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Abstract. While standard methods for detecting subgroups on plain so-
cial networks focus on the network structure, attributed social networks
allow compositional analysis, i. e., by exploiting attributive information.
Thus, this paper applies a compositional perspective for identifying com-
positional subgroup patterns. In contrast to typical approaches for com-
munity detection and graph clustering, it focuses on the dyadic structure
of social interaction networks. For that, we adapt principles of subgroup
discovery – a general data mining technique for the identification of local
patterns – to the dyadic network setting. We focus on social interaction
networks, where we specifically consider properties of those social in-
teractions, i. e., duration and frequency. In particular, we present novel
quality functions for estimating the interestingness of a subgroup and
discuss their properties. Furthermore, we demonstrate the e�cacy of the
approach using two real-world datasets on face-to-face interactions.

1 Introduction

The identification of interesting subgroups (often also called communities) is
a prominent research direction in data mining and (social) network analysis,
e. g., [2, 3, 17, 21, 49]. Typically, a structural perspective is taken, such that spe-
cific subgraphs — in a graph representation of the network — induced by a
set of edges and/or nodes are investigated. Attributed networks, where nodes
and/or edges are labeled with additional information, allow further dimensions
for detecting patterns that describe a specific subset of nodes of the graph rep-
resentation of a (social) network. However, there are di↵erent foci relating to
the specific problem and data at hand. The method of subgroup discovery, for
example, a powerful and versatile method for exploratory data mining, focuses
on detecting subgroups described by specific patterns that are interesting with
respect to some target concept and quality function. In contrast, community
detection, as a (social) network analysis method, aims at detecting subgroups
of individuals, i. e., nodes of a network, that are densely (and often cohesively)
connected by a set of links. Thus, the former stresses the compositional notion
of a pattern describing a subgroup, i. e., based on attributes/properties of nodes
and/or edges, while the latter focuses on structural properties of a pattern, such
that specific subgraphs are investigated that induce a specific pattern.
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Problem. We formalize the problem of detecting compositional patterns of
actor-dyads, i. e., edges connecting two nodes (corresponding to the actors) in a
graph representation of an attributed network. We aim to detect the subgroup
patterns that are most interesting according to a given interestingness measure.
For estimating the interestingness, we utilize a quality function which considers
the dyadic structure of the set of dyads induced by the compositional pattern.
In particular, we focus on social interaction networks, where we specifically con-
sider properties of social interactions, e. g., duration and frequency. Then, the
quality measure should consider those patterns as especially interesting which
deviate from the expected “overall” behavior given by a null-model, i. e., mod-
eling dyadic interactions due to pure chance. Then, those models should also
incorporate the properties of social interaction networks mentioned above.

Objectives. We tackle the problem of detecting compositional patterns cap-
turing subgroups of nodes that show an interesting behavior according to their
dyadic structure as estimated by a quality measure. We present novel approaches
utilizing subgroup discovery and exceptional model mining techniques [3, 7, 18].
Further, we discuss estimation methods for ranking interesting patterns, and
we propose two novel quality functions, that are statistically well-founded. This
provides for a comprehensive and easily interpretable approach for this problem.

Approach & Methods. For our compositional subgroup discovery approach,
we adapt principles of subgroup discovery – a general data analysis technique for
exploratory data mining – to the dyadic network setting. In particular, we present
two novel quality functions for estimating the interestingness of a subgroup and
its specific dyadic interactions and discuss their properties. Furthermore, we
demonstrate the e�cacy of the approach using two real-world datasets.

Contributions. Our contribution is summarized as follows:

1. We formalize the problem of compositional subgroup discovery and present
an approach for detecting compositional subgroup patterns capturing inter-
esting subgroups of dyads, as estimated by a quality function.

2. Based on subgroup discovery and exceptional model mining techniques, we
propose a flexible modeling and analysis approach, and present two novel
interestingness measures for compositional analysis, i. e., quality functions
for subgroup discovery. These enable estimating the quality of subgroup
patterns in order to generate a ranking. The proposed quality functions are
statistically well-founded, and provide a statistical significance value directly,
also easing interpretation by domain specialists.

3. We demonstrate the e�cacy of our proposed approach and the presented
quality measures using two real-world datasets capturing social face-to-face
interaction networks.

