
Defining Software Architectures for Big Data
Enabled Operator Support Systems

Benjamin Klöpper, Marcel Dix, Lukas Schorer*1

ABB Corporate Research Center Germany
, Ann Ampofo*

{benjamin.kloepper, marcel.dix}@de.abb.com

Martin Atzmueller
Research Center for Information System Design

KDE Group, University of Kassel, Germany
atzmueller@cs.uni-kassel.de

David Arnu, Ralf Klinkenberg
RapidMiner GmbH, Germany

{darnu, rklinkenberg}@rapidminer.com

1 Lukas Schorer from TU Ilmenau and Ann Ampofo from Heilbronn University have been research interns at the ABB Corporate Research Center

Abstract-Big Data technologies enable new possibilities to
analyze historical data generated by process plants. One possible
application is the development of new types of operator support
systems (OSS), which could help plant operators during
operations in identifying and dealing with critical situations. The
project FEE has the objective to develop such support functions
based on Big Data analytics of historical plant data. In this
contribution we describe our approach to define software
architectures for Big Data enabled OSS in industrial plants.

I. INTRODUCTION

A typical process plant like a paper mill, a hot-rolling mill
or a petro-chemical plant generates a large amount of
documents and data throughout its entire life-cycle: I/O and
tag lists, piping and instrumentation diagrams (P&ID),
control logic, alarm configurations (during planning and
commissioning), measurement values, alarm and event logs,
shift books, laboratory results (during operation),
maintenance notification, repair and inspection reports
(during maintenance). Already today, analytics are applied to
improve the operations of such a plant; however, usually only
data from single data sources is considered. One common
example of such an analysis is loop performance monitoring:
Evaluating the control quality of single control loops based
on measurements, set points, and controller output [1].
However, the limitation to a single data source hampers the
process of learning from historical data.

An integration of all different types of data within process
plants will bring up the notorious Big Data attributes: high
volume, high velocity, and high variety [2]. For instance, a
refinery can generate more than 300 GB measured values per
year, produced by more than 60,000 sensors with sampling
rates between 1 and 60 seconds. Furthermore, data is
typically heterogeneous, existing in structured (sensor
readings, database tables), semi-structured (alarm and event

logs) and unstructured formats (shift books, operation
manuals). Often, data has been often stored for 10 years or
even longer.

The objective of the public-funded project FEE [3] is the
analysis of the large and heterogeneous data volumes stored
in chemical productions plants in a Big Data analytics
platform with the aim to support plant operators. Big Data
technologies will enable operator support systems, warning
the operator early about unexpected and uncommon situations
and support them in an ad-hoc analysis as well as in the
development of intervention strategies. The main goal is a
transition from reactive to a more proactive operation of
process plants. Some of the central support functions that will
be developed in the FEE project include early warnings, ad-
hoc analysis with what-if scenarios, and an interactive search
on vast amounts of historical data.

Chemical production plants imply specific requirements
regarding the system to be developed. First of all, such plants
are safety-critical systems, and consequently the requirements
regarding the dependability and understandability of control
systems are highly important to operators. Furthermore, the
plants and the corresponding process control systems are
real-time systems with deterministic deadlines. Even if no
hard deadlines will be needed for data analytics, the
applicability of the analytics results will depend on their
timely or early availability. Overall, the development of data-
driven assistance systems has to account for both the specific
requirements of future users, as well as requirements arising
from the technical environment. Existing reference models of
data analytics or software development do not seem to be
well suited for these tasks. In consequence, even during the
early phases of the project FEE, the project team felt a need
for the development of tools and methods tailored for the
industrial domain.

This is a preprint of an article accepted for publication in Proc. INDIN 2016 IEEE International Conference on Industrial Informatics.

II. RELATED WORK

Fan and Bifet [4] introduce and discuss different aspects of
the current status as well as different challenges in mining
Big Data with respect to extracting useful information from
large datasets and streams. Similarly, Casado and Younas [5]
outline trends and emerging technologies in that field. They
outline a lifecycle for Big Data processing classifying
different tools and methods in terms of the respective phases.

