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Abstract-Big Data technologies enable new possibilities to 
analyze historical data generated by process plants. One possible 
application is the development of new types of operator support 
systems (OSS), which could help plant operators during 
operations in identifying and dealing with critical situations. The 
project FEE has the objective to develop such support functions 
based on Big Data analytics of historical plant data. In this 
contribution we describe our approach to define software 
architectures for Big Data enabled OSS in industrial plants.

I. INTRODUCTION

A typical process plant like a paper mill, a hot-rolling mill 
or a petro-chemical plant generates a large amount of 
documents and data throughout its entire life-cycle: I/O and 
tag lists, piping and instrumentation diagrams (P&ID), 
control logic, alarm configurations (during planning and 
commissioning), measurement values, alarm and event logs, 
shift books, laboratory results (during operation), 
maintenance notification, repair and inspection reports 
(during maintenance). Already today, analytics are applied to
improve the operations of such a plant; however, usually only
data from single data sources is considered. One common 
example of such an analysis is loop performance monitoring: 
Evaluating the control quality of single control loops based 
on measurements, set points, and controller output [1]. 
However, the limitation to a single data source hampers the 
process of learning from historical data.

An integration of all different types of data within process 
plants will bring up the notorious Big Data attributes: high 
volume, high velocity, and high variety [2]. For instance, a 
refinery can generate more than 300 GB measured values per 
year, produced by more than 60,000 sensors with sampling 
rates between 1 and 60 seconds. Furthermore, data is 
typically heterogeneous, existing in structured (sensor 
readings, database tables), semi-structured (alarm and event 

logs) and unstructured formats (shift books, operation 
manuals). Often, data has been often stored for 10 years or
even longer.

The objective of the public-funded project FEE [3] is the 
analysis of the large and heterogeneous data volumes stored 
in chemical productions plants in a Big Data analytics 
platform with the aim to support plant operators. Big Data
technologies will enable operator support systems, warning 
the operator early about unexpected and uncommon situations 
and support them in an ad-hoc analysis as well as in the 
development of intervention strategies. The main goal is a 
transition from reactive to a more proactive operation of 
process plants. Some of the central support functions that will 
be developed in the FEE project include early warnings, ad-
hoc analysis with what-if scenarios, and an interactive search 
on vast amounts of historical data.

Chemical production plants imply specific requirements 
regarding the system to be developed. First of all, such plants 
are safety-critical systems, and consequently the requirements 
regarding the dependability and understandability of control 
systems are highly important to operators. Furthermore, the 
plants and the corresponding process control systems are 
real-time systems with deterministic deadlines. Even if no 
hard deadlines will be needed for data analytics, the 
applicability of the analytics results will depend on their 
timely or early availability. Overall, the development of data-
driven assistance systems has to account for both the specific 
requirements of future users, as well as requirements arising 
from the technical environment. Existing reference models of 
data analytics or software development do not seem to be 
well suited for these tasks. In consequence, even during the 
early phases of the project FEE, the project team felt a need 
for the development of tools and methods tailored for the 
industrial domain. 
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II. RELATED WORK

Fan and Bifet [4] introduce and discuss different aspects of 
the current status as well as different challenges in mining 
Big Data with respect to extracting useful information from 
large datasets and streams. Similarly, Casado and Younas [5]
outline trends and emerging technologies in that field. They 
outline a lifecycle for Big Data processing classifying 
different tools and methods in terms of the respective phases.

Begoli and Horey [6] discuss best practices for knowledge 
discovery in Big Data. They recommend to provide  
flexibility in the choice of analytical methods and tools, 
support of different storage engines based on data 
characteristics and analytics requirements, and end-user 
access to data by a light-weight architecture and 
communication protocols like a REST API.
Marz and Warren are more specific by introducing the 
Lambda Architecture as reference architecture for Big Data 
Systems [7]. The main concept of the Lambda Architecture is 
to keep an immutable collection of the original data and to 
use separate tools for specific tasks. This is in contrast to 
traditional multi-purpose databases that try to perform 
incremental calculations on the original data. Because the 
original data is not changed, this layout offers a high fault 
tolerance, because there exists always a clean backup. But 
calculating queries on the complete data set can be too slow 
and therefore so-called batch views preprocess the data. The 
batch views are usually realized in classic Big Data 
environment backed by Map/Reduce [8] like Hadoop, which 
offers parallelization and high reliability. The views will be 
stored in a serving layer, which will handle query request. 
Updating the batch views might take some time so that 
queries to the serving layer might be already outdated by new 
data. Therefore a speed layer is added, that should handle 
real-time analysis of arriving data until it is processed by the 
batch layer.