Structure. The rest of the paper is structured as follows: Section 2 discusses re-
lated work. After that, Section 4 outlines the proposed approach. Next, Section 5
presents results of an exploratory analysis utilizing two real-world social inter-
action network datasets of face-to-face interactions. Finally, Section 6 concludes
with a discussion and interesting directions for future work.
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2 Related Work

Below, we summarize related work on subgroup discovery, social interaction net-
works, and community detection, and put our proposed approach into context.

2.1 Subgroup Discovery and Exceptional Model Mining

Subgroup discovery is an exploratory data mining method for detecting inter-
esting subgroups, e. g., [3, 29, 50]. It aims at identifying descriptions of subsets
of a dataset that show an interesting behavior with respect to certain interest-
ingness criteria, formalized by a quality function, e. g., [50]. Here, the concept of
exceptional model mining has recently been introduced [18, 34]. It can be con-
sidered as a variant of subgroup discovery enabling more complex target prop-
erties. Applications include mining characteristic patterns [8], mining subgroups
of subgraphs [45], or descriptive community mining, e. g., [7]. In contrast to the
approaches mentioned above, we adapt subgroup discovery for dyadic analysis
on social interaction networks, and propose novel interestingness measures as
quality functions on networks for that purpose.

2.2 Mining Social Interaction Networks

A general view on mining social interaction networks is given in [2]. captured
during certain events, e. g., during conferences. Here, patterns on face-to-face
contact networks as well as evidence networks [40]) and their underlying mech-
anisms, e. g., concerning homophily [11, 39, 41] are analyzed, however only con-
cerning specific hypotheses or single attributes [46]. Furthermore, [6,38] describe
the dynamics of communities and roles at conferences, while [28] focuses on
their evolution. This is also the focus of, e. g., [4,37] where exeptional communi-
ties/subgroups with respect to sequential transitions are detected. In contrast,
this paper targets the detection of interesting patterns describing such dyadic-
oriented subgroups in attributed networks, modeling social interactions.

Attributed (or labeled) graphs as richer graph representations enable ap-
proaches that specifically exploit the descriptive information of the labels as-
signed to nodes and/or edges of the graph, in order to detect densely connected
groups or clusters, e. g., [16]. In [7], for example, the COMODO algorithm is
presented. It applies subgroup discovery techniques for description-oriented com-
munity detection. Using additional descriptive features of the nodes contained
in the network, the task is to identify communities as sets of densely connected
nodes together with a description, i. e., a logical formula on the values of the
nodes’ descriptive features. Here, in contrast, we do not focus on the graph
structure, like approaches for community detection, e. g., [7,24,44] or exceptional
model mining approaches, e. g., [10,12,15,26] on attributed graphs. Instead, we
apply a dyadic perspective on interactions focusing on such parameters such as
interaction frequency and duration. We propose two novel quality functions in
such dyadic interaction contexts, i. e., for reliably identifying interesting subsets
of dyads using subgroup discovery. To the best of the author’s knowledge, no
subgroup discovery approach tackling this problem has been proposed so far.
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3 Background: Subgroup discovery

Subgroup discovery [3,50] is a powerful method, e. g., for (data) exploration and
descriptive induction, i. e., to obtain an overview of the relations between a
so-called target concept and a set of explaining features. These features are rep-
resented by attribute/value assignments, i. e., they correspond to binary features
such as items known from association rule mining [1]. In its simplest case, the
target concept is often represented by a binary variable. However, more complex
target concepts can also be modeled, leading to exceptional model mining which
targets specifically complex target models. In this work, for subgroup discov-
ery we adopt the general scope proposed in [3, 29–31, 36, 43, 50, 51], such that
subgroup discovery also contains exceptional model mining as a special case, en-
abling more complex target concepts than just, e. g., a single dependent variable.
Then, subgroups are ranked using a quality function, e. g., [3, 22, 29,35,50].

