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Abstract

Communities can intuitively be defined as subsets of nodes of a graph with a dense
structure in the corresponding subgraph. However, for mining such communities
usually only structural aspects are taken into account. Typically, no concise nor
easily interpretable community description is provided.

For tackling this issue, this paper focuses on description-oriented community
detection using subgroup discovery. In order to provide both structurally valid
and interpretable communities we utilize the graph structure as well as additional
descriptive features of the graph’s nodes. A descriptive community pattern built
upon these features then describes and identifies a community, i. e., a set of nodes,
and vice versa. Essentially, we mine patterns in the “description space” char-
acterizing interesting sets of nodes (i. e., subgroups) in the “graph space”; the
interestingness of a community is evaluated by a selectable quality measure.

We aim at identifying communities according to standard community quality
measures, while providing characteristic descriptions of these communities at the
same time. For this task, we propose several optimistic estimates of standard
community quality functions to be used for efficient pruning of the search space
in an exhaustive branch-and-bound algorithm. We demonstrate our approach in
an evaluation using five real-world data sets, obtained from three different social
media applications.
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1. Introduction

While classic community detection, e. g., [17] for a survey, just identifies sub-
groups of nodes with a dense structure, lacking an interpretable description, this
paper focuses on the task of description-oriented comunity detection. Using ad-
ditional descriptive features of the nodes contained in the network, we approach
the task of identifying communities as sets of nodes together with a description,
i. e., a logical formula on the values of the nodes’ descriptive features. Such a
community pattern then provides an intuitive description of the community, e. g.,
by an easily interpretable conjunction of attribute-value pairs. This is usually not
achieved by classical community mining methods that consider the nodes of a
network (e. g., denoting users in a social network) as mere strings or ids.

We present an algorithm for description-oriented community detection of the
top-k communities (described by community patterns) with respect to a number
of standard community evaluation functions. The method is based on an adapted
subgroup discovery approach [10, 36], and also tackles typical problems that are
not addressed by standard approaches for community detection such as patholog-
ical cases like small community sizes. We focus on interpretable patterns that can
easily be incorporated into a practical application, for example, for recommenda-
tions in social bookmarking systems. It is important to note that we focus on static
social graphs and do not take the dynamics into account since we aim to charac-
terize a given community (allocation) for a given fixed interaction structure. Also,
since in practice the entities in a network tend to belong to a number of different
communities, the presented method naturally captures overlapping community al-
locations. Moreover, in contrast to global approaches, we focus on the discovery
of local communities. According to the idea of local pattern mining, e. g., [20],
we do not try to find a complete (global) partitioning of the network. Instead, we
consider a set of local, potentially overlapping communities. These should be as
exceptional as possible with respect to a given community quality measure.

We demonstrate our approach on several social media applications such as so-
cial networking and social bookmarking systems that provide interaction networks
like explicit friendship relations between users. However, the presented approach
is not limited to such systems and can be applied to any kind of graph-structured
data for which additional descriptive features (node labels) are available, e. g., cer-
tain activity in telephone networks or interactions in face-to-face contacts [6] that
also utilize tags or topic descriptions for the contained relations.
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As an accompanying example, throughout the paper we use the friendship
graph of the social bookmarking system BibSonomy1 [15]. In BibSonomy, users
can declare their friendship toward other users, thus, creating a directed graph
with users as nodes. At the same time, each user collects and tags resources like
publications and web pages. Thus, a user’s set of tags can be considered as a
description of that user’s interests. The community mining task here is to find
user groups, where users are well connected by their friendship links and share a
common interest in one or more features (tags).
Overall, the contribution of this paper can be summarized as follows:

1. We first introduce description-oriented community detection and present the
COMODO algorithm for obtaining the k-best community patterns using a
given community evaluation measure. COMODO is a branch-and-bound
algorithm based on an exhaustive subgroup discovery approach.

2. For fast description-oriented community detection using COMODO, we
propose optimistic estimates [25, 62] which are efficient to compute. We
consider a number of standard community quality functions: The segrega-
tion index [19], the inverse average ODF (out degree fraction) [38], and
the modularity [49]. We discuss the different measures for unweighted and
weighted graphs, and extend the optimistic estimates accordingly.

3. We evaluate the presented approach using five data sets from three real-
world social applications, i. e., from the social bookmarking systems Bib-
Sonomy and delicious2, and from the social media platform last.fm3.

The remainder of the paper is structured as follows: Section 2 summarizes
basics of subgroup discovery, and provides general notions of graphs and com-
munity mining measures. Next, Section 3 introduces the proposed approach for
description-oriented community detection and presents a number of optimistic
estimates for standard community evaluation functions. After that, Section 4 dis-
cusses related work. For demonstrating the effectiveness and validity of the pre-
sented approach, Section 5 provides experiments using five data sets and discusses
their results in the context of the three real-world applications. Finally, Section 6
concludes the paper with a summary and directions for future research.

1http://www.bibsonomy.org
2http://www.delicious.com
3http://last.fm
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2. Preliminaries

In the following, we briefly introduce basic notions with respect to pattern
mining using subgroup discovery, graphs, and community quality measures.

2.1. Pattern Mining using Subgroup Discovery
Subgroup discovery [28, 62, 13, 5] aims at identifying interesting patterns with

respect to a given target property of interest and according to a specific quality (in-
terestingness) measure. The top patterns are then ranked according to the selected
quality measure.

Formally, a database D = (I,A) is given by a set of individuals I and a set
of attributes A. A selector or basic pattern sela=a j is a boolean function I →
{0,1} that is true, iff the value of attribute a is equal to a j for the respective
individual. For a numeric attribute anum selectors sela∈[min j;max j] can be defined
analogously for each interval [min j;max j] in the domain of anum. In this case,
the corresponding boolean function is set to true, iff the value of attribute anum is
within the respective range. The set of all basic patterns is denoted by S.

A subgroup description or (complex) pattern p = {sel1, . . . ,seld} is then given
by a set of basic patterns, which is interpreted as a conjunction, i.e., p(I) =
sel1 ∧ . . .∧ sell , with |p| = l. In the context of this paper, we focus on a con-
junctive pattern language using nominal attribute–value pairs as defined above in
this paper; for this description language, internal conjunctions can also be gener-
ated by appropriate attribute–value construction methods, if necessary. We call a
pattern p a superpattern (or refinement) of a subpattern ps, iff ps ⊂ p. A subgroup
(extension) sgp := ext(p) := {i ∈ I|p(i) = true} is the set of all individuals which
are covered by the subgroup description p.

Example. In the following we will use the social bookmarking system BibSon-
omy as an example to illustrate the defined notions. BibSonomy allows its users
to collect, tag, and share publication metadata as well as web bookmarks. Users
can store a resource (a publication or a web link) and add several tags (arbitrarily
chosen keywords) to it. Such a tag can then be used to retrieve those resources
that the tag has been assigned to – within one’s own collection as well as from the
collections of others.

In our BibSonomy example, the individuals are the users and the set of at-
tributes is the set of all tags. Each tag corresponds to one (binary) attribute with
the values true and false. The corresponding selector yields true for a user iff the
user has used the tag at least once. A subgroup description is therefore given by
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any set of tags and the according extension is the set of all users that have used
each tag in the description at least once. These users form a community, i. e., the
community of users who share an interest in the notions described by the set of
tags contained in the description.

For subgroup discovery the search space 2S is the set of all possible patterns as
combinations of the basic patterns in S. A quality function Q : 2S →R maps every
pattern in the search space to a real number that reflects the interestingness of a
pattern (or the pattern’s extension, respectively). There exist a variety of possible
quality functions, e. g., [28, 62, 2]. Simple examples consider shares of binary
attributes in a subgroup. More complex variants include, e. g., the mapping of
a subgroup as a set of nodes to the quality computed on a graph structure, as in
our case of description-oriented community detection, similar to complex target
concepts in the exceptional model mining framework, cf. [35, 5]. The result of a
subgroup discovery task is the set of k subgroup descriptions res1, . . . ,resk with
the highest interestingness according to the applied quality function.

For many quality functions an optimistic estimate of a pattern p can be derived.
This estimate describes an upper bound for the quality that any refinement of p
can have. If the optimistic estimate of a pattern is below the quality of the worst of
the k best patterns obtained so far, then the current branch of the search tree along
the refinement path can safely be pruned. More formally, an optimistic estimate
oe(q) of a quality function q is a function such that p ⊆ p′ → oe(q(p)) ≥ q(p′),
i. e., such that no refinement p′ of the pattern p can exceed the quality obtained
by the optimistic estimate oe(q(p)).