The original purpose of the Lambda Architecture was for 
large-scale web service based systems. However, since the 
model is quite general it has also been applied in other 
contexts, e.g., for building software platforms for the Internet 
of Things [9]. Thus, the basic ideas can be applied to OSS as 
well. Building appropriate data mining models over the 
complete data set might require some time and computational 
effort, so it is only natural to move it to the Batch Layer. 
Furthermore, applying the built models on the live data can 
be performed in memory for small batches of data (similar to 
the speed layer) or even for a continuous stream of data. 

III. PROJECT LIFE-CYCLE FOR BIG DATA ENABLED
OPERATOR SUPPORT SYSTEMS

The FEE project takes a problem and an end-user-oriented 
approach towards the topic of Big Data enabled OSS. 
Workshops and interviews with industrial end-users and data 
analysts from the FEE-project development team2
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essential part of the work and have become building blocks of 
our suggested architecture process, which is described in 
Section V.
An important finding from our workshops is that we are able 
to describe the development of plant specific OSS 
functionality in a rather generic way. Figure 1 summarizes 
this description and shows the different phases that we 
encounter (and anticipate) in our efforts of developing Big 
Data based OSS.

Fig. 1. Phases of a Big Data OSS Project 

The project life-cycle adapts many valuable insights from 
the established CRISP-DM reference process [10] and adapts 
it to the specific needs of OSS. In particular, it separates the 
system life-cycle into two major phases: the offline and the 
online phase. The offline phase largely matches the steps in 
the CRISP-DM model, but takes on a stronger focus on how 
the analyst interacts with the data. The online phase basically 
replaces the CRISP-DM deployment phase and deals with the 
integration of the data-driven models generated during the 
offline phase into the operation of the process plant.

The conic shape of the diagram illustrates that the process 
works like a sieve on the rich and heterogeneous data 
available in process plants: during execution of the process, 
the data analyst starts from all the data available and narrows 
it down to the data relevant for the given problem and 
available for model application during the operation of the 
plant. The next subsections describe the phases in more 
detail.

A. Data Exploration
In this phase the data analyst reviews the available data 

(formats, data quality); guided by the problem definition he or 
she browses through the data including structured and 
unstructured data, analyzing different formats and specific 
data types.
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B. Data Pre-Processing
In this phase data pre-processing methods [11] (e.g. for 

structured data: outlier detection and removal, noise 
reduction, replacement of missing values, feature generation; 
for unstructured data: term extraction, entity and concept 
resolution) are extended from small data samples to all 
relevant historical data as identified in the previous steps. 

C. Modelling
In this phase, actual data mining and model building 

algorithms (e.g. classification (KNN, Decision Trees, etc.),
subgroup discovery [12], or rule induction (FPGrowth)) are 
applied to the subset of historical data in order to derive a 
model suitable for the problem solution.

D. Model Testing
In this phase, the generated models are tested on (yet 

unused) historical data and evaluated. The performance on 
that test data set are measured by common evaluation metrics.

E. Model Application
In this phase, the model is connected to the live data and 

produces operator support outputs. 

F. Result Augmentation
During the model application, the output of the model may

be enriched by additional data, in order to create a better 
contextual understanding for the operator.

IV. THE FEE ARCHITECTURE PROCESS

This section describes the process developed and followed 
in the FEE project, for defining the architecture for our 
different application scenarios.

A. Scenario Workshop and Operator Interviews
The goal of the problem analysis is to obtain a basic 

understanding of the user situation, and to lead to the right 
questions to be asked during the data analysis.

To identify application cases, a so-called scenario canvas
has been developed that supported us in communicating with 
plant experts and enabled the systematic identification and 
documentation of any relevant information needed for further 
development. In the upper area of the canvas, the key 
information for the plant situation is captured (especially 
giving this situation a scenario name). In the left area, data is 
captured that is available to plant operators as information 
about the state of the plant (online data). The middle area of 
the canvas captures operator actions needed for reacting to or 
avoiding this situation. Below, any consequences are listed 
which become relevant when the situation occurs, or which 
would become relevant if the situation is not handled 
properly. This allows an approximation of the risk and extent 
of damage.