In the context of attributed networks, we formalize the necessary notions in
the following. Formally, an edge – attribute database DB = (E,A, F ) is given
by a set of edges E and a set of attributes A. For each attribute a 2 A, a
range dom(a) of values is defined. An attribute/value assignment a = v, where
a 2 A, v 2 dom(a), is called a feature. We define the feature space V to be the
(universal) set of all features. For each edge e 2 E there is a mapping F : E ! 2V

describing the set of features that are assigned to an edge. Intuitively, such
features can be given by attribute–value paris, (binary) labels such as items in
the context of association rule mining, etc.

Basic elements used in subgroup discovery are patterns and subgroups. In-
tuitively, a pattern describes a subgroup, i. e., the subgroup consists of the edges
(and the respective nodes) that are covered by the respective pattern, i. e., those
having the respective set of features. It is easy to see, that a pattern describes
a fixed set of edges (inducing a subgroup of nodes), while a subgroup can also
be described by di↵erent patterns, if there are di↵erent options for covering the
subgroup’ edges. A (subgroup) pattern P is defined as a conjunction

P = s1 ^ s2 ^ . . . ^ sn ,

of (extended) features
si ✓ V ,

which are then called selection expressions, where each si selects a subset of the
range dom(a) of an attribute a 2 A. A selection expression s is thus a Boolean
function E ! {0, 1} that is true if the value of the corresponding attribute is
contained in the respective subset of V for the respective edge e 2 E. The set of
all selection expressions is denoted by S.
A subgroup (extension)

EP := ext(P) := {e 2 E|P(e) = true}

is the set of all edges which are covered by the pattern P . Using the set of edges,
it is straightforward to extract the subset of covered nodes.
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The interestingness of a pattern is determined by a quality function

q: 2S ! R .

It maps every pattern in the search space to a real number that reflects the
interestingness of a pattern (or the extension of the pattern, respectively). Many
quality functions for a single target feature, e. g., in the binary or numerical
case, trade-o↵ the size n = |ext(P)| of a subgroup and the deviation tP � t0,
where tP is the average value of a given target feature in the subgroup identified
by the pattern P and t0 the average value of the target feature in the general
population. Thus, standard quality functions are of the form

qa(P) = n

a · (tP � t0), a 2 [0; 1] .

For binary target concepts, this includes, for example, a simplified binomial func-
tion q

0.5
a for a = 0.5, or the gain quality function q

0
a with a = 0. However, as

we will see below, such simple formalizations (as utilized by standard subgroup
discovery approaches) do not cover the specific properties in dyadic network
analysis - that is why provide specific adaptations for that case below.

While a quality function provides a ranking of the discovered subgroup pat-
terns, often also a statistical assessment of the patterns is useful in data explo-
ration. Quality functions that directly apply a statistical test, for example, the
Chi-square quality function, e. g., [3] provide a p-value for simple interpretation.

For network data, there exist several quality measures for comparing a net-
work structure to a null-model. For a given subgroup we can, for example, adapt
common community quality measures, e. g., [7] for subgroup discovery. Also, the
quadratic assignment procedure [32] (QAP) is a standard approach applying a
graph correlation measure: For comparing two graphs G1 and G2, it estimates
the correlation of the respective adjacency matrices M1 and M2 and tests that
graph level statistic against a QAP null hypothesis [32]. QAP compares the ob-
served graph correlation of (G1, G2) to the distribution of the respective resulting
correlation scores obtained on repeated random row and column permutations
of the adjacency matrix of G2. However, this relates to the whole graph and not
to specific subgroups of dyads, i. e., a subset of edges.

As we will see below, we can apply similar mechanisms for comparing a
sub-network induced by a given subgroup pattern with a set of randomized sub-
networks given the same distributional characteristics with respect to the total
set of edges. However, in contrast to simple permutation operations, we have to
take special care with respect to the social interaction properties, as we discuss
below in detail, in order to compare the observed number of edges covered by a
subgroup pattern with the expected number given a null-model.

Using a given subgroup discovery algorithm, the result of top-k subgroup
discovery is the set of the k patterns P1, . . . ,Pk , where Pi 2 2S , with the highest
interestingness according to the applied quality function. A subgroup discovery
task can now be specified by the 5-tuple: (DB , c, S, q, k) , where c indicates the
target concept; the search space 2S is defined by the set of basic patterns S.
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4 Method

We first provide an overview on the proposed approach for the analysis of social
interaction networks. Next, we present two novel quality functions for that task.