2.2. Graphs
An undirected graph G = (V,E) is an ordered pair, consisting of a finite set V

containing the vertices/nodes, and a set E of edges, which contains two-element
subsets of V . A directed graph is defined accordingly: Here, E denotes a subset of
V ×V . In the following, we freely use the term network as a synonym for graph.
A weighted, directed or undirected graph is a graph G = (V,E) together with a
function w : E → R

+ assigning a positive weight to each edge.
The degree d(u) of a node u in a network measures the number of connections

it has to other nodes. In a directed graph the outgoing degree dout(u) counts the
edges starting at u and the incoming degree din(u) the ones ending in u. Simi-
larly, in weighted graphs the strength s(u) is the sum of the weights of all edges
containing u, i. e.,

s(u) := ∑
{u,v}∈E

w({u,v}).
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Instrength sin(u) and outstrength sout(u) are defined accordingly. The adjacency
matrix of a graph is a matrix A ∈ R

|V |×|V | such that Au,v = 1 iff {u,v} ∈ E or
(u,v) ∈ E, respectively, for nodes u,v ∈V .

For weighted graphs the adjacency matrix contains the edge weights whenever
the according edge is present in the graph. We identify a graph with its according
adjacency matrix where appropriate.

2.3. Community Quality Measures
The concept of a community intuitively describes a group C of individuals

out of a population such that members of C are strongly “related” among each
other but sparsely “related” to individuals outside of C. This notion translates
to communities as vertex sets C ⊆ V of a graph G = (V,E). To determine the
amount of relatedness (and, thus, the community quality of such a subset) several
measures have been proposed.

For a given undirected graph G = (V,E) and a community C ⊆ V we use the
following notation: n := |V |, m := |E|, nC := |C|, mC := |{{u,v} ∈ E : u,v ∈C}|
– the number of intra-edges of C, and m̄C := |{{u,v} ∈ E : |{u,v}∩C|= 1}| –
the number of inter-edges of C. Furthermore, it is convenient to introduce an
inter-degree for a node u ∈ C (that depends on the choice of C) by d̄C(u) :=
|{{u,v} ∈ E : v /∈C}|, counting the number of edges between u and nodes out-
side of C.

A simple but useful observation is the following equation that combines some
the above defined entities for a community C:

∑
i∈C

d(i) = 2mC + m̄C . (1)

Different evaluation functions 2V → R for measuring the community quality
exist (according to slightly different intuitions of what a good community is). In
the context of this paper, we focus on maximizing local quality functions for single
communities. We hence consider the inverse of a quality measure in those cases,
where the measure itself indicates higher quality by lower values.

The Inverse Average-ODF (out-degree fraction) IAODF [66] compares the
number of inter-edges to the number of all edges of a community C, and averages
this for the whole community by considering the fraction for each individual node:

IAODF(C) := 1− 1
nC

∑
u∈C

d̄C(u)
d(u)

(2)
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The segregation index SIDX [19] compares the number of expected inter-
edges to the number of observed inter-edges, normalized by the expectation:

SIDX(C) =
E(m̄C)− m̄C

E(m̄C)
= 1− m̄Cn(n−1)

2mnC(n−nC)
(3)

Finally, the modularity MOD [50, 49, 51] of a graph clustering with k com-
munities C1, . . . ,Ck ⊆V focuses on the number of edges within a community and
compares that with the expected such number given a null-model (i.e., a corre-
sponding random graph where the node degrees of G are preserved). It is given
by

MOD =
1

2m ∑
u,v∈V

(
Au,v − d(u)d(v)

2m

)
δ (C(u),C(v)) , (4)

where C(i) denotes for i∈V the community to which node i belongs. δ (C(u),C(v))
is the Kronecker delta symbol that equals 1 if C(u) =C(v), and 0 otherwise.

The modularity contribution of a single community C in a local context (sub-
graph) can then be computed [51, 52] as:

MODL(C) =
1

2m ∑
u,v∈C

(
Au,v − d(u)d(v)

2m

)
,

yielding

MODL(C) =
2mC

2m
− ∑

u,v∈C

d(u)d(v)
4m2 =

mC

m
− ∑

u,v∈C

d(u)d(v)
4m2 .

All the presented measures can be used on directed graphs, e. g., simply by
ignoring directions (and loops).

However, for the modularity in [34] an adaptation is designed that works di-
rectly on directed networks:

dMOD =
1
m ∑

u,v∈V

(
Au,v − din(u)dout(v)

m

)
δ (C(u),C(v)) , (5)

providing a directed version for the contribution of a single community:

dMODL(C) =
1
m ∑

u,v∈C

(
Au,v − din(u)dout(v)

m

)
=

mC

m
− ∑

u,v∈C

din(u)dout(v)
m2 (6)
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For weighted graphs, all considered measures can be adapted by accumulating
the edges’ weights instead of the edges. While the degree of a node is replaced by
the node’s strength, m,mC and m̄C have to be rewritten as follows:

m := ∑
{u,v}∈E

w({u,v}) , mC := ∑
{u,v}∈E,

u,v∈C

w({u,v}) , and m̄C := ∑
{u,v}∈E,

|{u,v}∩C|=1

w({u,v}) .

It is important to note that the community measures can be computed only
using the number of edges contained in the community mC and other graph pa-
rameters such as the total numbers of edges m and nodes n, and the respective node
degrees d(i). The only exception is the inverse Average-ODF that also depends
on the inter-degrees d̄C(u), which will have to be determined for each community
candidate. This allows to compile the data into an efficient data structure as de-
scribed below. For directed graphs, the values din(u) and dout(v) will have to be
stored for each node of an edge.

3. Description-Oriented Community Detection

Many community mining algorithms collect sets of nodes denoting the indi-
vidual communities focusing on structural aspects of the graph; typically there is
no simple, and easily interpretable description. In our example, a user community
would be represented merely as a set of names (strings) or ids. To bridge this
gap, we combine community detection and subgroup discovery in a unified ap-
proach for mining community patterns. This tackles one of the basic problem of
commmunity detection in many applications, cf. [17]: How to identify and to con-
cisely describe a community of users at the same time? The proposed approach
for description-oriented community detection aims at detecting the top-k patterns
(in the description space) according to a given community quality function. In
this way, local communities (similar to [32, 48]) are collected. However, they
are not assessed in a global context of a graph partitioning. Instead, we focus on
’nuggets in the data’ [28], i.e., on exceptional patterns according to the principles
of local pattern mining. Accordingly, our approach also tackles typical problems
that are not addressed by other approaches/measures, e.g., pathological cases such
as small community sizes. We focus on interpretable patterns that can easily be
deployed in a practical application.

In the following, we first provide an overview on the presented approach.
Then, we discuss the COMODO algorithm for fast description-oriented com-
munity detection. After that, we introduce optimistic estimates for standard com-
munity evaluation functions for mining local community patterns efficiently.
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3.1. Overview
Intuitively, community detection is concerned with the identification of sub-

groups [61], in which the elements are more densely linked among each other,
than to other groups. Hence, subgroups and communities are rather similar, and
we will use the terms interchangeably. Our goal is to discover the k best commu-
nities in a graph G that can be described by the attributes of their nodes and that
maximize a given community evaluation function.

For the description of the communities, we require a database D containing
a record for each graph node. Since communities can intuitively be regarded as
subgraphs that are densely connected, we consider only node sets without isolated
nodes as candidates for communities.

Example. In our BibSonomy example (see Section 2.1) the nodes in the graph
G are individual users. Since in BibSonomy users interact with each other in
several ways – e. g., by visiting each others profiles or by explicitly declaring other
users as friends –, there are several options to define the edges. A visit graph, for
example, would contain an edge from user a to a user b if a had visited the profile
of b. Similarly a friend graph would contain an edge from a to b if a had declared
their friendship to b. Independent from the chosen graph, the database D contains
for each user a record with all their tags.

Formally, we discuss the following optimization problem: Given is an undi-
rected graph G = (V,E), a (community-)quality function q : 2V → R and a set
of attributes A with functions V → dom(ai) : v �→ ai(v) assigning to each graph
node the basic pattern selai=ai(v) for each attribute ai ∈ A, determined by its at-
tribute value ai(v) from the value domain dom(ai) of the respective attribute. To
determine are the k best solutions of:

q(ext(p))→ max! (7)

where the solution space contains all possible descriptions, i.e., complex patterns
of the form p= {sel1, . . . ,sell}, interpreted as a conjunction p(I)= sel1∧ . . .∧sell ,
with length(p) = l. Hereby,

ext(p) := {u ∈ ext(p) : (∃v ∈ ext(p) : {u,v} ∈ E)}
is the community described by p, i. e., the extension of the pattern p without nodes
that do not have at least one edge within that subgraph. For directed graphs our
targeted communities are given by

ext(p) := {u ∈ ext(p) : (∃v ∈ ext(p) : (u,v) ∈ E or (v,u) ∈ E)} .
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It is often reasonable and natural – especially in large real-life networks – to re-
quire a minimal size for each community. Therefore, we introduce τn ∈ � as a
minimum support threshold for ext(p). This is without loss of generality, since
τn = 2 captures the extreme case of a community consisting of only two nodes.

To prune parts of the solution space, the COMODO algorithm utilizes opti-
mistic estimates (see Sections 2.1 and 3.3). After the set of the k best community
patterns has been obtained, it is ready for application, e.g., for presentation to the
user, or for tasks like recommendation or personalization of services.