Begoli and Horey [6] discuss best practices for knowledge
discovery in Big Data. They recommend to provide
flexibility in the choice of analytical methods and tools,
support of different storage engines based on data
characteristics and analytics requirements, and end-user
access to data by a light-weight architecture and
communication protocols like a REST API.
Marz and Warren are more specific by introducing the
Lambda Architecture as reference architecture for Big Data
Systems [7]. The main concept of the Lambda Architecture is
to keep an immutable collection of the original data and to
use separate tools for specific tasks. This is in contrast to
traditional multi-purpose databases that try to perform
incremental calculations on the original data. Because the
original data is not changed, this layout offers a high fault
tolerance, because there exists always a clean backup. But
calculating queries on the complete data set can be too slow
and therefore so-called batch views preprocess the data. The
batch views are usually realized in classic Big Data
environment backed by Map/Reduce [8] like Hadoop, which
offers parallelization and high reliability. The views will be
stored in a serving layer, which will handle query request.
Updating the batch views might take some time so that
queries to the serving layer might be already outdated by new
data. Therefore a speed layer is added, that should handle
real-time analysis of arriving data until it is processed by the
batch layer.

The original purpose of the Lambda Architecture was for
large-scale web service based systems. However, since the
model is quite general it has also been applied in other
contexts, e.g., for building software platforms for the Internet
of Things [9]. Thus, the basic ideas can be applied to OSS as
well. Building appropriate data mining models over the
complete data set might require some time and computational
effort, so it is only natural to move it to the Batch Layer.
Furthermore, applying the built models on the live data can
be performed in memory for small batches of data (similar to
the speed layer) or even for a continuous stream of data.

III. PROJECT LIFE-CYCLE FOR BIG DATA ENABLED
OPERATOR SUPPORT SYSTEMS

The FEE project takes a problem and an end-user-oriented
approach towards the topic of Big Data enabled OSS.
Workshops and interviews with industrial end-users and data
analysts from the FEE-project development team2

2 The FEE (Frühzeitige Erkennung und Entscheidungsunterstützung für

kritische Situationen im Produktionsumfeld) project [2] consists of the

were an

essential part of the work and have become building blocks of
our suggested architecture process, which is described in
Section V.
An important finding from our workshops is that we are able
to describe the development of plant specific OSS
functionality in a rather generic way. Figure 1 summarizes
this description and shows the different phases that we
encounter (and anticipate) in our efforts of developing Big
Data based OSS.

Fig. 1. Phases of a Big Data OSS Project

The project life-cycle adapts many valuable insights from
the established CRISP-DM reference process [10] and adapts
it to the specific needs of OSS. In particular, it separates the
system life-cycle into two major phases: the offline and the
online phase. The offline phase largely matches the steps in
the CRISP-DM model, but takes on a stronger focus on how
the analyst interacts with the data. The online phase basically
replaces the CRISP-DM deployment phase and deals with the
integration of the data-driven models generated during the
offline phase into the operation of the process plant.

The conic shape of the diagram illustrates that the process
works like a sieve on the rich and heterogeneous data
available in process plants: during execution of the process,
the data analyst starts from all the data available and narrows
it down to the data relevant for the given problem and
available for model application during the operation of the
plant. The next subsections describe the phases in more
detail.

A. Data Exploration
In this phase the data analyst reviews the available data

(formats, data quality); guided by the problem definition he or
she browses through the data including structured and
unstructured data, analyzing different formats and specific
data types.

development partners (ABB AG, the KDE Group and the MRT Group of the
University of Kassel, RapidMiner GmbH and the PLT Group of the
University of Dresden), as well as several industrial application partners.

B. Data Pre-Processing
In this phase data pre-processing methods [11] (e.g. for

structured data: outlier detection and removal, noise
reduction, replacement of missing values, feature generation;
for unstructured data: term extraction, entity and concept
resolution) are extended from small data samples to all
relevant historical data as identified in the previous steps.

C. Modelling
In this phase, actual data mining and model building

algorithms (e.g. classification (KNN, Decision Trees, etc.),
subgroup discovery [12], or rule induction (FPGrowth)) are
applied to the subset of historical data in order to derive a
model suitable for the problem solution.

