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ABSTRACT 
Large-scale data processing is one of the key challenges concerning many application domains, 
especially considering ubiquitous and big data. In these contexts, subgroup discovery provides 
both a flexible data analysis and knowledge discovery method. Subgroup discovery and pattern 
mining are important descriptive data mining tasks. They can be applied, for example, in order to 
obtain an overview on the relations in the data, for automatic hypotheses generation, and for a 
number of knowledge discovery applications. This chapter presents the novel SD-MapR 
algorithmic framework for large-scale local exceptionality detection implemented using 
subgroup discovery on the Map/Reduce framework. We describe the basic algorithm in detail 
and provide an experimental evaluation using several real-world datasets. We tackle two 
algorithmic variants focusing on simple and more complex target concepts, i.e., presenting an 
implementation of exceptional model mining on large attributed graphs. The results of our 
evaluation show the scalability of the presented approach for large data sets. 
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INTRODUCTION  

With the exponential growth of the available data, e.g., due to ubiquitous applications and 
services, large-scale data mining provides many challenges. Efficient and scalable methods need 
to be developed that on the one hand provide the handling of such large data, on the other hand 
support an efficient and scalable analysis approach. In this chapter, we focus on subgroup 
discovery for local exceptionality detection on large datasets. During data exploration, the data 
analyst, for example, might be interested in partitions of the data that show some specific 
exceptional characteristics, and respective descriptions of these partitions. An exploratory 
analysis approach for identifying such a subset of the data with a concise description is given by 
subgroup discovery (e.g., Klösgen 1996; Wrobel 1997; Atzmueller 2015) – here, also 
specifically the variant of exceptional model mining (Leman 2008; Duivestein 2016) as an 
approach for modeling complex exceptionality criteria. Intuitively, subgroup discovery aims at 
identifying such an exceptional subgroup of the whole dataset, e.g., concerning notable different 
distribution of some target concept, where the subgroup typically also should be as large as 
possible. Exceptional model mining especially focuses on complex target properties; it considers 
specific model classes, such as a correlation model between two variables, linear regression, or 
complex graph properties. 



Overall, subgroup discovery is a broadly applicable data mining technique which can be applied 
for descriptive data mining as well as predictive data mining. We can obtain an overview on the 
relations in the data, for example, for automatic hypotheses generation, for attribute construction, 
or for obtaining a rule-based classification model. The basic idea is to identify subgroups 
covering instances of the dataset, which show some interesting, i.e., unexpected, deviating or 
exceptional behavior, concerning a given target concept. This notion can be flexibly formalized 
using a quality function. We can estimate, for example, the deviation of the mean of a numeric 
target concept in the subgroup compared to the whole dataset; more complex functions utilizing 
graph-structured data consider, e.g., the density of a certain subgraph compared to the expected 
density of a null model given by a random edge assignment approach. 
In this chapter, we present the novel SD-MapR algorithmic framework for large-scale subgroup 
discovery: Based on data projection techniques of the FP-Growth (Han et al. 2000) and the 
Parallel FP-Growth (PFP) algorithm (Li et al. 2008) for large-scale frequent pattern mining, SD-
MapR employs the Map/Reduce framework (Dean & Ghemawat 2008) for large-scale data 
processing. The basic idea of SD-MapR is the construction of projected databases such that the 
subgroup discovery task can be independently deployed on several computation clusters in a 
divide-and-conquer manner, inspired by the PFP algorithm. For local exceptionality detection, 
we propose the efficient subgroup discovery algorithms SD-Map* (Atzmueller & Lemmerich 
2009), GP-Growth (Lemmerich et al. 2012), and COMODO (Atzmueller et al. 2015a) which can 
be applied for instantiating SD-MapR. Specifically, we present specific adaptations of the SD-
Map* and the COMODO (Atzmueller et al. 2015a) algorithms for implementing SD-MapR. 
The remainder of this chapter is structured as follows: In the next section, we introduce some 
preliminaries on local exceptionality detection using subgroup discovery and exceptional model 
mining, the respective state-of-the-art algorithms, and the Map/Reduce framework. After that, 
we describe the novel SD-MapR algorithmic framewrok in detail. Next, we provide a 
comprehensive evaluation of the presented algorithms using ubiquitous data, and show the 
scalability and performance for large-scale datasets. Finally, we conclude with a summary and 
point out interesting options for future work.  