3.2. Description-Oriented Community Detection using Subgroup Discovery
For mining community patterns, we propose the COMODO algorithm which

is based on the SD-Map* algorithm [7] for subgroup discovery, extended for
description-oriented community detection. COMODO conducts an exhaustive
search using extended frequent pattern trees [10], by traversing a representation
of the solution space compiled into a community pattern tree. This tree is a com-
pact version of the database D that also contains relevant information about the
graph structure. Before it is created, we apply preprocessing described below.

3.2.1. Preprocessing
Since the communities considered in our approach do not contain isolated

nodes, we can describe them as sets of edges. The advantage of such a description
is due to the fact that – as described above – many community evaluation measures
focus on edges rather than on nodes. Therefore, we transform the data (of the
given graph G and the database D containing the nodes’ descriptive information)
into a new data set focusing on the edges of the graph G: Each data record in the
new data set represents an edge between two nodes. The attribute values of each
such data record are the common attributes of the edge’s two nodes. The rationale
behind storing only the common attributes is the observation that an edge can only
belong to a community described by a certain attribute value, if this respective
attribute value is the same for both nodes of that edge. In the BibSonomy example
consider two users u1 and u2 with tags t1, t2, and t3 and t1, t3, and t4 respectively. If
u1 had chosen u2 as a friend, then the transformed data set would contain an edge
with u1 and u2 as nodes and the tags t1 and t3 as description.

Each such data record also stores the two nodes of the respective edge and their
degrees in G to have them available during the evaluation of the quality function
q. This allows for a very efficient approach using only local information which
can be compiled into a compact data structure as described below.
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3.2.2. The COMODO Algorithm
The FP-growth algorithm (cf. [27]) for mining association rules, and the SD-

Map* algorithm for fast exhaustive subgroup discovery [7] form the basis of
COMODO. In particular, the (extended) FP-tree used by these algorithms is
adapted for COMODO as described below. An (extended) FP-tree can be ef-
ficiently constructed by only two scans of the database and is then mined in a
recursive divide-and-conquer manner, cf. [7, 36]. The FP-tree contains the fre-
quent FP-nodes in a header table, and links to all occurrences of the frequent
basic patterns in the FP-tree structure. In this way, the parameters (of combina-
tions) of basic patterns can be easily retrieved. First, patterns containing only one
basic pattern are mined. Then recursively, patterns conditioned on the occurrence
of a (prefixed) complex pattern (as a set of basic patterns, chosen in the previous
recursion step) are considered. For each following recursive step, a conditional
FP-tree is constructed, given the conditional pattern base of a frequent basic pat-
tern (FP-node). The conditional pattern base consists of all the prefix paths of
such a FP-node, i.e., all the paths from the root node to the FP-node. Given the
conditional pattern base, a (smaller) FP-tree is generated: the conditional FP-tree
of the respective FP-Node with adapted frequency counts. If the conditional FP-
Tree just consists of one path, then the community descriptions can be generated
by considering all the combinations of the nodes contained in the path. Other-
wise, the new tree is subjected to the next recursion step. We refer to [27] for
more details on FP-Trees and FP-growth.

COMODO utilizes an extended FP-tree structure, called the community pat-
tern tree (CP-tree) to efficiently traverse the solution space. The tree is built in
two scans of the graph data set. The steps of the algorithm are described in Al-
gorithm 1. As shown in the algorithm, we consider three options for pruning and
sorting according to the current optimistic estimates:

1. Sorting: During the iteration on the currently active basic pattern queue
when processing a (conditional) CP-tree, we can dynamically reorder the
basic patterns that have not been evaluated so far by their optimistic estimate
value. In this way, we evaluate the more promising basic patterns first. This
heuristic can help to obtain and to propagate higher values for the pruning
threshold early in the process, thus, helping to prune larger portions of the
search space (line 11).

2. Pruning: We omit a branch, if the optimistic estimate for the conditioning
basic pattern is below the threshold given by the k best community pattern
qualities (line 13).
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3. Pruning: When building a (conditional) community pattern tree, we can
omit all the CP-nodes with an optimistic estimate below the mentioned qual-
ity threshold (line 14).

To efficiently compute the community evaluation functions together with their
optimistic estimates COMODO stores additional information in the community
pattern nodes (CP-nodes) of the CP-tree, depending on the used quality function.
Each CP-node of the CP-tree captures information about the aggregated edge in-
formation concerning the database D and the respective graph. For each node, we
store the following information:

• The basic pattern (selector) corresponding to the attribute value of the CP-
node. This selector describes the community (given by a set of edges) cov-
ering the CP-node.

• The edge count mC of the (partial) community represented by the CP-node,
i.e., the aggregated count of all edges EC = {(u,v) ∈ E : u,v ∈ C} that are
accounted for by the CP-node and its basic pattern, respectively.

• The set of nodes VC = {u : (u,v) ∈ EC,u ∈ C,v ∈ C} that are connected by
the set of edges EC of the CP-node.

Each edge data record also stores the contributing nodes and their degrees (in- and
out-degree in the directed case). Thus, for the evaluation of a community C only
the inter-degrees d̄C of the nodes in C (for IAODF) or the number of inter-edges
m̄C (for SIDX) have to be determined from the graph G.

Based on optimistic estimates presented in the following section, COMODO
can reorder, sort, and prune search branches during each step of the traversal of
the solution space. All CP-nodes with an optimistic estimate below the quality
of the lowest ranked community among the k best solutions found so far, can be
safely pruned. The result of the COMODO algorithm is then the set of the top-k
community patterns according to the applied community evaluation function.

Besides the already mentioned minimal support threshold, COMODO can
make use of the maxLength threshold constraining the maximum length of a de-
scription when considering the size of the set of basic patterns that are included.
This parametrization is optional and depends on the use case. To leave the de-
scription length unrestricted, the parameter can be set to infinity.
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Algorithm 1 COMODO
Input: Graph G, database D, int k (maximal number of patterns), int maxLength

(maximal length of a pattern), int τn (minimal community size)
1: Generate D = trans f orm(G,DB) as described in Section 3.2.1.
2: Generate initial community pattern tree CPT = createCPT (D,τn)
3: Let top-k = Priority queue with |top-k| ≤ k
4: Call COMODO-Mine(CPT , {}, top-k)

Output: top-k

procedure COMODO-Mine
Input: Current community pattern tree CPT , pattern p̂, priority queue top-k

1: COM = new dictionary: basicpattern → pattern
2: minQ = minQuality(top-k)
3: for all b in CPT .getBasicPatterns do
4: p = createRefinement(p̂,b)
5: COM[b] = p
6: if size(p,CPT)≥ τn then
7: if quality(p,F)≥ minQ then
8: addToQueue(top-k, p)
9: minQ = minQuality(top-k)

10: if length(p̂)+1 < maxLength then
11: refinements = sortBasicPatternsByOptimisticEstimateDescending(COM)
12: for all b in refinements do
13: if optimisticEstimate(COM[b])≥ minQ then
14: CCPT = getConditionalCPT(b,CPT,minQ)
15: Call COMODO-Mine(CCPT , COM[b] , top-k)

3.2.3. Optional Postprocessing
For presentation and application of the result set of patterns, optional post-

processing can be applied. For example, one can cluster the pattern extensions,
i.e., the communities according to their overlap using a similarity measure such as
the Jaccard coefficient, e. g., [2, 11, 55]. Patterns with a similar extension are then
collected into one cluster. Usually, this helps for the assessment by the user, since
one community can potentially be described by several patterns. Additionally,
pattern set selection techniques such as weighted covering, cf. [33, 2], methods
for selecting pattern teams [29], relevancy filtering [2, 37], or greedy covering
approaches [42] can be applied in order to obtain a reduced set of patterns.
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Postprocessing options need to be selected according to the requirements of
the application and the analytical use case. In an explorative approach, usually the
first technique using clustering provides a suitable range of filtering and pattern
presentation options. Often, pattern filters can also be applied. For example, it
is sometimes conventient, to prune patterns not fulfilling a minimal improvement
constraint [14] with respect to the quality of a superpattern (generalization).

3.3. Optimistic Estimates for Efficient Mining
In the following, we introduce optimistic estimates for the typical community

evaluation functions listed in Section 2.3, i.e., the segregation index, the inverse
average ODF, and the modularity.

Making use of the minimum support threshold τn we can first observe the
following inequality for each subcommunity C′ of a community C, with a size
above the minimal size threshold τn, i. e., |C′| ≥ τn:

m̄C′ =
nC′

∑
i=1

δ̄C’(i)≥
nC′

∑
i=1

δ̄C(i)≥
τn

∑
i=1

δ̄C(i).

Here, we assume that the values δ̄C(i), i = 1, . . . ,nC and δ̄C’(i), i = 1, . . . ,nC′ are
the inter-degrees of the nodes in C and C′ respectively in ascending order, such
that δ̄C(i), i = 1, . . . ,τn denote the minimal τn inter-degrees with respect to C.

3.3.1. Segregation Index
Proposition 3.1. An optimistic estimate for SIDX(C) is given by

oe(SIDX(C)) := 1− n(n−1)
2m

max

{
∑τn

i=1 δ̄C(i)
p(C)

,
nC

min
t=τn

{
∑t

i=1 δ̄C(i)
t(n− t)

}}
,

where p(C) :=

{
n2

4 , if nC ≥ n
2 ,

nC(n−nC) otherwise
.