4.1 Compositional Network Analysis using Subgroup Discovery

We focus on the analysis of social interaction networks [2, 42], i. e., user-related
social networks capturing social relations inherent in social interactions, so-
cial activities and other social phenomena which act as proxies for social user-
relatedness. According to Wassermann and Faust [49, p. 37 ↵.] social interaction
networks focus on interaction relations between people as the corresponding
actors. Then, a dyad, i. e., a link between two actors, models such a dyadic in-
teraction. In a graph representation of the network, the dyad is then represented
by an edge between two nodes (corresponding to the respective actors). Given
attributed networks, also describing attributes, i. e., properties of nodes and/or
edges can be used to characterize subgroups in order to characterize or explain
a certain (observed) behavior, e. g., [21, 33, 49]. Here, we focus on compositional

network analysis using subgroup discovery, where subgroups are induced by (a
set of) describing attributes. Subgroup discovery enables hypotheses generation
by directly exploring a given attribute space in order to identify interesting
(compositional) subgroups according to some interestingness measure. As an ex-
ploratory method, we can e. g., focus on the top-k subgroups. Such patterns are
then local models describing “interesting subsets” in terms of their attributes.

In the following, we focus on attributed networks, i. e., edge-attributed graphs
with respect to actor attributes, enabling compositional dyadic analysis [49].
The interestingness can be flexibly defined using a quality measure. For social
interaction networks, we distinguish between the following two properties:

1. Interaction duration: In social interaction networks, the duration of an in-
teraction can be captured by a weight assigned to a specific link connecting
the interacting actors. Then, simple networks that just capture those inter-
actions can be represented by weighted graphs. In the unweighted case, we
can just assign a default weight w for an edge e, e. g., w(e) = 1.0.

2. Interaction frequency: The frequency of interactions is typically indicated
by multiple links between the two interacting actors, represented by a set
of edges connecting the respective nodes in a multigraph. In addition, the
duration of the interaction can also be captured as described above.

In the scope of this work, we focus on a numeric target feature tP correspond-
ing to the observed number of edges normalized by the expectation, for pattern
P ; for the interaction duration, we consider the weighted variant, i. e., taking the
edge weights into acount. Then, we rank subgroups utilizing the (normalized)
mean of that target feature tP . It is important to note, that we use the number of
all possible contacts (edges) for computing the mean of tP , i. e., including edges
with a zero weight. Therefore, we take into account all possible edges between all
nodes (actors), as discussed below, for simple graphs (for interation duration),
as well as for multigraphs where we also consider interaction frequency.
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4.2 Quality Measures

For ranking a set of subgroup patterns, we propose two quality measures. Essen-
tially, we distinguish two cases: First, simple compositional networks represented
as simple attributed graphs, which can also be weighted, and second attributed
multigraphs. We propose two quality functions for estimating dyadic means of
a pattern P , corresponding to the numeric target feature tP discussed above.
This is combined with randomization approaches for estimating the significance
of the respective values. Alltogether, this results in statistically well-founded
quality functions, yielding intuitively interpretable values.

Simple Attributed Graphs In the case of a simple network (without multiple
links) we can simply add up the number of (weighted) edges EP captured by a
pattern P , and normalize by the number of all possible edges nE in the node
subset induced by P , i. e., all contributing nodes that are connected by any
edge e contained in EP . That means, for example, that if we consider the mean
duration of contacts in a social interaction network as the target tP , where the
duration is indicated by the weight of a (contact) edge between two nodes (i. e.,
the involved actors), then we normalize by the number of all possible contacts
that can occur in that set of nodes. Thus, intuitively, we take contacts of length
zero into account for completeness. Thus, for a pattern P , we estimate its quality
qS(P ) as follows:

qS(P ) = Z(
1

nE
·
X

e2EP

w(e)) , (1)

with nE =
nEP

(nEP
�1)

2 , where nEP is the number of nodes covered by a pattern
P . Z is a function that estimates the statistical significance of the obtained value
(i. e., tP ) given a randomized model, which we discuss below in more detail.