BACKGROUND 

This section first briefly introduces the background concerning mining locally exceptional 
patterns. We focus especially on approaches for local exceptionality detection based on subgroup 
and exceptional model mining, and briefly introduce these. After that, we summarize the basics 
of the Map/Reduce framework. Next, we briefly sketch an approach for local exceptionality 
detection on Map/Reduce, i.e., the PFP algorithm and the underlying FP-Growth algorithm. 
Furthermore, we summarize the algorithmic methods that are used in the evaluation, i.e., the SD-
Map/SD-Map*, GP-Growth and COMODO algorithms for local exceptionality detection 
targeting subgroup discovery with exceptional model mining techniques. 

Local Exceptionality Detection, Subgroup Discovery and Exceptional Model Mining 
A core idea in local pattern detection (Morik 2002) is to consider only partial relations in the 
data, in contrast to global modeling approaches that try to fit global models to the whole data. 
Subgroup discovery (cf. Kloesgen 1996; Wrobel 1997; Atzmueller 2015) is a general and 
broadly applicable approach for local exceptionality detection. The interestingness of a subgroup 
is usually defined by a certain property of interest formalized by a quality function. According to 
the type of the property of the subgroup, that we are interested in, we can distinguish between 



simple concepts such as a minimal frequency/size of the subgroup (also known as support for 
association rules), a deviating target share (confidence) of a binary target property of the 
subgroup, or a significantly different subgroup mean of a numeric target concept. More complex 
target concepts consider sets of target variables. In particular, exceptional model mining (Leman 
et al. 2008; Atzmueller 2015; Duivestein et al. 2016) focuses on more complex quality functions, 
considering complex target models, e.g., given by regression models or Bayesian networks with 
a deviating behavior for a certain subgroup. In the context of ubiquitous data and mining social 
media (e.g., Atzmueller et al. 2012), interesting target concepts are given, e.g., by densely 
connected structures (communities), see (Atzmueller et al. 2015a), exceptional spatio-semantic 
distributions (Atzmueller et al. 2015b), or class association rules (Atzmueller et al. 2015c). Using 
a quality function, a set of subgroups is then identified using a given subgroup discovery 
algorithm, i.e., the top-k subgroups, or those above a minimal quality threshold. Furthermore, 
also constraints and other forms of background knowledge can be provided for selecting patterns 
and/or restricting the search space etc. (e.g., Atzmueller 2007). 
Subgroups are described by the features common to the covered set of instances. This provides a 
direct interpretation in terms of their features, i.e. attribute-value pairs, also called selectors. 
Essentially, a subgroup description is given by a selection expression in a certain pattern 
language, e.g., as a conjunction of selectors. Due to the exponential search space given by all 
possible combinations of feature-value pairs (selection expressions) efficient methods, e.g., 
(Wrobel 1997, Atzmueller & Puppe 2006, Atzmueller & Lemmerich 2009) are crucial for 
constraining the search space and optimizing the search process (Atzmueller 2015). Here, we 
distinguish between heuristic methods - mainly based on beam search (e.g., Lavrac et al. 2004; 
Duivestein et al. 2016) and exhaustive approaches like SD-Map/SD-Map* (e.g., Atzmueller & 
Puppe 2006, Atzmueller & Lemmerich 2009, Atzmueller 2015). Often, branch-and-bound 
methods can be implemented using optimistic estimate functions (Grosskreutz et al. 2008, 
Atzmueller & Lemmerich 2009). Also, special data structures like FP-Trees (Han et al. 2000) 
can be applied for increasing efficiency (e.g., Atzmueller & Puppe 2006), also with respect to 
handling large datasets, as we will see below. 