Proof. For a subcommunity C′ ⊆C with |C′| ≥ τn we have

SIDX(C′) = 1− n(n−1)
2m

m̄C′

nC′(n−nC′)
≤

≤ 1− n(n−1)
2m

∑
nC′
i=1 δ̄C(i)

nC′(n−nC′)
≤ (8)

≤ 1− n(n−1)
2m

∑τn
i=1 δ̄C(i)

maxnC
t=τn {t(n− t)} . (9)
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From (8) it is clear that 1− n(n−1)
2m minnC

t=τn

{
∑t

i=1 δ̄C(i)
t(n−t)

}
is an optimistic estimate for

SIDX(C). On the other hand we have maxnC
t=τn {t(n− t)} = p(C), since t(n− t)

has its maximum at t = n
2 . Together with (9) we obtain 1− n(n−1)

2m
∑τn

i=1 δ̄C(i)
p(C) as

another optimistic estimate.

3.3.2. Inverse Average ODF

Proposition 3.2. For the inverse Average-ODF let d̃C(u) := d̄C(u)
d(u) and δ̃C(i), i =

1, . . . ,nC as these ratios for all nodes in C in ascending order. Then

oe(IAODF(C)) := 1− 1
τn

τn

∑
i=1

δ̃C(i)

is an optimistic estimate for IAODF(C).

Proof. For a subcommunity C′ ⊆C with |C′| ≥ τn we have

IAODF(C′) = 1− 1
nC′ ∑

u∈C′

| {{u,v} ∈ E : v ∈V \C′} |
d(u)

≤

≤ 1− 1
nC′ ∑

u∈C′

| {{u,v} ∈ E : v ∈V \C}|
d(u)

=

= 1− 1
nC′ ∑

u∈C′
d̃C(u)≤ 1− 1

nC′

nC′

∑
i=1

δ̃C(i)≤

≤ 1− 1
τn

τn

∑
i=1

δ̃C(i) .

3.3.3. Modularity
Proposition 3.3. An optimistic estimate for the local modularity contribution can
be derived based only on the number of edges mC within the community:

oe(MODL(C)) =

{
0.25, if mC ≥ m

2 ,
mC
m − m2

C
m2 , otherwise.
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Proof. Using Equation 1 we obtain:

MODL(C) =
mC

m
− ∑

u,v∈C

d(u)d(v)
4m2 =

=
mC

m
− 1

4m2 ∑
u∈C

d(u) ∑
v∈C

d(v) =

=
mC

m
− 1

4m2 ∑
u∈C

d(u)(2mC + m̄C) =

=
mC

m
− 1

4m2 (2mC + m̄C)
2 ≤

≤ mC

m
− m2

C
m2 =

= ôe(MODL(C)).

Note that the optimistic estimate is only dependent on mC, i.e., the number of
edges covered by the community s. Therefore, every subgroup s∗ ⊆ s that is a
refinement of s will cover at most mC edges.

The function ôe(MODL(C)) is a concave function since its derivative

ôe(MODL(C))′ =
1
m
− 2mC

m2

is monotonically decreasing. Therefore, the function has its only maximum at m
2 ,

for m �= 0.
We consider two cases: If mC ≥ m

2 , then the maximal modularity can be ob-
tained at point m

2 . Otherwise, for all mC < m
2 , ôe(MODL(C)) is decreasing in mC,

and thus, ôe(MODL(C)) is an optimistic estimate for MODL(C).

3.3.4. Modularity (directed graphs)
Next, we cover the directed version of the local modularity contribution. Sim-

ilarly as above, we obtain the same estimate as before for the local modularity
contribution.
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Proposition 3.4. For the directed modularity an optimistic estimate is given by

dMODL(C) =
1
m ∑

u,v∈C

(
Au,v − din(u)dout(v)

m

)
=

=
mC

m
− 1

m2 ∑
u∈C

din(u) ∑
v∈C

dout(v)≤

≤ mC

m
− m2

C
m2 =

= ôe(MODL(C)).

Finally, it is worth noting that all these estimates work also for weighted
graphs, simply using the adjustments mentioned in Section 2.3.

3.3.5. Node-Degree – Edge Optimization
The optimistic estimates described above are applicable for the general prob-

lem of community detection, for arbitrary community allocations. However, Equa-
tion 7 allows for a convenient optimization, whenever the inter-degrees and total-
degrees of the considered nodes are estimated as, e.g., for the segregation index,
and the inverse average ODF. Due to the data construction outlined above, we can
restrict the node selection as follows: Whenever a subset of the nodes with mini-
mal inter-degrees and total degrees is selected, we can collect the set of nodes in
such a way that we always consider “minimal edges” (concerning the respective
parameters) contributing two nodes each.

4. Related Work

Community detection methods can be classified according to several dimen-
sions. We distinguish between methods that detect disjoint communities, i.e.,
where actors in a network can only belong to exactly one community, and those
that allow overlapping communities, where actors can belong to multiple com-
munities at the same time. Furthermore, we distinguish between methods that
work on extended (attributed) graphs, e. g., with descriptive information about the
nodes, and methods that work on the plain graph structure. Below, we discuss re-
lated work concerning these issues in greater detail, including several basic meth-
ods working on simple graphs and summarizing community quality functions. Af-
ter that, we elaborate on methods for detecting overlapping communities, before
we focus on more recent methods for multi-dimensional and descriptive methods.
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4.1. Basics of Community Detection
Communities and cohesive subgroups have been extensively studied in social

sciences, e. g., using social network analysis methods [61]. Later, the analysis of
(complex) networks and link structures has been picked up in physics and com-
puter science as an important research direction, e. g., analyzing online and offline
social interaction networks [3, 4].

Wasserman and Faust [61] discuss social network analysis in depth and pro-
vide an overview on the analysis of subgroups/communities in graphs, including
clique-based, degree-based and matrix-perturbation-based methods. Furthermore,
Newman et al. [49, 50, 51] propose several algorithms for community detection,
formalizing the notions of interesting community structures, and introducing the
modularity quality measure. In addition, Fortunato and Castellano [18] discuss
various aspects connected to the concept of community structure in graphs and
its detection. Moreover, Fortunato [17] also presents a thorough survey on the
state of the art community detection algorithms in graphs, focussing on detecting
disjoint communities.

For assessing the quality of a community, usually not only the community’s
density is assessed but the connection density of the community is compared to
the density of the rest of the network [49]. The core idea of the evaluation func-
tion is to apply an objective evaluation criterion, for example, for the modularity
the number of connections within the community compared to the statistically
“expected” number based on all available connections in the network, and to pre-
fer those communities that optimize the evaluation function. Besides modularity,
prominent examples of community quality measures include for example, the seg-
regation index [19] and the inverted average out-degree fraction [66].

A thorough empirical analysis of the impact of different community mining
algorithms and their corresponding objective function on the resulting community
structures is presented in [39], based on the analysis of community structure in
graphs (as presented in [38]). Typically, using one of the methods mentioned
above, a global partitioning of a graph is obtained. In contrast, the approach
presented in this paper obtains overlapping communities, so that a node can be
part of multiple communities. Additionally, not only the (plain) graph structure is
exploited for detecting communities, but also descriptive information contained in
the attributed graph is used in a description-oriented way, while applying standard
community quality functions.
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4.2. Detecting Overlapping Communities
Overlapping communities allow an extended modeling of actor–actor relations

in social networks: Nodes of a corresponding graph can then participate in multi-
ple communities. This is also typically observed in real-world networks regarding
different complementary facets of social interactions [53, 46]. Concerning quality
measures, extensions of the modularity metric for handling overlapping commu-
nities are described in [48, 52, 43]. As a general option for detecting communities,
Tsourakakis et al. [60] provide a framework for finding dense subgraphs, finding
top-k optimal quasi-cliques, which also enables overlapping communities.

A general overview on algorithms for overlapping community detection is pro-
vided by Xie et al. [64] as comprehensive survey. Clique percolation methods,
proposed by Palla et al. [53], detect k-cliques and then merge them into overlap-
ping communities. An extension for directed networks is described in [54]. Fur-
thermore, Kumpula et al. [31] present an extension for fast clique percolation. Xie
and Szymanski [65] present methods extending the idea of label propagation [56]:
The LabelRank algorithm [65] stabilizes the propagation dynamics and random-
ness typically observed in label propagation approaches. Furthermore, [63] ex-
tends on that towards directed and weighted networks. Lancichinetti et al. [32]
describe an approach for overlapping and hierarchical community structure using
a local community metric. The presented metric itself is computed locally but still
assesses a global clustering.

The methods that are most relevant to the approach in this paper concern sta-
tistical and local optimization algorithms: These include the COPRA [24] algo-
rithm by Gregory using label-propagation of neighboring nodes until a consensus
is reached, and the MOSES [45] algorithm by McDaid and Hurley using statistical
model-based techniques. Both approaches aim at similar results as our proposed
method concerning the overlapping nature of the obtained communities and the
applied measures.