D. Model Testing
In this phase, the generated models are tested on (yet

unused) historical data and evaluated. The performance on
that test data set are measured by common evaluation metrics.

E. Model Application
In this phase, the model is connected to the live data and

produces operator support outputs.

F. Result Augmentation
During the model application, the output of the model may

be enriched by additional data, in order to create a better
contextual understanding for the operator.

IV. THE FEE ARCHITECTURE PROCESS

This section describes the process developed and followed
in the FEE project, for defining the architecture for our
different application scenarios.

A. Scenario Workshop and Operator Interviews
The goal of the problem analysis is to obtain a basic

understanding of the user situation, and to lead to the right
questions to be asked during the data analysis.

To identify application cases, a so-called scenario canvas
has been developed that supported us in communicating with
plant experts and enabled the systematic identification and
documentation of any relevant information needed for further
development. In the upper area of the canvas, the key
information for the plant situation is captured (especially
giving this situation a scenario name). In the left area, data is
captured that is available to plant operators as information
about the state of the plant (online data). The middle area of
the canvas captures operator actions needed for reacting to or
avoiding this situation. Below, any consequences are listed
which become relevant when the situation occurs, or which
would become relevant if the situation is not handled
properly. This allows an approximation of the risk and extent
of damage.

Overall, the canvas has a chronological order, from prior-
situation, via situation occurrence and handing, to
consequences. The right area serves capturing of context
information, which are only indirectly related to the situation

described and are therefore illustrated separately. Here,
additional information sources and supportive tools are listed,
which are available in the given risk situation and could be
useful for avoiding or handling it, respectively. Hence, the
canvas covers relevant information for describing a potential
prediction problem, such as whether the situation could be
avoided by the plant operator, which data seems promising
for predicting this situation, or whether the consequences of a
situation would justify the effort for developing a Big Data-
based OSS function.

The workshop enabled the development team to get an
understanding for the plant context and to identify an initial
set of possible problems to tackle. In the next step, the
findings of the workshop were confirmed by combined
operator interviews and observations. Besides a confirmation
of the already identified cases, new scenarios can be
identified in this step. More importantly, the interviews and
observations form the basis for deriving the specific user
requirements and input for the design of user interfaces.

Finally, the identified scenarios are captured in a
systematic but lean fashioned way so that the most relevant
scenarios can be selected to proceed with. The description
captures the following information:
� As-is-situation: Which users are involved, which tasks

are they working on and how do they do it, what
problems and obstacles do they encounter during the
execution of the tasks?

� Should-be-situation: What OSS functionality can support
in the tasks, what could be the desired new way of
executing the tasks and are there special requirements
that can be already observed?

Fig. 2. Scenario Canvas

B. Requirements Workshops
Starting from the results of the scenario workshop and the

operator interviews the requirements are refined in a
subsequent workshop. The requirements workshops
participants are user experience experts (involved in the
previous workshops), data analysts and software developer or
architects and if available end-users. The workshop consists

of four steps: review of the selected application scenarios,
collection of detailed user stories in the scenarios, creation of
paper prototypes and definition of the analytics workflow and
collection of non-functional requirements.

C. Identifying Big Forces and Technology Choices
Designing a Big Data systems concerns the reasoning about

trade-offs, such as the accessible or processable volumes of
data, the resulting and acceptable latency, and the consistency
of data. Specifically, we consider the following Big Data
forces or data handling requirements:
� Analytics Latency: What is the level of latency

acceptable for execution of user tasks (queries, execution
of algorithms, or application of models)?

� Consistency: How important is considering all possible
writes (especially the newest ones) in this step?

� Volume accessible: How large are the volumes of this
data type that can be extracted or queried during this
phase? All historic data, a pre-defined data set or data
from within a certain and limited time-window?

� Volume processable: How large are the volumes of this
data type on which actual computations have to be
executed?

� Update Latency: How long does it take, until new data is
considered and processed - if deterministic or
probabilistic depends on the consistency requirement?

Choosing the right trade-off for an OSS implementation
depends on two aspects: the life-cycle phase of the analytics
project and the characteristics of the data that shall be
accessed or processed. Figure 3 illustrates our approach to
drive this decision in the context of a software architecture
and to identify the right technologies.