Map/Reduce 
Map/Reduce (Dean & Ghemawat 2008) is a paradigm for scalable distributed processing of big 
data, with a prominent implementation given by the Hadoop framework1

 

. Its core ideas are based 
on the functional programming primitives map and reduce. Whereas map iterates on a certain 
input sequence of key-value pairs, the reduce function collects and processes all values for a 
certain key. The Map/Reduce paradigm is applicable for a certain computational task, if this task 
can be divided into independent computational tasks, such that there is no required 
communication between these. Complex tasks can then be split up into different Map/Reduce 
phases, such that the output of the reducers in one phase is provided as the input to the mappers 
of the next phase. During these phases, the individual jobs are run on the computing nodes and 
the input dataset is split into independent chunks such that these are processed by the map tasks 
in parallel. The Map/Reduce framework sorts the output of the maps for obtaining the input for 
the subsequent reduce tasks. Then, large tasks can be split up into subtasks according to a typical 
divide-and-conquer strategy. 

                                                 
1 http://hadoop.apache.org 



FP-Growth 

The FP-Growth algorithm (Han et al. 2000) has been proposed as an efficient approach for 
frequent pattern mining. It avoids multiple scans of the whole dataset for evaluating candidate 
patterns by constructing a special data structure, the so-called FP-Tree. This extended prefix tree 
structure contains the relevant data in a compressed way. Each tree node contains a reference to a 
selector and a frequency count. Selectors on a path from a node to the root are interpreted as a 
conjunction. Additionally, links between nodes referring to the same selector are maintained. 
The FP-Tree is built by sorting the selectors of each data record according to their descending 
frequency in the dataset. Then, each data instance is inserted into the FP-Tree. The order of the 
selectors increases the chance of shared prefixes between the data records, thus decreasing the 
size of the FP-Tree. Most importantly, the resulting FP-Tree contains the complete condensed 
frequency information for the complete dataset. 
For mining frequent patterns, FP-Growth starts with creating an FP-Tree for the initial dataset. 
Patterns containing exactly one selector are evaluated by the frequencies collected during the 
first pass over the dataset.  Then, the algorithm recursively extends those patterns by adding 
further selectors in a depth-first manner, building conditional trees conditioned on the current 
pattern prefix. Each node corresponds to a conditional data instance built from the selectors 
referred to by its parent nodes. In this way, FP-Growth enables a compact and efficient mining of 
the condensed tree structure. We refer to (Han et al. 2000) for a more detailed discussion. 

PFP 
Parallel FP-Growth (Li et al. 2008) is a variant of the frequent pattern mining algorithm FP-
Growth, which uses the Map/Reduce paradigm to parallelize the computation. PFP splits the data 
into independent shards. A modified version of FP-Growth is applied parallel on these shards 
and the results are aggregated in a post-processing step. 
The frequent pattern mining process is split into five steps and three Map/Reduce passes. The 
first step is the sharding of the input database: Here the input data is split into shards of item sets. 
These shards are distributed on different computing units; this step is usually done by the 
Map/Reduce infrastructure. The second step counts the support of all items in the database in 
parallel with a Map/Reduce pass. This implicitly yields the vocabulary of the data set, which is 
usually unknown for huge databases. The result is called the F-List. In the third step the F-List is 
divided into groups identified by a gid. The F-List is small and the grouping can be done on a 
single computer in a few seconds. The fourth step is using one Map/Reduce pass: The Mapper 
generates the group dependent records. This is done by ordering the items in a record according 
to the frequency descending, i.e., that the most common item is the left most item. Now the items 
are replaced by their corresponding gid. For each gid in the record, a group dependent record is 
created, by selecting all items from the left most occurrence of the gid. This group dependent 
record is written to the output as value along with its gid as key. The Map/Reduce infrastructure 
groups these group dependent records, and for each group one and only one Reducer is called, 
with a list of all group dependent records belonging to the group. These group dependent records 
are used to construct the group dependent FP-Tree. On this FP-Tree an adapted version of the 
FP-Growth algorithm is executed. There are two adaptations compared to classical FP-Growth: 
The growth step is only called for the items which are in the group and only the top-k results are 
stored and written to the output. After computing all groups, the results are collected and post-
processed in a Map/Reduce step. 
 