In contrast to the approaches mentioned above, the method proposed in this
paper mines the graph structure for obtaining overlapping communities by focus-
ing on local patterns, not on global models. This implies that we do not aim at
describing a complete community model with a comprehensive coverage of the
graph. Instead, we retrieve the k best (overlapping) communities according to a
given community quality measure. In addition, the COMODO algorithm makes
use of descriptive (label) information in addition to the network structure: It fo-
cuses on explicit descriptions of communities and directly searches for the top k
descriptive communities according to standard community evaluation measures.
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4.3. Community Detection and Description
While the methods described above only focus on the graph structure for min-

ing communities, richer graph representations, i. e., labeled graphs, enable ap-
proaches that specifically exploit the descriptive information of the labels assigned
to nodes and/or edges of the graph. Nodes of a network representing users, for
example, can be labeled with tags that the respective users utilized in social book-
marking systems, as in our BibSonomy example. Further possible descriptive
information relates to interests or demographical information.

Overall, there are several methods that somehow consider community detec-
tion and description. One approach for generating descriptions in a postprocess-
ing step is given by deriving topics from the set of communities. Li et al. [40]
first detect all communities, then identify interesting topics. Their approach com-
bines Latent Dirichlet Allocation and the Girvan-Newman community detection
method, cf. [23]. Kwan and Datta [41] use a topological approach by identifying
central actors (celebrities) which are then used to derive the topics for the respec-
tive followers. Gargi et al. [22] present a multi-level approach for topic discovery
and exploration. However, no concise description of the collected communities is
obtained. Only a simple naming method based on the content of the resources is
discussed; better naming and description methods are proposed for future work.

While the approaches above as well as our approach focus on static repre-
sentations of graphs and communities, others consider dynamic and time-based
structures. The MetaFac algorithm [44], for example, uses extended graph fac-
torization for detecting (global) community allocations in a time-variant analysis
considering multi-relational data. The graph factorization is implemented based
on non-negative tensor factorization techniques. In contrast to our approach, the
description of a community is not part of the core community detection step. It can
only be obtained through post-processing, e. g., as top keywords in a probabilistic
approach or as the top community members according to a tf-idf ranking.

The methods mentioned above only provide a kind of description by producing
a summary of labels that occur in a given community. Furthermore, as discussed
above, either rather simple techniques are applied for deriving the topics, or (com-
plex) distributions on topics are returned. Therefore, such approaches do not con-
vey explicit descriptions for the characterization of a community. In contrast, we
focus on descriptive community patterns, represented by logical formulas on the
values of the descriptive features that are true for all nodes of a community.

Concerning methods that focus on such descriptions in general, [1] presents
an approach for community detection using features identified by frequent pattern
mining; closed frequent patterns are derived and are then used for creating a social
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network model based on an entropy analysis. However, the network structure
itself is not exploited. Similarly, Sese et al. [58] extract subgraphs with common
itemsets, i. e., itemset-sharing subgraphs. Given a labeled graph, itemset-sharing
subgraphs can then be enumerated. However, this approach also does not consider
the density of graphs, nor any community measures.

Focusing on methods for generating explicit descriptions connected with the
graph structure, we distinguish between two types of approaches: first, methods
that mainly work on the graph structure but apply descriptive information for re-
stricting the possible sets of communities; second, methods that mine descriptive
patterns for obtaining community candidates evaluated using the graph structure.

As a representative of the first type, Moser et al. [47] combine the concepts
of dense subgraphs and subspace clusters for mining cohesive patterns. Starting
with quasi-cliques, these are expanded until constraints regarding the description
or the graph structure are violated. Similarly, Günnemann et al. [26] combine
subspace clustering and dense subgraph mining, also interleaving quasi-clique
and subspace construction. However, in contrast to our approach, they apply spe-
cialized threshold-based interestingness assessments of the found patterns, e. g.,
focusing on the densities of quasi-cliques concerning the graph structure.

As an example for the second type outlined above, Galbrun et al. [21] propose
an approach for the problem of finding overlapping communities in graphs and
social networks that aims to detect the top-k communities such that the total edge
density over all k communities is maximized. This also relates to a maximum
coverage problem for the whole graph. For labeled graphs each community is
required to be described by a set of labels. The three algorithmic variants pro-
posed by Galbrun et al. apply a greedy strategy for detecting dense subgroups,
and restrict the result set of communities, such that each edge can belong to at
most community. Therefore, this partitioning involves a global approach on the
community quality, in contrast to our local approach. Silva et al. [59] study the
correlation between attribute sets and the occurrence of dense subgraphs in large
attributed graphs. The proposed method considers frequent attribute sets using an
adapted frequent item mining technique, and identifies the top-k dense subgraphs
induced by a particular attribute set, called structural correlation patterns. How-
ever, similar to the methods discussed above, the method focuses on quasi-cliques,
and does not apply selectable (standard) community quality measures.

The approach that is most relevant to our presented approach is the DCM
method presented by Pool et al. [55]. It includes a two-step process of community
detection and community description. A heuristic approach is applied for discov-
ering the top-k communities. Pool et al. utilize a special interestingness function
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which is based on counting outgoing edges of a community similar to the IAODF
measure; for that, they also demonstrate the trend of a correlation with the mod-
ularity function. In contrast to Pool et al., our approach discovers and optimizes
communities (as subgroups) directly. This can yield more compact conjunctive
descriptions, i.e., no disjunctions of several subgroup descriptions have to be used
for the characterization of a community. Furthermore, the COMODO algorithm
applies exhaustive search, in contrast to the heuristic strategy of DCM.

Alltogether, the method proposed in this work extends our earlier work pre-
sented in [8] and [9, 10] in three ways: (1) It applies subgroup discovery to
community mining by defining the applied quality function on the graph structure
(similar to exceptional model mining [35, 5]), (2) it utilizes novel optimistic esti-
mates for efficiently searching the description space, (3) and it directly optimizes
the choice of communities with respect to a given standard community measure
at the same time. Furthermore, the applied exhaustive approach using optimistic
estimates guarantees the discovery of the top-k communities according to a given
quality measure. To the best of the authors’ knowledge, no description-oriented
community detection approach applying an exhaustive branch-and-bound meth-
ods has been proposed so far.

5. Experiments

In the following, we first describe the data sets, before we present the con-
ducted experiments and discuss the results. We focus on evaluating the efficiency
of the presented pruning approach considering the search steps of the COMODO
algorithm. Furthermore, we discuss properties of the discovered communities in
order to assess their validity.

5.1. Networks in Social Bookmarking Systems
For our experiments we used five data sets from three social media systems:

We utilized user networks from the social bookmarking and resource sharing sys-
tems BibSonomy, delicious and last.fm. These graphs arise from user interac-
tions and are typically found in many social media applications. We utilized an
anonymized dump of BibSonomy containing all public bookmark and publica-
tion posts until January 27, 2010. The delicious and last.fm data sets are publicly
available and were obtained from the HetRec workshop [16] at Recsys 2011.

In the following, we provide a detailed overview on the data sets used in the
experiments:
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• BibSonomy: The data contains 175,521 tags, 5,579 users, 467,291 resources,
2,120,322 tag assignments, and also friendship links for 700 users.

– The friend graph GF = (VF ,EF) of BibSonomy is a directed graph
with (u,v) ∈ EF iff user u has added user v as a friend in BibSonomy.

– The click graph of BibSonomy GC = (VC,EC) is a directed graph with
(u,v) ∈ EC iff user u has clicked on a link on the user page of user v in
BibSonomy.

– The visit graph of BibSonomy GV = (VV ,EV ) is a directed graph with
(u,v) ∈ EV iff user u navigated to v’s user page in BibSonomy.

• delicious: The data set contains 1,861 users, 7,664 bi-directional user rela-
tions (i. e., 15328 user (u,v) pairs) and 53,388 tags. The delicious friend
graph GD = (VD,ED) is an undirected graph with (u,v) ∈ ED iff user u has
added user v as a friend in delicious.

• last.fm: The last.fm data set contains 1,892 users, 12,717 bi-directional user
friend relations and 11,946 tags. The last.fm friend graph GL = (VL,EL) is
an undirected graph with (u,v) ∈ EL iff user u has added user v as a friend
in last.fm.

The friendship relations are explicit relations, while the data for the other relations
(click and visit) can be obtained from the “click log” of BibSonomy, consisting of
entries which are generated whenever a logged-in user clicked on a link in Bib-
Sonomy. Table 1 presents some high level statistics for the five network structures.