Overall, the canvas has a chronological order, from prior-
situation, via situation occurrence and handing, to 
consequences. The right area serves capturing of context 
information, which are only indirectly related to the situation 

described and are therefore illustrated separately. Here, 
additional information sources and supportive tools are listed, 
which are available in the given risk situation and could be 
useful for avoiding or handling it, respectively. Hence, the 
canvas covers relevant information for describing a potential 
prediction problem, such as whether the situation could be 
avoided by the plant operator, which data seems promising 
for predicting this situation, or whether the consequences of a 
situation would justify the effort for developing a Big Data-
based OSS function.

The workshop enabled the development team to get an 
understanding for the plant context and to identify an initial 
set of possible problems to tackle. In the next step, the 
findings of the workshop were confirmed by combined 
operator interviews and observations. Besides a confirmation 
of the already identified cases, new scenarios can be 
identified in this step. More importantly, the interviews and 
observations form the basis for deriving the specific user 
requirements and input for the design of user interfaces.

Finally, the identified scenarios are captured in a 
systematic but lean fashioned way so that the most relevant 
scenarios can be selected to proceed with. The description 
captures the following information:
� As-is-situation: Which users are involved, which tasks 

are they working on and how do they do it, what 
problems and obstacles do they encounter during the 
execution of the tasks?

� Should-be-situation: What OSS functionality can support 
in the tasks, what could be the desired new way of 
executing the tasks and are there special requirements 
that can be already observed?

Fig. 2. Scenario Canvas

B. Requirements Workshops
Starting from the results of the scenario workshop and the 

operator interviews the requirements are refined in a 
subsequent workshop. The requirements workshops 
participants are user experience experts (involved in the 
previous workshops), data analysts and software developer or 
architects and if available end-users. The workshop consists 



of four steps: review of the selected application scenarios, 
collection of detailed user stories in the scenarios, creation of 
paper prototypes and definition of the analytics workflow and 
collection of non-functional requirements.

C. Identifying Big Forces and Technology Choices
Designing a Big Data systems concerns the reasoning about 

trade-offs, such as the accessible or processable volumes of 
data, the resulting and acceptable latency, and the consistency 
of data. Specifically, we consider the following Big Data
forces or data handling requirements:
� Analytics Latency: What is the level of latency 

acceptable for execution of user tasks (queries, execution 
of algorithms, or application of models)?

� Consistency: How important is considering all possible 
writes (especially the newest ones) in this step?

� Volume accessible: How large are the volumes of this 
data type that can be extracted or queried during this 
phase? All historic data, a pre-defined data set or data 
from within a certain and limited time-window?

� Volume processable: How large are the volumes of this 
data type on which actual computations have to be
executed?

� Update Latency: How long does it take, until new data is 
considered and processed - if deterministic or 
probabilistic depends on the consistency requirement?

Choosing the right trade-off for an OSS implementation 
depends on two aspects: the life-cycle phase of the analytics 
project and the characteristics of the data that shall be 
accessed or processed. Figure 3 illustrates our approach to 
drive this decision in the context of a software architecture 
and to identify the right technologies.

Our starting point is the exploration of the mentioned Big 
Data forces for each project phase and typical data types 
encountered in a process plant. This will specify the detailed 
requirements for handling the data types in the corresponding 
life-cycle phase. Based on the identified requirements or Big 
Data forces it is possible to choose an appropriate compute 
and storage paradigm, addressing the Big Data forces in 
different ways. Compute and storage paradigms will link to 
different sets of specific technologies or software products 
and thus drive and support technology choices.

Fig. 3. Aspects in determining technology choices

Concerning the different project phases, the following 
compute paradigms are considered to be relevant: Interactive 
Query, In-Memory Processing, Batch Processing, Stream 
Processing. Furthermore, the following storage paradigms
below are considered to be relevant: File system (FS), File 
System with index (FSi), Distributed File System (DFS), 
Database, RAM.

V. EXAMPLE TECHNOLOGY CHOICES

In this section, we describe a high level system architecture 
along with possible technology choices for an event 
prediction OSS functionality, a generalization of the 
application scenario depicted in Figure 2. It represents a 
simplified version of the Lambda Architecture, tailored for 
prediction scenarios, featuring a batch and speed layer.