SD-Map/SD-Map* and GP-Growth 
For efficient local exceptionality detection using subgroup discovery, there are several 
exhaustive algorithms. SD-Map* (Atzmueller & Lemmerich 2009) is based on the efficient SD-
Map algorithm (Atzmueller & Puppe 2006) utilizing an extended FP-Tree data structure, cf. 
(Han et al. 2000), i.e., an extended prefix-tree-structure that stores information for pattern 
refinement and evaluation, complemented by optimistic estimate pruning. 
SD-Map* applies a divide and conquer method, first mining patterns containing one selector and 
then recursively mining patterns of size 1 conditioned on the occurrence of a (prefix) 1-selector. 
For the binary case, an FP-Tree node stores the subgroup size and the true positive count of the 
respective subgroup description. In the continuous case, it considers the sum of values of the 
target variable, enabling us to compute the respective quality functions value accordingly. 
Therefore, all the necessary information is locally available in the FP-Tree structure. 
For extending the FP-Tree structure towards multi-target concepts, we utilize the concept of 
valuation bases introduced by (Lemmerich et al. 2012). Then, all information required for the 
evaluation of the respective quality functions is stored in the nodes of the FP-Tree, as the basis of 
the GP-Growth algorithm extending SD-Map/SD-Map*. With this technique, a large number of 
single and multi-target concept quality functions can be implemented (cf. Lemmerich et al. 2012; 
Atzmueller 2015). 
In particular, for enabling multi-target quality functions using exceptional model mining 
techniques as sketched above, we focus on detecting patterns with respect to a local model 
derived from a set of attributes. The interestingness can then be defined, e.g., by a significant 
deviation from a model that is derived from the total population or the respective complement set 
of instances within the population. 
In general, a model consists of a specific model class and certain model parameters which 
depend on the values of the model attributes in the instances of the respective pattern cover. The 
applied quality measure then determines the interestingness of a pattern according to its model 
parameters. We can consider, for example, the slope of a linear regression model induced on the 
subgroup, and the total population (or the complement of the subgroup, respectively) in order to 
identify deviating subgroups regarding certain target variables. We could consider, for example, 
wins and losses of certain players in a game: Then, assuming a linear regression model, wins 
could be indicated by the values on the x-axis while losses could be indicated by the values on 
the y-axis. Then, we could derive the slope of the line corresponding to the total population. Let 
us assume that this would be close to the diagonal. In that case, interesting subgroups would be 
those, that have a slope that deviates from the diagonal, i.e., where the points are, e.g., either in 
the top-left or bottom-right quadrant. 
The algorithmic framework implemented by SD-Map* and GP-Growth enables optimistic 
estimate pruning: When determining the top-k subgroups, the current subgroup hypothesis (and 
all its further specializations by adding further selectors) can be pruned, if its optimistically 
estimated quality is below the worst quality of the top-k patterns identified so far. In that way, 
significant efficiency gains can be obtained, depending on the applied quality function and its 
optimistic estimate. 

COMODO 
The COMODO algorithm (Atzmueller & Mitzlaff 2011; Atzmueller et al. 2015a) for description-
oriented community detection aims at discovering the top-k communities (described by 
community patterns) with respect to a number of standard community evaluation functions. The 



