level1 Level2 Level1 Level2

Edge Betweenness 0.32 0.20 0.02 0.11
Fast Greedy 0.48 0.24 0.01 0.15
Leading Eigenvector 0 0 0.01 0.15
Louvain 0.48 0.24 0.01 0.15
COMODO 0.67 0.53 0.19 0.78

5 Conclusions

This paper presented a network-based approach to recreate production system
structures and resource interactions from industrial event log data. We modeled
those as attributed networks and detected densely connected groups of devices
with an according description of (log) statements. For evaluation, we applied two
real-world datasets. Our results indicated the impact and e�cacy of the proposed
network-based approach, outperforming standard community detection baselines
while also providing descriptive patterns for interpretation and explanation.

Beyond confirming the applicability of event log analysis for reconstructing
resource interactions and material flows, the analysis can also help to detect
hotspots in the production process, e. g., segments of the production process in
which high amounts of events are generated and thus potentially require special
attention in continuous improvement processes like Six Sigma. Thus, advanced
hotspot analysis and anomaly detection are interesting directions for future work.
Also, analyzing the evolution of the network – capturing dynamics and temporal
dependencies in the event logs – is another interesting direction to consider.
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