Attributed Multigraphs For more complex attributed networks containing
multi-links between actors, we model these as attributed multigraphs. Then, we
can additionally take the interaction frequency into account, as discussed above.
The individual set of interactions is modeled using a set of links between the
di↵erent nodes representing the respective actors of the network. Thus, for nor-
malizing the mean of target tP , we also need to take into account the multiplicity

of edges between the individual nodes. Then, with nE =
nEP

(nEP
�1)

2 indicating
the total number of (single) edges between the individual nodes captured by
pattern P , mi, i = 1 . . . nE models the number of multi-edges for an individual
edge i connecting two nodes. With that, extending Equation 1 for a pattern P

in the multigraph case, we estimate its quality qM (P ) as follows:

qM (P ) = Z(
1

nE +mE
·
X

e2EP

w(e)) , (2)

with mE =
nEP
i=1

(mi�1). It is easy to see that Equation 2 simplifies to Equation 1

for a simple attributed network, as a special case.
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Randomization-Based Significance Estimation As summarized above in
Section 3, standard quality functions for subgroup discovery compare the mean
of a certain target concept with the mean estimated in the whole dataset. In the
dyadic analysis that we tackle in this paper, however, we also need to take edge
formation of dyadic structures into account, such that, e. g., simply calculating
the mean of the observed edges normalized by all edges for the whole dataset
is not su�cient. In addition, since we use subgroup discovery for identifying a
dyadic subgraph (i. e., a set of edges) induced by a pattern, we also aim to
confirm the impact by checking the statistical significance compared to a null-
model. For that, we propose a sampling based procedure: We draw r samples
without replacement with the same size of the respective subgroup in terms of
the number of edges, i. e., we randomly select r subsets of edges of the whole
graph. For the two cases discussed above, i. e., for the simple attributed graph
and the multigraph representation, we distinguish two cases:

1. Simple graph network representation: In the simple case, we just take into
account the

N =
n(n� 1)

2
possible edges between all nodes of the simple graph. Thus, in a sampling
vector R = (r1, r2, . . . , rN ), we fill the ri, i = 1 . . . N positions with the
weights of the corresponding edges of the graph, for which that a non-existing
edge in the given graph is assigned a weight of zero.

2. Multigraph network representation: In the multigraph case we also consider
the number of all possible edges between all the nodes, however, we also need
to take the multi-edges into account, as follows:

N =
n(n� 1)

2
+

nX

i=1

(mi � 1) ,

where mi, i = 1, . . . , n , are the respective multi-edge counts for an individual
edge i. As above, we assign the sampling vector R accordingly, where we set
the weight entries of non-existing edges to zero.

For selecting the random subsets, we apply sampling without replacement.
This is essentially equivalent to a shu✏ing based procedure, e. g., [19,23]). Then,
we determine the mean of the target feature tR (e. g., mean duration) in those
induced r subsets of edges. In that way, we build a distribution of “false dis-
coveries” [19] using the r samples. Using the mean tP in the original subgroup
and the set of r sample means, we can construct a z-score which directly leads
to statistical assessment for computing a p-Value. This is modeled using the
function Z(tP ), Z : R ! R which is then used for estimating the statistical sig-
nificance of the target tP of pattern P . In order to ensure that the r samples are
approximately normally distributed, we can apply a normality test, for example,
the Shapiro-Wilk-test [48]. If normality is rejected, a possible alternative is to
compute the empirical p-value of a subgroup [23]. However, in practice often
the distribution of the sampled means is approximately normally distributed, so
that a p-value can be directly computed from the obtained z-score.
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5 Results

Below, we describe the utilized two real-world datasets on social face-to-face in-
teraction networks and experimental results of applying the presented approach.

5.1 Datasets

We applied social interaction networks captured at two scientific conferences,
i. e., at the LWA 2010 conference in Kassel, Germany, and the Hypertext (HT)
2011 conference in Eindhoven, The Netherlands. Using the Conferator sys-
tem [5], we invited conference participants1 to wear active RFID proximity tags. 2

When the tags are worn on the chest, tag-to-tag proximity is a proxy for a (close-
range) face-to-face (F2F) contact, since the range of the signals is approximately
1.5 meters if not blocked by the human body, cf. [14] for details. We record a F2F
contact when the length of a contact is at least 20 seconds. A contact ends when
the proximity tags do not detect each other for more than 60 seconds. This
results in time-resolved networks of F2F contacts. Table 1 provides summary
statistics of the collected datasets; see [27] for a detailed description.