Table 1: High level statistics for all graphs used for the experiments.
GV (visit) GC (click) GF (friend) GD (delicious) GL(last. f m)

|V | 3381 1151 700 1861 1892
|E| 8214 1718 1012 7664 12717
density 0.0014 0.0025 0.0032 0.0044 0.0071
degmax 1667 275 34 90 119

5.2. Evaluation Data and Setting
In the following, we discuss the applied data preprocessing steps below and

describe the evaluation setup. In the next section, we present an evaluation of
the efficiency and pruning performance of the COMODO algorithm for different
community quality measures and their optimistic estimates, respectively.
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After that, we focus on properties of the obtained communities in order the
assess their validity. As a benchmark for COMODO, we apply two popular algo-
rithms for detecting overlapping communities, i. e., the algorithms MOSES [45]
and the COPRA [24], as well as the DCM algorithm [55] for descriptive com-
munity detection. We compare the communities obtained using COMODO, CO-
PRA, MOSES, and DCM and discuss the statistical and descriptive properties of
their results in detail. We experimented with additional baselines, however, for
clarity we focus on the most similar and comparable algorithms. In our experi-
mentation in an exhaustive setting with τn = 10, for example, the GAMer algo-
rithm [26] did only complete on the two smallest datasets; in such a setting the
algorithm requires increased runtime and memory (exceeding 16 GB for the other
data sets), as also acknowledged by its authors.

The attributes describing a user are given by the set of tags that the respective
user assigned to resources. We applied standard string preprocessing and cleaning
techniques, e. g., normalizing tags concerning whitespace and special characters
in order to handle writing variants. In addition, we focused on tags having at least
three characters.

5.3. Evaluation: Efficiency using Optimistic Estimates
In our first evaluation, we focused our experimentation on measuring the im-

pact of the proposed pruning procedures. We estimated the effect of the optimistic
estimates regarding the efficiency of the presented community detection approach.

5.3.1. Experiments
In the following, we outline the results of applying COMODO to the pre-

sented data sets. In order to evaluate the efficiency, we count the number of
search steps, i. e., community allocations that are considered by the COMODO
algorithm. We compared the total number of search steps (no optimistic esti-
mate pruning) to optimistic estimate pruning using different commmunity qual-
ity measures. Additionally, we measured the impact of using different minimal
community size thresholds. The results are shown in Figures 1–4 for the BibSon-
omy click graph, the delicious friend graph, the BibSonomy friend graph, and the
last.fm contact graph, for k = 10,20,50 and minimal size thresholds τn = 10,20.
The BibSonomy visit graph is shown in Figure 5. More details on the achieved
reduction of the search space using the optimistic estimate functions for all con-
sidered graphs and parameters is shown in Table 2. The table shows the number of
search steps/hypotheses during the mining process using the optimistic estimates
introduced in Section 3.3.
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The large, exponential search space can be exemplified, e. g., for the click
graph with a total of about 2 · 1010 search steps for a minimal community size
threshold τn = 10, or the visit graph with a total of about 1010 search steps for a
minimal community size threshold τn = 20.

Furthermore, Figure 5 shows the considered search steps for the BibSonomy

top10 top20 top50
minimal size: 10

st
ep

s
0.

0e
+0

0
5.

0e
+0

8
1.

0e
+0

9
1.

5e
+0

9

NOP
MODL
SIDX
IAODF

top10 top20 top50
minimal size: 20

st
ep

s
0.

0e
+0

0
1.

0e
+0

7
2.

0e
+0

7

NOP MODL SIDX IAODF

Figure 1: BibSonomy click graph: Search steps with no optimistic estimate pruning (NOP) vs.
community quality functions with optimistic estimate pruning: MODL (Local Modularity), SIDX
(Segregation Index) and IAODF (Inverse Average-ODF), for minimal size thresholds τn = 10,20.
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Figure 2: Delicious friend graph: Search steps with no optimistic estimate pruning (NOP) vs.
community quality functions with optimistic estimate pruning: MODL (Local Modularity), SIDX
(Segregation Index) and IAODF (Inverse Average-ODF), for minimal size thresholds τn = 10,20.
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visit graph; for τn = 20 we only show the results for the modularity4. In addition,
we include the results of τn = 50 for all considered measures. These show similar
trends to the results shown in Table 2. We discuss these in more detail below.

4Here, the other experiments did not terminate within a running time of at most 100 hours.
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Figure 3: BibSonomy friend graph: Search steps with no optimistic estimate pruning (NOP) vs.
community quality functions with optimistic estimate pruning: MODL (Local Modularity), SIDX
(Segregation Index) and IAODF (Inverse Average-ODF), for minimal size thresholds τn = 10,20.
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Figure 4: last.fm friend graph: Search steps with no optimistic estimate pruning (NOP) vs. com-
munity quality functions with optimistic estimate pruning: MODL (Local Modularity), SIDX
(Segregation Index) and IAODF (Inverse Average-ODF), for minimal size thresholds τn = 10,20.
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Figure 5: BibSonomy visit graph: Search steps with no optimistic estimate pruning (NOP) vs.
community quality functions with optimistic estimate pruning: MODL (Local Modularity), SIDX
(Segregation Index) and IAODF (Inverse Average-ODF), for minimal size thresholds τn = 20,50
(As discussed above, we only include the modularity based measures for τn = 20).

5.3.2. Discussion
In comparison to the segregation index (SIDX) and the inverse Average-ODF

(IAODF), the pruning for the modularity-based functions (MODL, dMODL) yields
a better pruning performance by orders of magnitude in most cases. The IAODF
and the SIDX are second and third, with the exception of the clickGraph, where
the use of IAODF required fewer steps than the other measures. Thus, a reduc-
tion of the search space which allows for effective community mining using the
COMODO algorithm was observed especially for the optimistic estimates of the
local modularity (MODL) for the more dense graphs (delicious, last.fm), while
IAODF outperforms the other measures on the sparser graphs. IAODF implicitly
considers the size of the community since it utilizes the degree information of the
nodes contained in the community and the respective fractions of the outgoing
nodes. With a certain minimal support this proves rather efficient.

The local modularity gives more importance to the number of edges that are
contained in the community, while, e. g., SIDX considers the fraction of the num-
ber of edges within the community and the number of inter-edges. In this way,
very small communities can also obtain a high quality value, even if the minimal
support threshold is reached. Overall these optimistic estimates show huge prun-
ing potential for many applications, especially considering the local modularity
measure.
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Table 2: Impact of optimistic estimate pruning for different community quality functions, cf. Sec-
tion 3.3, for the data sets as described in Section 5.3.1. The table shows the number of search steps
(absolute number and percentage relative to the maximum number of possible steps without prun-
ing) needed for finding the top k = 10,20,50 best communities given a minimal support threshold
τn = 10,20,50. Each block presents the results for one graph. The first line shows a run without
any pruning, the following lines consider the three quality functions MODL/dMODL, SIDX, and
IAODF (pruning by the support threshold and the respective optimistic estimate). In bold are the
smallest number of steps/hypothes for each setting of k and τn.

τn = 10 τn = 20 τn = 50
Top k Method Abs. Rel. Abs. Rel. Abs. Rel.

cl
ic

kG
ra

ph

No Pruning 1,908,999,540 100,00 24,216,078 100,00 5,401 100,00
dMODL 14,005,822 0.73 10,427,700 43.06 5,401 100.00

10 SIDX 427,922,071 22.42 13,996,913 57.80 4,541 84.08
IAODF 7,361,666 0.39 550,741 2.27 1,028 19.03
dMODL 47,618,946 2.49 19,131,223 79.00 5,401 100.00

20 SIDX 534,826,208 28.02 14,262,293 58.90 4,693 86.89
IAODF 8,133,550 0.43 691,758 2.86 1,602 29.66
dMODL 173,256,424 9.08 23,866,621 98.56 5,401 100.00

50 SIDX 1,237,881,774 64.84 15,296,020 63.16 5,401 100.00
IAODF 8,643,947 0.45 940,925 3.89 2,977 55.12

de
lic

io
us

No Pruning 10,245,840 100.00 1,201,270 100.00 43,091 100.00
MODL 1,156 0.01 748 0.06 411 0.95

10 SIDX 248,511 2.43 321,810 26.79 36,550 84.82
IAODF 396,902 3.87 215,126 17.91 19,257 44.69
MODL 1,226 0.01 818 0.07 481 1.12

20 SIDX 452,509 4.42 401,129 33.39 38,391 89.09
IAODF 410,781 4.01 225,445 18.77 20,858 48.40
MODL 1,429 0.01 1,021 0.08 684 1.59

50 SIDX 604,654 5.90 469,594 39.09 39,726 92.19
IAODF 781,584 7.63 262,173 21.82 22,869 53.07

fr
ie

nd
G

ra
ph

No Pruning 118,582,294 100.00 424,669 100.00 203 100.00
dMODL 647 5·10−4 295 0.07 55 27.09

10 SIDX 2,984,815 2.52 267,830 63.07 203 100.00
IAODF 1,682,046 1.42 114,736 27.02 191 94.09
dMODL 661 6·10−4 306 0.07 69 33.99

20 SIDX 7,286,700 6.14 326,641 76.92 203 100.00
IAODF 3,666,524 3.09 149,476 35.20 199 98.03
dMODL 723 6·10−4 367 0.09 121 59.61

50 SIDX 12,118,021 10.22 382,693 90.12 203 100.00
IAODF 5,642,829 4.76 178,501 42.03 203 100.00

la
st

.fm

No Pruning 32,743 100.00 5,794 100.00 581 100.00
MODL 271 0.83 198 3.42 129 2.20

10 SIDX 13,170 40.22 3,694 63.76 537 92.43
IAODF 11,633 35.53 2,841 49.03 449 77.28
dMODL 350 1.07 277 4.78 204 35.11

20 SIDX 14,023 42.83 4,112 70.97 566 97.42
IAODF 13,500 41.23 3,261 56.28 486 83.65
dMODL 582 1.78 509 8.78 402 69.19

50 SIDX 17,103 52.23 4,761 82.17 572 98.45
IAODF 16,021 48.93 3,876 66.90 551 94.84
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5.4. Evaluation: Structure and Validity
In the following, we assess the validity of the presented approach. We focus

on three baseline approaches: First, we consider methods focusing on the network
structure. Since local community patterns can describe overlapping communities,
we compare our approach to prominent approaches for detecting such overlapping
communities. We consider the MOSES [45] and the COPRA [24] algorithms as
a reference. Furthermore, we compare COMODO with the DCM algorithm [55]
for descriptive-driven community detection. The latter enables the assessment of
structure characteristics, significance, and description complexity.