method itself is based on algorithmic principles of SD-Map* and GP-Growth in the context of 
community detection on attributed graphs, targeting dense structures that are described by a 
concise description. Essentially, COMODO is a fast branch-and-bound algorithm utilizing 
optimistic estimates (cf. Wrobel 1997; Grosskreutz et al. 2008) which are efficient to compute. 
This allows COMODO to prune the search space significantly. COMODO utilizes an extended 
FP-Tree structure, called the community pattern tree in order to efficiently traverse the solution 
space. The tree is built in two scans of the graph data set and is then mined in a recursive divide-
and-conquer manner, cf. (Atzmueller & Lemmerich 2009, Lemmerich et al. 2012). The FP-Tree 
contains the frequent FP-nodes in a header table, and links to all occurrences of the frequent 
basic patterns in the FP-Tree structure. In addition, COMODO also stores additional information 
about the graph structure into a compiled graph representation as a set of edge data records, i.e., 
about the degrees of the individual nodes in order to apply several standard community quality 
functions, e.g., the Modularity quality function (Newman 2006). 
In (Atzmueller et al. 2015a) the approach is demonstrated on data sets from three social systems 
namely, i.e., from the social bookmarking systems BibSonomy2, delicious3

media platform last.fm
, and from the social 
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. However, the presented approach is not limited to such systems and can 
be applied to any kind of graph-structured data for which additional descriptive features (node 
labels) are available, e.g., certain activity in telephone networks or interactions in face-to-face 
contacts (cf. Atzmueller et al. 2012). Since COMODO applies exceptional model mining 
techniques for implementing subgroup discovery for complex targets, we can also extend this 
formalization for even more complex model classes. Then, in order to handle community quality 
functions that include both the structure of the covered subgroups and additional parameters of 
these, we can combine, for example, a structural community quality function like the Modularity 
with an exceptional model like the slope model (linear regression). COMODO already enables 
such extensions since it includes ideas of the GP-Growth algorithm (valuation bases for model 
modularization) and the application of selectable community (pattern) quality functions. As we 
will see below in the evaluation, structural and model parameters can be suitably combined. 
Then, we can also model more complex discovery processes with respect to local exceptional 
pattern detection for answering advanced analytical questions. 

METHOD 

SD-MapR is a framework for implementing subgroup discovery and exceptional model mining 
algorithms for large datasets using the Map/Reduce framework. Below, we describe this 
algorithmic framework for efficient large-scale local exceptionality detection. We provide an 
outline of SD-MapR, and discuss its implementation concerning the SD-Map/SD-Map* and the 
COMODO algorithms. These algorithms allow exhaustive subgroup discovery in complex 
datasets. SD-Map/SD-Map* can be applied for binary and numerical target concepts, while 
COMODO – by integrating techniques of the GP-Growth algorithm, can apply complex quality 
functions for local exceptionality detection on attributed graphs. In particular, we also describe a 
novel extension of a community quality function that includes local exceptionality measures on 
numeric properties of the covered subgraph – in addition to considering structural aspects. In the 
next section, we will discuss evaluation results of these adaptations in detail. 
                                                 
2 http://www.bibsonomy.org 
3 http://delicious.com/ 
4 http://www.last.fm/ 



Overview 
SD-MapR is based on the idea of partitioning the data onto different computing units, such that 
on each of these a respective Map/Reduce job can be run. Existing approaches rely on shared 
memory (using multiple cores) for each processing unit (cf. Lemmerich et al. 2010), or do not 
distribute the data but the search space of subgroup discovery (Trabold and Grosskreutz 2013) 
also relying on central memory and node-to-node communication. In contrast to these, SD-MapR 
provides an implementation directly utilizing the Map/Reduce paradigm, such that computation 
can be effortlessly distributed in this efficient programming model. 
The SD-MapR approach enables subgroup discovery for simple and complex target concepts – 
relating to exceptional model mining. Using techniques of the GP-Growth algorithm like 
valuation bases for modularizing the quality computation of a subgroup, complex quality 
functions can then be efficiently implemented. The next section describes some examples of that 
– from simple shares to a hybrid quality function including structural measures on a graph with 
statistical properties of the covered subgroup. 