Table 1. Statistics/properties of the real-world datasets: Number of participants |V |,
unique contacts |U |, total contacts |C| average degree, diameter d, density, count of
F2F contacts (C), cf. [27] for details.

Network |V | |U | |C| ?Degree d Density |C|
LWA 2010 77 1004 5154 26.08 3 0.34 5154
HT 2011 69 550 1902 15.94 4 0.23 1902

In addition to the F2F contacts of the participants, we obtained further
(socio-demographic) information from their Conferator online profile. In partic-
ular, we utilize information on the participants’ (1) gender, (2) country of origin,
(3) (university) a�liation, (4) academic status – position – i. e., professor, post-
doc, PhD, student, (5) and their main conference track of interest. Note that not
all attributes are available for both conferences (e. g., country is not available
for the LWA 2010 conference since almost all participants were from Germany;
here, we refer to the (university) a�liation instead. In contrast, the country in-
formation is very relevant for HT 2011. For those attributes given above, we
created features on the edges of the attributed (multi-)graphs in such a way, so
that an edge was labeled with “<feature>=EQ” if the respective nodes shared
the same value of the feature, e. g., gender=female for both nodes. Otherwise,
the edge was labeled with “<feature>=NEQ”. That means that, for example,
the subgroup described by the pattern gender=EQ contains the nodes, for which
the dyadic actors always agree on their attribute gender.

1 Study participants also gave their informed consent for the use of their data (includ-
ing their profile) in scientific studies.

2 http://www.sociopatterns.org
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5.2 Experimental Results and Discussion

For compositional analysis, we applied subgroup discovery on the attributes
described in Section 5.1. We utilized the VIKAMINE [9] data mining platform
for subgroup discovery3, utilizing the SD-Map* algorithm [8], where we supplied
our novel quality functions for determining the top-20 subgroups.

For the target concept, we investigated the mean length of contacts – corre-
sponding to the duration of a social interaction in the respective subgroup. We
applied both simple attributed networks, and multigraph representations: For
the former, social interactions between respective actors were aggregated, such
that the corresponding weight is given by the sum of all interactions between
those actors. For the multigraph case, we considered the face-to-face interations
with their respective durations individually. Tables 2-5 show the results.

Table 2. Top-20 most exceptional subgroups according to the aggregated duration of
face-to-face interactions at LWA 2010 (simple attributed network): The table shows the
respective patterns, the covered number of dyads, the mean contact length in seconds
and the significance compared to the null-model (Quality (Z)).

Description Size ?CLength Quality (Z)
track=EQ 456 182.05 19.01
a�liation=NEQ 959 245.39 18.91
position=NEQ 885 227.44 17.93
a�liation=NEQ, position=NEQ 868 220.01 17.36
a�liation=NEQ, track=EQ 428 158.18 16.22
position=NEQ, track=EQ 392 145.7 15.71
gender=NEQ 705 182.5 15.43
a�liation=NEQ, position=NEQ, track=EQ 381 139.92 15.2
gender=NEQ, track=EQ 312 123.84 14.01
a�liation=NEQ, gender=NEQ 669 160.01 13.2
gender=NEQ, position=NEQ 627 152.02 12.89
a�liation=NEQ, gender=NEQ, position=NEQ 614 145 12.1
gender=EQ 299 257.69 11.91
gender=EQ, track=EQ 144 189.02 11.75
a�liation=NEQ, gender=NEQ, track=EQ 289 102.15 11.35
a�liation=NEQ, gender=EQ, track=EQ 139 179.23 11.25
a�liation=NEQ, gender=EQ, position=NEQ, track=EQ 120 179.59 11.13
gender=EQ, position=NEQ, track=EQ 123 180.46 11.06
a�liation=NEQ, gender=EQ 290 252.35 11.01
a�liation=EQ, track=EQ 28 298.74 11

Overall, we notice several common patterns in those tables, both for LWA
2010 and HT 2011: We observe the relatively strong influence of homophilic
features such as gender, track, country, and a�liation in the detected patterns,
confirming preliminary work that we presented in [11] only analyzing the indi-
vidual features and their contribution to establishing social interactions. Using
compositional subgroup discovery we can analyze those patterns at a more fine-
grained level, also taking more complex patterns, i. e., combinations of di↵erent
3 http://www.vikamine.org
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features into account. Thus, our results indicate more detailed findings both con-
cerning the individual durations, the influence of repeating interactions, and the
impact of complex patterns given by a combination of several features.