5.4.1. Results
For the experiments, we first restrict our analysis to structural properties and

measures considering the communities and their induced subgraphs – completely
independent from the description data. Thus, when comparing COMODO to
COPRA and MOSES, we aim to avoid a bias towards the additional descriptive
information provided to COMODO. Considering the descriptions, we compare
the description complexity of COMODO and DCM below. Table 3 shows some
examples of the discovered community patterns for the last.fm data set.

Table 3: Ten examples of top ranked community patterns according to the local modularity
(MODL, top) and the inverse Average-ODF (IAODF, bottom) together with their respective topic
description, using the last.fm data set (cf. 5.1). The rows of the table show the different patterns
consisting of conjunctions of tags.

Size Community description
519 80s
240 gregorian_chant AND 80s
215 girl_groups AND 80s
171 atmospheric
122 synth_pop
32 psychedelic AND minimal
16 psychedelic AND 80s
10 psychedelic AND brit_rock AND classic_rock
10 death_rock AND minimal AND 80s
10 death_rock AND 80s AND doom_metal

In addition to the number of the discovered communities, we measure the
respective mean sizes, densities and the overlap of the community sets. These
measures provide a first overview of the properties of the communities (and in-
duced subgraphs). However, for a comprehensive assessment, they need to be
inspected with some insight, e. g., [57]. Therefore, we also evaluated the obtained
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communities using the significance test described in [30] for testing the statistical
significance of the density of a discovered subgraph. We required a minimal com-
munity size of τn = 10 nodes. Since MOSES, COPRA and DCM do not accept
a mimimum size as input, we applied a post-processing step for their discovered
communities and filtered all communities with a size n < τn. Additionally, for the
COMODO algorithm we applied a minimal improvement filter [14] for the com-
munity patterns, and pruned all specializations for which the absolute difference
to the quality of their parent patterns was smaller than τI = 0.01. The communities
marked with (*) in Table 4 show the unfiltered community distributions, since the
application of the minimal support threshold τn = 10 resulted in only one com-
munity each – with a size larger than the threshold τn. For the MOSES algorithm
we did not observe many such small communities and could therefore apply the
postprocessing procedure with τn = 10; see Table 5 for the respective results. The
DCM algorithm discovered a large set of rather small communities, e. g., with the
smallest average size of 2.78±1.57 for the friend graph, and the largest averages
7.90±9.07 for last.fm. After filtering according to τn = 10 we obtained small sets
of communities as shown in Table 6.

Table 4: COPRA result statistics on the BibSonomy and hetrec data sets (column 1). We applied
a filter on the community size selecting those with n ≥ 10; for the entries marked with (*) this
resulted only in one community each, therefore we included all communities in these cases. The
table shows the counts of the obtained sets of communities, their mean size, density overlap, and
the share (PS) of statistically significant communities according to a p-value of at least 10−6.

Graph Count μ(Size) μ(Density) μ(Overlap) PS (%)
clickGraph (*) 130 8.78±88.76 0.01±0.00 0.00±0.00 1.00
friendGraph 7 56.43±94.57 0.18±0.10 0.01±0.03 57.14
delicious 24 71.71±263.50 0.58±0.29 0.00±0.00 54.17
last.fm (*) 39 48.56±294.90 0.10±0.30 0.00±0.00 2.60
visitGraph (*) 23 145.74±694.14 0.01±0.00 0.00±0.00 2.56

Table 5: MOSES result statistics on the BibSonomy and hetrec data sets (column 1). We applied
a filter on the community size selecting those with n ≥ 10. The table shows the counts of the
obtained sets of communities, their mean size, density overlap, and the share (PS) of statistically
significant communities according to a p-value of at least 10−6.

Graph Count μ(Size) μ(Density) μ(Overlap) PS (%)
clickGraph 11 16.73±7.06 0.30±0.07 0.04±0.01 27.27
friendGraph 5 12.2±3.83 0.50±0.19 0.02±0.03 20.00
delicious 68 17.34±10.04 0.52±0.23 0.01±0.02 50.00
last.fm 92 29.53±23.89 0.27±0.09 0.01±0.02 63.04
visitGraph 90 20.88±11.75 0.27±0.07 0.04±0.02 26.67
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Table 6: DCM result statistics on the BibSonomy and hetrec data sets (column 1). We applied a
filter on the community size selecting those with n≥ 10. The table shows the counts of the obtained
sets of communities, their mean size, density overlap, the share (PS) of statistically significant
communities according to a p-value of at least 10−6, and the average description length (ADL).)

Graph Count μ(Size) μ(Density) μ(Overlap) ADL PS (%)
clickGraph 5 10.8±1.10 0.57±0.11 0.09±0.22 8.80 0.00
friendGraph 2 11±1.41 0.43±0.01 0.0±0.0 3.70 0.00
delicious 20 15.05±5.92 0.58±0.16 0.02±0.10 17.43 35.00
last.fm 15 21.00±12.00 0.46±0.10 0.10±0.18 14.05 60.00
visitGraph 3 21±6.93 0.58±0.03 0.22±0.30 12.00 66.67

5.4.2. Discussion
We first discuss the results of the reference algorithms before we compare

them to the communities obtained by the COMODO algorithm. As shown in Ta-
bles 4 through 6 the communities discovered by COPRA and MOSES are rather
small. The COPRA results exhibit a rather low and statistically not significant
density with a low overlap. Concerning the community sizes, the MOSES results
are rather similar. However, MOSES discovers better communities in terms of
density, with statistically significant density values, yet rather smaller in size. The
communities discovered by DCM are even slightly smaller than those of MOSES,
yet (except for the friendGraph) have again higher densities. This is not surpris-
ing since both algorithms optimize for dense communities. However, we observe
a relatively low number of communities that are larger than the minimal support
threshold, leading to a small relative number of statistically significant communi-
ties regarding the density values.

Tables 7 and 8 show the structural and descriptive properties of the results ob-
tained by COMODO. We observe that COMODO provides statistically signifi-
cant results for almost all quality measures and minimal support thresholds con-
cerning the community size and density. Especially for the MODL and dMODL
quality measures always statistically significant communities are obtained. Ad-
ditionally, the results can be easily tuned using the minimal support parameter
(τn) yielding larger communities. The tables show that a suitable minimal support
threshold (τn = 20) yields significant results (≥ 98%) for all quality measures,
indicating these communities’ validity. Finally, since DCM – like COMODO–
produces communities with descriptions we can compare both algorithms regard-
ing that aspect: We compare the average description length (ADL) as a measure
of the description’s complexity. From Tables 6 and 7 and 8 we can observe that
COMODO yields strictly shorter community descriptions than DCM.
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It is important to note that the presented method focuses on the description of
communities while directly searching for the top k descriptive communities ac-
cording to their quality. It is possible that there exist methods from the field of
social network analysis, e.g., [38, 39, 50] that ignore the description space and
work only on the network structure can theoretically discover communities with

Table 7: COMODO results on the BibSonomy data sets (column 1). The tables shows the counts
of the obtained sets of communities, their mean size, density overlap, the share (PS) of statistically
significant communities according to a p-value of at least 10−6, and the average description length
(ADL), columns 5-10, for the parameters quality measure, minimal support threshold (τn), and k
for the top-k communities (count and k may differ due to the applied postprocessing filter.)