SD-MapR 

Essentially, the SD-MapR algorithmic framework applies the data partitioning technique of the 
PFP algorithm for distributing the data on the Map/Reduce infrastructure, complemented by a 
specific subgroup discovery algorithm that runs on the local computation nodes. After the 
individual results on these nodes have been obtained, they need to be recombined. After an initial 
generic preprocessing and data integration step (Convert), where the data is loaded, transformed 
and partitioned into the Hadoop filesystem, SD-MapR consists of the following three phases: 

1. Count & Group (Obtain frequent selectors and partition these): First, acquire initial 
subgroup statistics (optionally: pruning bounds) by parallel counting; obtain frequency 
statistics on the individual selectors contained in the dataset, and use these for generating 
a list of frequent selectors. Second, group the frequent selectors into disjoint sets 
according to the technique of the PFP algorithm; divide the frequent selectors into a given 
number of groups.  

2. SD (Parallel projection-driven subgroup discovery): Build group-projected databases, i.e., 
by applying adapted grouping steps of the PFP algorithm such that the database is split 
into independent (projected) databases. Apply a (potentially adapted) subgroup discovery 
algorithm on those projected databases, e.g., SD-Map/SD-Map* or GP-Growth-based 
variants. Collect the resulting patterns. 

3. Combine (Merge Results): Aggregate the individual patterns into the global result set of 
patterns, e.g., in a top-k approach, select the k best patterns from the result set. 

These phases are implemented using three Map/Reduce steps, utilizing the basic structure of the 
PFP algorithm for data partitioning, parallel pattern discovery, and result aggregation. 
For local exceptionality detection, the algorithmic step (2) provides for some flexibility 
regarding the specific implementation of the pattern discovery step. Due to their efficiency, 
pattern-growth-based algorithms like SD-Map/SD-Map* can be applied, since they only require 
two passes through the utilized (projected) databases for building their core mining structure, 
which can be implemented efficiently in the Map/Reduce infrastructure. Also, algorithms for 
complex target concepts, i.e., for subgroup discovery applying exceptional model mining 
techniques, like the COMODO algorithm can also be implemented. In particular, the applied 



algorithm and technique for estimating the local exceptionality can be selected and configured 
according to the specific objectives of the analysis. Thus, there is a wide range of quality 
functions (Kloesgen 1996; Atzmueller 2015): These can range from simple methods, e.g., 
comparing means in subgroups to the total population (e.g., Wrobel 1997), spatial distributions 
(e.g., Atzmueller & Lemmerich 2013; Atzmueller et al. 2015b) to more complex ones, e.g., 
including components from a linear regression between two variables (Duivestein 2016), and the 
structural assessment of a complex network/graph (Atzmueller et al. 2015a).  In the next section, 
we evaluate instantiations with the mentioned algorithms (SD-Map*, COMODO) in the context 
of real-world datasets, also exemplifying the flexibility of the applicable quality functions. 

RESULTS 
For the evaluation of the SD-MapR algorithmic framework, SD-MapR was instantiated using the 
SD-Map* and the COMODO algorithms – that were adapted to the characteristics of 
Map/Reduce. In particular, SD-Map/SD-Map* and COMODO were reimplemented for 
efficiency on Map/Reduce, such that the construction of the FP-Trees was performed in a rather 
memory-efficient way – by scanning the (projected) databases on disk, i.e., in a one-pass 
iteration on disk instead of processing the projected database in-memory, as provided by the 
Hadoop framework. The implementation was performed based on the VIKAMINE system 
(Atzmueller & Puppe 2005, Atzmueller & Lemmerich 2012), for which extensions for 
Map/Reduce were created. 
In the following, we first outline the characteristics of the applied datasets. After that, we present 
results of our evaluation and discuss them in detail. 

Datasets 

We performed the evaluation using four datasets. For subgroup discovery using a binary target 
concept, we applied two real-world datasets in the social media domain, i.e., using data from the 
music platform last.fm and from the social photo sharing system Flickr. In addition, we utilized 
synthetic data generated using the Quest data generator. For detecting community patterns in an 
exceptional model mining approach, we applied a dataset from a large-scale online game. Below, 
we summarize the characteristics of the applied datasets. 