Table 3. Top-20 most exceptional according to the non-aggregated duration of face-to-
face interactions at LWA 2010 (attributed multigraph): The table shows the respective
subgroup patterns, the covered number of dyads, the mean contact length in seconds
and the significance compared to the null-model (Quality (Z)).

Description Size Length Quality (Z)
a�liation=EQ, gender=EQ, position=EQ, track=EQ 30 239 793.96
a�liation=EQ, gender=EQ, position=NEQ, track=NEQ 7 71.29 491.59
a�liation=EQ, gender=EQ, position=EQ, track=NEQ 39 164.02 476.73
a�liation=EQ, gender=EQ, track=EQ 39 160.73 475.71
a�liation=EQ, gender=EQ, position=EQ 69 184.37 412.34
a�liation=EQ, gender=EQ, track=NEQ 46 127.68 341.41
a�liation=EQ, gender=NEQ, position=NEQ, track=NEQ 34 105.83 337.98
a�liation=EQ, gender=EQ, position=NEQ, track=EQ 9 44.63 274.97
a�liation=EQ, position=NEQ, track=NEQ 41 91.99 263.29
a�liation=EQ, gender=EQ 85 128.89 257.45
a�liation=EQ, position=EQ, track=NEQ 78 119.78 249.23
a�liation=EQ, gender=NEQ, position=EQ, track=NEQ 39 77.24 226.94
a�liation=EQ, gender=EQ, position=NEQ 16 44.93 203.45
a�liation=EQ, gender=NEQ, track=NEQ 73 86.25 182.48
a�liation=EQ, track=NEQ 119 103.35 171.08
a�liation=EQ, gender=NEQ, position=NEQ, track=EQ 98 92.89 170.31
gender=EQ, position=EQ, track=EQ 142 107.1 165.17
a�liation=NEQ, gender=EQ, position=EQ, track=NEQ 87 83.01 162.58
a�liation=EQ, gender=NEQ, position=EQ, track=EQ 228 135.41 161.12
a�liation=EQ, position=EQ, track=EQ 258 137.37 156.49

Furthermore, we also observe that the compositional multigraph analysis,
i. e., focusing on dyadic interactions in the multigraph case focuses on much
more specific patterns with many more contributing features, in contrast to more
general patterns in the case of the simple attributed network. That is, for the
multigraph case smaller subgroups (indicated by the size of the set of involved
actors/nodes) are detected that are more specific regarding their descriptions,
i. e., considering the length of the describing features. Then, these can provide
more detailed insights into, e. g., homophilic processes. We can assess di↵erent
specializations of competing properties, see e. g., lines #1 and #3 in Table 3.
Also, the “specialization transition” between two patterns provides interesting
insights, e. g., considering the patterns a�liation=EQ, gender=EQ (line #10)
and a�liation=EQ, gender=EQ, track=EQ (line #4) shown in Table 3 which
indicates the strong homophilic influence of the track feature. A similar pattern
also emerges for HT 2011, regarding country=EQ, gender=NEQ, position=EQ ;
here both track=NEQ and track=EQ improve on the mean contact duration; the
latter is considerably stronger, also in line with our expectations, e. g., cf. [11].
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Table 4. Top-20 most exceptional subgroups according to the aggregated duration of
face-to-face interactions at HT 2010 (simple attributed network): The table shows the
respective patterns, the covered number of dyads, the mean contact length in seconds
and the significance compared to the null-model (Quality (Z)).