Graph Measure τn k Count μ(Size) μ(Density) μ(Overlap) ADL PS (%)

clickGraph

dMODL

10
10 10 133.20±45.67 0.03±0.02 0.26±0.12 1.00 100.00
20 20 123.40±43.27 0.03±0.02 0.25±0.10 1.00 100.00
50 50 96.94±59.49 0.04±0.03 0.18±0.13 1.18 100.00

20
10 10 133.20±45.67 0.03±0.02 0.25±0.12 1.00 100.00
20 20 123.40±43.27 0.03±0.02 0.24±0.10 1.00 100.00
50 50 96.94±59.49 0.04±0.03 0.18±0.12 1.18 100.00

SIDX

10
10 10 14.60±3.57 0.14±0.08 0.22±0.32 1.70 30.00
20 20 13.90±2.83 0.15±0.07 0.28±0.35 2.20 15.00
50 25 13.00±3.04 0.17±0.08 0.32±0.37 2.38 10.34

20
10 10 89.80±98.65 0.05±0.03 0.10±0.11 1.00 100.00
20 20 73.45±81.48 0.05±0.03 0.09±0.10 1.10 100.00
50 50 64.02±67.54 0.06±0.03 0.16±0.19 1.60 100.00

IAODF

10
10 5 11.00±0.00 0.18±0.00 1.00±0.00 3.33 0.00
20 13 10.08±0.28 0.20±0.01 0.88±0.15 3.38 0.00
50 43 10.02±0.15 0.20±0.00 0.95±0.09 4.00 0.00

20
10 10 92.50±98.86 0.07±0.05 0.15±0.17 1.80 100.00
20 20 66.90±82.68 0.09±0.05 0.23±0.21 2.45 100.00
50 50 47.00±58.98 0.09±0.04 0.30±0.22 2.98 100.00

friendGraph

dMODL

10
10 10 98.70±36.24 0.07±0.13 0.30±0.16 1.00 100.00
20 20 87.05±35.49 0.08±0.14 0.26±0.16 1.05 100.00
50 50 75.32±27.44 0.07±0.11 0.32±0.17 1.42 100.00

20
10 10 98.70±36.24 0.07±0.13 0.30±0.16 1.00 100.00
20 20 90.05±31.58 0.06±0.10 0.29±0.14 1.05 100.00
50 50 77.26±24.83 0.05±0.07 0.34±0.15 1.42 100.00

SIDX

10
10 10 10.40±0.70 0.18±0.09 0.56±0.38 2.56 0.00
20 16 11.81±3.04 0.18±0.10 0.33±0.30 2.29 6.89
50 39 11.82±2.46 0.14±0.07 0.29±0.24 2.31 7.14

20
10 10 78.50±37.98 0.07±0.13 0.24±0.18 1.20 100.00
20 20 72.25±35.14 0.06±0.09 0.23±0.16 1.15 100.00
50 50 68.60±29.47 0.05±0.06 0.29±0.15 1.44 100.00

IAODF

10
10 10 12.90±3.87 0.24±0.16 0.17±0.27 2.10 20.00
20 17 13.06±3.36 0.21±0.15 0.21±0.27 2.06 23.52
50 40 17.38±24.25 0.16±0.11 0.24±0.25 2.20 14.63

20
10 10 95.80±35.50 0.06±0.13 0.29±0.15 1.00 100.00
20 20 85.85±33.64 0.05±0.09 0.30±0.15 1.15 100.00
50 50 69.90±28.49 0.05±0.06 0.32±0.15 1.64 100.00

visitGraph dMODL 20
10 10 72.00±41.09 0.06±0.04 0.13±0.21 1.00 100.00
20 20 65.95±30.07 0.06±0.03 0.15±0.18 1.15 100.00
50 50 54.30±23.29 0.07±0.04 0.18±0.18 1.64 100.00
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Table 8: COMODO results on the hetrec data sets (column 1). The tables shows the counts of
the obtained sets of communities, their mean size, density overlap, the share (PS) of statistically
significant communities according to a p-value of at least 10−6, and the average description length
(ADL), columns 5-10, for the parameters quality measure, minimal support threshold (τn), and k
for the top-k communities (count and k may differ due to the applied postprocessing filter.)

Graph Measure τn k Count μ(Size) μ(Density) μ(Overlap) ADL PS (%)

delicious

MODL

10
10 10 551.80±141.66 0.01±0.00 0.33±0.10 1.10 100.00
20 20 460.00±146.68 0.01±0.00 0.33±0.13 1.45 100.00
50 50 377.80±126.44 0.01±0.00 0.27±0.11 1.52 100.00

20
10 10 551.80±141.66 0.01±0.001 0.33±0.10 1.10 100.00
20 20 460.00±146.68 0.01±0.002 0.33±0.13 1.45 100.00
50 50 377.80±126.44 0.01±0.003 0.27±0.11 1.52 100.00

SIDX

10
10 9 10.00±0.00 0.20±0.01 0.83±0.31 4.60 0.00
20 20 10.00±0.00 0.20±0.01 0.93±0.23 4.71 0.00
50 35 10.29±0.67 0.16±0.03 0.37±0.28 4.58 0.00

20
10 10 20.90±1.29 0.06±0.01 0.34±0.19 4.50 100.00
20 20 21.00±1.03 0.06±0.01 0.35±0.20 4.50 100.00
50 50 21.00±1.20 0.06±0.01 0.44±0.22 4.60 100.00

IAODF

10
10 10 10.30±0.67 0.24±0.21 0.29±0.40 4.00 0.00
20 16 10.19±0.54 0.22±0.17 0.51±0.46 4.60 0.00
50 35 10.26±0.56 0.19±0.16 0.24±0.30 4.57 0.00

20
10 10 21.60±1.35 0.07±0.01 0.45±0.15 4.90 100.00
20 20 22.25±1.77 0.07±0.01 0.50±0.15 4.85 100.00
50 50 22.10±2.31 0.07±0.01 0.43±0.18 4.72 100.00

last.fm

MODL

10
10 10 294.10±130.56 0.03±0.01 0.24±0.13 1.20 100.00
20 20 257.25±143.50 0.03±0.01 0.18±0.12 1.15 100.00
50 50 180.28±119.43 0.04±0.03 0.15±0.13 1.48 100.00

20
10 10 294.10±130.56 0.03±0.01 0.24±0.13 1.20 100.00
20 20 257.25±143.50 0.03±0.01 0.18±0.12 1.15 100.00
50 50 180.28±119.43 0.04±0.03 0.15±0.13 1.48 100.00

SIDX

10
10 10 17.10±11.29 0.12±0.06 0.20±0.25 2.30 20.00
20 20 15.15±8.59 0.12±0.05 0.16±0.20 2.45 25.00
50 50 15.00±6.65 0.11±0.04 0.15±0.20 2.48 24.00

20
10 10 26.20±7.10 0.07±0.02 0.25±0.25 2.00 100.00
20 20 28.00±10.83 0.07±0.01 0.16±0.22 2.20 100.00
50 50 32.62±22.55 0.07±0.02 0.12±0.18 2.12 100.00

IAODF

10
10 10 214.50±241.30 0.10±0.12 0.14±0.21 1.30 80.00
20 20 174.15±189.51 0.08±0.10 0.10±0.14 1.30 80.00
50 50 117.42±147.42 0.08±0.08 0.09±0.14 1.68 74.00

20
10 10 255.70±222.13 0.05±0.04 0.15±0.19 1.20 100.00
20 20 219.95±180.53 0.04±0.03 0.13±0.14 1.20 100.00
50 50 139.32±138.44 0.05±0.03 0.10±0.14 1.48 98.00

higher quality scores. However, such communities cannot be covered by any de-
scription using the given tags/topics and therefore do not provide the explanatory
and descriptive properties of the resulting communities of the presented approach.
Since COMODO detects statistically significant communities regarding their size
and density – especially with the local modularity – and since it can be tuned
easily by setting the minimal size threshold appropriately, typical problems and
pathological cases such as small community sizes can be avoided.
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6. Conclusions

In this paper, we have presented an approach for description-oriented commu-
nity detection using exhaustive subgroup discovery. We presented the COMODO
algorithm for the discovery of community patterns. Furthermore, we proposed
suitable optimistic estimates for a range of standard community quality functions;
the optimistic estimates are efficient to compute and enable an effective approach.
Our proposed method ensures that the top-k communities (representable by a
given set of describing features) are discovered; we apply an efficient branch-and-
bound method with appropriate pruning techniques based on exhaustive subgroup
discovery using optimistic estimates.

We evaluated the approach using five different data sets from three social sys-
tems namely, from the social bookmarking systems BibSonomy and delicious,
and from the social music platform last.fm. In our evaluation, we focused on two
aspects: The efficiency of the proposed optimistic estimates, and the validity of
the obtained community patterns. The evaluation demonstrated the effectiveness
of the proposed descriptive mining approach applying the presented optimistic es-
timates. The implemented pruning scheme makes the approach scalable for larger
data sets, especially when the local modularity quality function is chosen to assess
the communities’ quality. Concerning the validity of the patterns, we focused on
structural properties of the patterns and the subgraphs induced by the respective
comunity patterns, and compared COMODO to three baseline community de-
tection algorithms. Overall, the results indicate statistically valid and significant
results that do not exhibit the typical problems and pathological cases such as
small community sizes that are often encountered when using typical community
mining methods. Furthermore, COMODO is able to detect communities that are
typically captured by shorter descriptions leading to a lower description complex-
ity, compared to the baseline.

For future work, we aim to apply the proposed method on more diverse data
sets. In addition, an interesting option is to include background knowledge, e. g.,
in the form of topic hierarchies in order consider more general or specific descrip-
tions, cf. [12, 13]. Furthermore, we plan to extend the approach for community
detection on dynamic networks.
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