1. last.fm (“The Million Song dataset”, Bertin-Mahieux et al. 2011): The dataset contains 
505,216 songs and one song-tag relation. Each song is tagged with at least one tag. In 
total, 552,897 tags are contained. The tags are power-law distributed (cf. Bertin-Mahieux 
et al. 2011). For subgroup discovery, each tag is represented by a binary attribute. For 
evaluation, the dataset was replicated 1, 5, 10, 50 and 100 times. 

2. MIRFLICKR-1M (Huiskes & Lew 2008): In this dataset, each picture is tagged with at 
least one tag. For subgroup discovery, all tags (binary attributes) and license data (owner, 
title, license – as nominal attributes) were utilized. In total, the dataset contained 906,280 
attributes. In contrast to the tagging data, the license information yields very dense 
attributes. For evaluation, the dataset was replicated 1, 5, 10, 50 and 100 times. 

3. Quest – IBM Quest Synthetic Data Generator (Agrawal & Srikant 1994): The Quest data 
generator is typically applied for creating synthetic market basket transaction data, e.g., 
for testing association rule mining algorithms. Typically, the generation yields baskets 



with similar sizes. There are different parameters that can be supplied for generating the 
transactions, where we applied the numbers in brackets for generation: 

a. Total number of transactions (3, 10, 30 million) 

b. Total number of different items (100 000) 

c. Average length of a transaction (15) 

d. Number of item patterns (100 000) 

4. Massive Multiplayer Online Game – fleetgraph (attributed graph data): We crawled the 
data from a massive multiplayer online game and constructed a graph with the players as 
nodes; an edge was created between two players if they were co-engaged in a battle a 
certain number of times as discussed below. 

a. Raw data: We collected the raw data from several websites, obtaining about 24.7 
million textual battle reports, with a raw size of 79 GB. In addition, we collected 
the character profiles for the players using the game’s API, e.g., game party, 
participating alliance, information about solar systems and structure of the game 
universe, information about the game items like ships and weapons, etc. This 
resulted in a dataset with a total size of about 500 MB. 

b. Graph construction: Here, an edge is created between two players if they were co-
engaged in a battle, a certain minimal number of times (support), i.e., using a 
certain minimal support threshold. In addition, the graph is labeled using 
information about the participating players: We label the edge with the 
intersection of the attributes of the participating players. Overall, for attributing 
the graph about 8,000 selectors and additional derived numerical indicators can be 
used, e.g., the number of times a player participated in a battle in a certain 
alliance. 

 

Exceptional Tags: Instantiating SD-MapR using SD-Map/SD-Map* 

For the evaluation, we applied the three datasets (1-3) outlined above. Below, we show several 
runtime examples, selecting certain tags as binary targets (last.fm: tag rock, MIRFLICKR-1M: 
tag mcity, Quest: randomly selected tag for each run). Here, with respect to the selected target, a 
subgroup (pattern) should have a frequency of the target that deviates from the overall frequency 
in the database the most. We weight the difference of the target frequency in the subgroup and 
the total database by the square root of the size of the subgroup, thus applying the simplified 
binomial quality function (Atzmueller 2015) which is a standard quality function often applied in 
a subgroup discovery setting for a binary target variable. For running Map/Reduce, we used a 
twelve node Hadoop cluster. Each node had an AMD DualCore Opteron 2218 CPU with 2.6 
GHz, 16 GB RAM, and 1 TB local storage on a 7200 rpm hard disk. Each node was configured 
to execute two mappers and two reducers, resulting in a total of 24 available slots. 