While systematically exploring the Big Data forces for 
each combination of data type and project phase the 
observation was made, that the project phase dominates the 
Big Data characteristics. Table 1 summarizes the observation
based on the strongest requirement found in each phase and 
also gives the exception.

TABLE I
PROJECT PHASES AND BIG DATA FORCES

Following this observation, it was also possible to find 
compute and storage paradigms satisfying the requirement for 
all data types in each project phase. Table 2 summarizes the 
selected paradigms. In the data exploration phase (I.) the data 
analyst builds his understanding for the data, conducts first 
experiments and selects the data relevant for the next steps. 
This has to be supported by interactive queries for exploration 
and analytics, by in-memory processing, and the suitable 
storage options, which are databases or a file system with an 
index to support the queries. The pre-processing step (II.) 
processes larger amounts of data in a pre-configured 
standardized fashion. Batch computing supported by 
distributed file system is the choice to support this step. The 
model building (III.) works on a medium to large training 
data set in a batch fashion. Depending on the training data set 

BIG DATA FORCES

PHASE
ANALYTICS

LATENCY

UPDATE

LATENCY
CONSISTENCY

VOLUME

ACCESSIBLE

VOLUME

PROCESSABLE

I. LOW HIGH SECONDARY

DEPENDING ON

DATA TYPE

DEPENDING ON

DATA TYPE

II. HIGH HIGH SECONDARY

III. HIGH HIGH IRRELEVANT3

IV. HIGH HIGH IRRELEVANT3

V. LOW LOW1 IMPORTANT

VI. LOW LOW2 IMPORTANT4

1 FOR OPERATOR INSTRUCTIONS AND MAINTENANCE NOTIFICATIONS: MEDIUM LATENCY ACCEPTABLE

2 FOR PROCESS DATA AND OPERATOR NOTES EVENTUAL CONSISTENCY ACCEPTABLE

3 ONLY WORKING ON WELL-DEFINED MODEL OR TEST DATA SET, NO UPDATES REQUIRED

4 FOR PROCESS DATA, OPERATOR NOTES, OPERATOR INSTRUCTIONS, MAINTENANCE NOTIFICATIONS, MEDIUM
LATENCY IS ACCEPTABLE. FOR OPERATOR MANUALS HIGH LATENCY IS ACCEPTABLE



size, storage on a DFS or in RAM can be chosen. The model 
test (IV.) evaluates the model by using single samples from 
the test data set as input. The small amount of data can be 
processed in memory and possible hold in memory or some 
other data source. The model application (V.) has to work on 
the data streams produced by the process plant, perform pre-
processing operations and calculate the appropriate input for
applying the model. This happens best in a stream processing 
fashion and in the memory of each of the streaming nodes. 
The result augmentation (VI.) finally will pull appropriate 
data from various data sources to improve the operators 
understanding of the situation. Again, interactive query and 
the suitable storage paradigms haven been chosen.

TABLE II
PROJECT PHASES AND STORAGE AND COMPUTE PARADIGMS

Figure 4 shows a high-level component architecture for the 
prediction case. It is split into an offline phase where 
historical data is processed and an online phase where live 
data streams are analyzed. In addition to the batch processing 
system the offline processing component also includes a data 
exploration sub-system with a search engine for unstructured 
data and a database for structured data. With that, 
comprehensive exploratory approaches [13], process 
diagnostics, and interactive search can be supported for data 
analytics in the context of process plants.

Fig. 4. FEE Event Prediction Architecture

VI. SUMMARY AND OUTLOOK

This contribution addressed the use of Big Data analytics 
and machine learning approaches for the realization of more 
predictive OSS in industrial plants. Based on current 
experiences in the FEE project we have described our
approach how to define software architectures for such 
systems. As an example, we described a high-level system 
architecture with according technology choices for an event 
prediction OSS functionality. In the further course of the 
project, assistant functions will be developed as proof-of-
concepts, where the architecture approach described herein 
shall be applied and further refined, as well as suited software 
technologies and tools to be evaluated or developed.
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PHASE COMPUTE STORE

I. INTERACTIVE QUERY, IN-
MEMORY ANALYTICS

DATABASE, FS

II. BATCH DFS

III. BATCH DFS, RAM

IV. IN-MEMORY FS, DATABASE, RAM

V. STREAM RAM

VI. INTERACTIVE QUERY DATABASE, FS WITH INDEX