Our starting point is the exploration of the mentioned Big
Data forces for each project phase and typical data types
encountered in a process plant. This will specify the detailed
requirements for handling the data types in the corresponding
life-cycle phase. Based on the identified requirements or Big
Data forces it is possible to choose an appropriate compute
and storage paradigm, addressing the Big Data forces in
different ways. Compute and storage paradigms will link to
different sets of specific technologies or software products
and thus drive and support technology choices.

Fig. 3. Aspects in determining technology choices

Concerning the different project phases, the following
compute paradigms are considered to be relevant: Interactive
Query, In-Memory Processing, Batch Processing, Stream
Processing. Furthermore, the following storage paradigms
below are considered to be relevant: File system (FS), File
System with index (FSi), Distributed File System (DFS),
Database, RAM.

V. EXAMPLE TECHNOLOGY CHOICES

In this section, we describe a high level system architecture
along with possible technology choices for an event
prediction OSS functionality, a generalization of the
application scenario depicted in Figure 2. It represents a
simplified version of the Lambda Architecture, tailored for
prediction scenarios, featuring a batch and speed layer.

While systematically exploring the Big Data forces for
each combination of data type and project phase the
observation was made, that the project phase dominates the
Big Data characteristics. Table 1 summarizes the observation
based on the strongest requirement found in each phase and
also gives the exception.

TABLE I
PROJECT PHASES AND BIG DATA FORCES

Following this observation, it was also possible to find
compute and storage paradigms satisfying the requirement for
all data types in each project phase. Table 2 summarizes the
selected paradigms. In the data exploration phase (I.) the data
analyst builds his understanding for the data, conducts first
experiments and selects the data relevant for the next steps.
This has to be supported by interactive queries for exploration
and analytics, by in-memory processing, and the suitable
storage options, which are databases or a file system with an
index to support the queries. The pre-processing step (II.)
processes larger amounts of data in a pre-configured
standardized fashion. Batch computing supported by
distributed file system is the choice to support this step. The
model building (III.) works on a medium to large training
data set in a batch fashion. Depending on the training data set

BIG DATA FORCES

PHASE
ANALYTICS

LATENCY

UPDATE

LATENCY
CONSISTENCY

VOLUME

ACCESSIBLE

VOLUME

PROCESSABLE

I. LOW HIGH SECONDARY

DEPENDING ON

DATA TYPE

DEPENDING ON

DATA TYPE

II. HIGH HIGH SECONDARY

III. HIGH HIGH IRRELEVANT3

IV. HIGH HIGH IRRELEVANT3

V. LOW LOW1 IMPORTANT

VI. LOW LOW2 IMPORTANT4

1 FOR OPERATOR INSTRUCTIONS AND MAINTENANCE NOTIFICATIONS: MEDIUM LATENCY ACCEPTABLE

2 FOR PROCESS DATA AND OPERATOR NOTES EVENTUAL CONSISTENCY ACCEPTABLE

3 ONLY WORKING ON WELL-DEFINED MODEL OR TEST DATA SET, NO UPDATES REQUIRED

4 FOR PROCESS DATA, OPERATOR NOTES, OPERATOR INSTRUCTIONS, MAINTENANCE NOTIFICATIONS, MEDIUM
LATENCY IS ACCEPTABLE. FOR OPERATOR MANUALS HIGH LATENCY IS ACCEPTABLE

size, storage on a DFS or in RAM can be chosen. The model
test (IV.) evaluates the model by using single samples from
the test data set as input. The small amount of data can be
processed in memory and possible hold in memory or some
other data source. The model application (V.) has to work on
the data streams produced by the process plant, perform pre-
processing operations and calculate the appropriate input for
applying the model. This happens best in a stream processing
fashion and in the memory of each of the streaming nodes.
The result augmentation (VI.) finally will pull appropriate
data from various data sources to improve the operators
understanding of the situation. Again, interactive query and
the suitable storage paradigms haven been chosen.