Description Size Length Quality (Z)
gender=EQ 357 114.76 15.76
gender=EQ, track=EQ 114 83.87 15.32
country=EQ, gender=EQ, track=EQ 35 111.75 14.21
country=EQ, track=EQ 42 89.74 13.89
track=EQ 185 70.4 13.73
country=EQ, gender=EQ, position=NEQ, track=EQ 18 140.52 12.98
country=EQ, gender=EQ 55 70.06 12.75
country=NEQ 470 87.76 12.61
country=EQ 80 56.51 12.59
position=NEQ 365 76.89 11.87
gender=EQ, position=EQ, track=EQ 46 68.43 11.8
country=EQ, position=NEQ, track=EQ 23 99.62 11.62
position=EQ 185 60.15 11.45
position=EQ, track=EQ 60 53.32 11.44
country=EQ, gender=EQ, position=NEQ 30 82.03 11.29
country=NEQ, gender=EQ 302 82.91 11.19
gender=EQ, position=EQ 136 61.91 10.81
gender=EQ, position=NEQ 221 71.43 10.52
gender=EQ, position=NEQ, track=EQ 68 58.42 10.13
track=NEQ 365 70.22 10.03
country=EQ, position=NEQ 50 45.89 9.86

Table 5. Top-20 most exceptional subgroups according to the non-aggregated duration
of face-to-face interactions at HT 2011 (attributed multigraph): The table shows the
respective subgroup patterns, the covered number of dyads, the mean contact length
in seconds and the significance compared to the null-model (Quality (Z)).

Description Size Length Quality (Z)
country=EQ, gender=NEQ, position=EQ, track=EQ 13 159.57 353.49
country=EQ, gender=NEQ, position=EQ, track=NEQ 32 126.3 173.93
country=EQ, gender=NEQ, position=EQ 45 102.51 120.37
country=EQ, gender=NEQ, position=NEQ, track=EQ 15 45.74 92.91
country=EQ, gender=EQ, position=EQ, track=NEQ 17 42.27 83.02
country=EQ, gender=NEQ, track=EQ 28 49.86 74.91
country=EQ, gender=EQ, position=EQ, track=EQ 113 85.67 65.45
country=EQ, position=EQ, track=EQ 126 85.04 62.09
country=EQ, position=EQ, track=NEQ 49 52.29 61.21
country=EQ, gender=EQ, position=EQ 130 59.27 45.2
country=NEQ, gender=NEQ, position=EQ, track=EQ 32 29.08 42.28
country=EQ, gender=EQ, position=NEQ, track=NEQ 38 31.69 41.84
gender=NEQ, position=EQ, track=EQ 45 30.63 38.17
country=EQ, gender=NEQ, track=NEQ 78 41.06 38.02
country=EQ, gender=EQ, position=NEQ, track=EQ 255 72.55 36.41
country=EQ, position=EQ 175 52.37 35.98
country=NEQ, gender=EQ, position=EQ, track=EQ 166 41.72 32.72
gender=EQ, position=EQ, track=EQ 279 52.69 32.33
country=EQ, gender=EQ, track=EQ 368 66.86 30.3
country=EQ, position=NEQ, track=EQ 270 60.25 30.29
position=EQ, track=EQ 324 43.21 27.79
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6 Conclusions

In this paper, we formalized the problem of detecting compositional patterns in
attributed networks, i. e., capturing dyadic subgroups that show an interesting
behavior as estimated by a quality measure. We presented a novel approach
adapting techniques of subgroup discovery and exceptional model mining [3,
7, 18]. Furthermore, we discussed estimation methods for ranking interesting
patterns, and presented two novel quality measures for that purpose. Finally, we
demonstrated the e�cacy of the approach using two real-world datasets.

Our results indicate interesting findings according to common principles ob-
served in social interaction networks, e. g., the influence of homophilic features
on the interactions. Furthermore, the applied quality functions allow to focus on
specific properties of interest according to the applied modeling method, e. g.,
whether a simple attributed network or a multigraph representation is applied.
Furthermore, the proposed quality functions are statistically well-founded, and
provide a statistical significance value directly, also easing their interpretation.

For future work, we aim to extend the concepts developed in this work to-
wards multiplex networks, also taking into account temporal network dynamics.
For that, we aim to consider methods for analyzing sequential patterns [4] as
well as approaches for modeling and analyzing multiplex network approaches,
e. g., [25, 47]. Finally, methods for testing specific hypothesis and Bayesian esti-
mation techniques, e. g., [4, 13, 20] are further interesting directions to consider.
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