TABLE II
PROJECT PHASES AND STORAGE AND COMPUTE PARADIGMS

Figure 4 shows a high-level component architecture for the
prediction case. It is split into an offline phase where
historical data is processed and an online phase where live
data streams are analyzed. In addition to the batch processing
system the offline processing component also includes a data
exploration sub-system with a search engine for unstructured
data and a database for structured data. With that,
comprehensive exploratory approaches [13], process
diagnostics, and interactive search can be supported for data
analytics in the context of process plants.

Fig. 4. FEE Event Prediction Architecture

VI. SUMMARY AND OUTLOOK

This contribution addressed the use of Big Data analytics
and machine learning approaches for the realization of more
predictive OSS in industrial plants. Based on current
experiences in the FEE project we have described our
approach how to define software architectures for such
systems. As an example, we described a high-level system
architecture with according technology choices for an event
prediction OSS functionality. In the further course of the
project, assistant functions will be developed as proof-of-
concepts, where the architecture approach described herein
shall be applied and further refined, as well as suited software
technologies and tools to be evaluated or developed.

ACKNOWLEDGMENTS

The underlying project of this contribution was sponsored
by the German Federal Ministry of Education and Research
(Bundesministerium für Bildung und Forschung, BMBF),
under the sponsorship reference number 01IS14006. The
authors are responsible for the contents of this contribution.

REFERENCES

[1] McMillan, Gregory K. (2014) Tuning and control loop performance.
Momentum Press

[2] McAfee, A., Brynjolfsson, E., Davenport, T.H., Patil, D.J. Barton, D.
(2012) Big Data. The management Revolution. Harvard Bus Rev
90(10), 61-67

[3] FEE Project. (2014). Project website http://www.fee-projekt.de Last
accessed on 2016-02-02.

[4] Fan, W. and Bifet, A. (2013) Mining big data: current status, and
forecast to the future. SIGKDD Explor. Newsl. 14, 2 (April 2013), 1-5

[5] Casado, R., and Younas, M. (2015), Emerging trends and technologies
in big data processing. Concurrency Computat.: Pract. Exper., 27,
2078–2091

[6] Begoli, E. and Horey, J. (2012): Design principles for effective
knowledge discovery from Big Data. Joint Working IEEE/IFIP
Conference on Software Architecture and European Conference on
Software Architecture, IEEE, pp. 215-217

[7] Marz, N. and Warren, J. 2015. Big Data: Principles and Best Practices
of Scalable Realtime Data Systems (1st ed.). Manning Publications Co.,
Greenwich, CT, USA

[8] Dean, J. and Ghemawat, S. (2008) MapReduce: simplified data
processing on large clusters. Commun. ACM 51(1), 107-113

[9] Atzmueller, M., Becker, M., Kibanov, M., Scholz, C., Doerfel, S.,
Hotho, A., Macek, B.-E., Mitzlaff, F., Mueller, J. and Stumme, G.
(2014) Ubicon and its Applications for Ubiquitous Social Computing.
New Review of Hypermedia and Multimedia, (20)1, 53—77

[10] Shearer, C. (2000). The CRISP-DM model: the new blueprint for data
mining. Journal of data warehousing, 5(4), 13-22.

[11] Atzmueller, M., Schmidt and A., Hollender, M. (2016) Data
Preparation for Big Data Analytics: Methods & Experiences. Enterprise
Big Data Engineering, Analytics, and Management, IGI Global,
Hershey, PA, USA

[12] Atzmueller, M. (2015) Subgroup Discovery - Advanced Review.
WIREs: Data Mining and Knowledge Discovery, (5)1:35—49

[13] Atzmueller, M. (2016) Advances in exploratory pattern analytics on
ubiquitous data and social media. In: Stefan Michaelis, Nico
Piatkowski, and Marco Stolpe (Eds.) Solving Large Scale Learning
Tasks: Challenges and Algorithms. Springer, LNAI 9580

PHASE COMPUTE STORE

I. INTERACTIVE QUERY, IN-
MEMORY ANALYTICS

DATABASE, FS

II. BATCH DFS

III. BATCH DFS, RAM

IV. IN-MEMORY FS, DATABASE, RAM

V. STREAM RAM

VI. INTERACTIVE QUERY DATABASE, FS WITH INDEX