Figure 1 shows the runtime of the SD-MapR instantiation on the last.fm dataset using different 
parameters for group partitioning (G) and reducers (R). Overall, we observe that the 
configuration with G=2500 groups and R=100 reducers provides both the most efficient data 
partitioning and computation of the local exceptionality detection task. Figure 2 shows a detailed 
view on the computational phases: In the phases that we outlined above for the SD-MapR 
framework, the mentioned Convert phase (preprocessing and data integration) also includes the 
transformation of a dataset into a binary transaction oriented dataset, during the write operations 
to the Hadoop HDFS.
With a growing problem size, we observe a linear performance speedup. The SD-Map phase 
takes the most effort, which is explained by the effort on the extended pattern-tree construction. 
The overall sublinear performance of the SD-Map step is explained by the restricted size of the 
FP-Tree which is limited by the number of available selectors/patterns. Similar results are 
observed in Figures 3 & 4 for the MIRFLICKR-1M dataset. For larger datasets, we also observe 
a high impact on the SD-Map phase which can be explained by a more complex tree structure. 
Finally, Figure 5 shows the individual performance results on the Quest dataset. Again, we 
observe a stable linear scale up of the algorithm, also for significantly larger datasets. Overall, 
the runtime develops always linearly, which shows the huge potential of the approach for 
handling large datasets. SD-MapR provides the mechanisms for processing and mining large 
datasets in order enable large-scale local exceptionality detection. As we will see below, this also 
works well for more complex data, i.e., complex structured graph data. 

 

Figure 1. SD-MapR/SD-Map* runtime on the last.fm dataset 



 

Figure 2. Runtime of the individual SD-MapR/SD-Map* phases on the last.fm dataset 

 

Figure 3. SD-MapR/SD-Map* runtime on the MIRFLICKR-1M dataset 



 

Figure 4. Runtime of the individual SD-MapR/SD-Map* phases on the MIRFLICKR-1M dataset 

 

Figure 5. Runtime of the individual SD-MapR/SD-Map* phases on the generated Quest dataset 



Exceptional Descriptive Communities: Instantiating SD-MapR with COMODO 
For detecting exceptional descriptive communities we instantiated the SD-MapR framework with 
an adaptation of the COMODO algorithm (Atzmueller & Mitzlaff 2011, Atzmueller et al. 
2015a). Here, the focus is on detecting densely connected groups (communities) in a 
network/graph, where the covered nodes of the graph have a concise description in terms of 
assigned features. In our context of a massive online multiplayer game, we can, for example, 
focus on players that collaborate (forming their connections) and that are active in certain solar 
systems (properties of the players, respectively nodes in the network/graph). 
We conducted the evaluation of this dataset on a three node Hadoop 1.2.1 cluster. Each node had 
8 cores on an Intel Xeon E5-2690 CPU with 2.9 GHz and 64 GB of RAM allocated. 
Furthermore, each node was configured to execute two map and reduce slots in parallel. 
For the evaluation, we computed the fleetgraph as outlined above with a minimum edge support 
of 10, i.e., we connected two players if they collaborated in battles at least 10 times. With this 
constraint, the graph had about 37.2 million edges. The preprocessed input edge data set was 14 
GB in total. The computation time for this dataset was 18 hours. The execution of COMODO on 
the projected databases lasted 17 hours. The steps before completed in one hour. For answering 
the question, whether we can find groups that are active in certain solar systems and/or spatial 
regions, and that are very successful or unsuccessful, we combined the Modularity quality 
function (on the graph) with the exceptional model mining slope function (on the number of 
wins/losses). Then, we applied SD-MapR/COMODO on a graph constructed from three month 
of battle reports. Table 1 shows exemplary results which revealed groups of players which 
fought in SecureSpace, where players can only interact rather regulated, i.e., they can only fight 
consensual or in formal wars without consequences. Also these systems (S1 – S3) are relatively 
close to each other in the universe. A closer look on the groups showed that the individuals in 
these groups were primarily in two large alliances which had a war in the time frame selected 
and most battles took places in very few systems. Overall, the communities are rather large, 
which shows the good connectivity of players in the game, and their relation to different 
alliances when cooperating. 
 

Description # Member 
Primary SecureSpace 7671 
Primary SecureSpace, KillInRegion R1 5485 
Primary SecureSpace, KillInSystem S1 3643 
Primary SecureSpace, KillInSystem S2 3756 
Primary SecureSpace, KillInSystem S3 3783 
Primary SecureSpace, KillInRegion R1, KillInSystem S1 3602 
Primary SecureSpace, KillInRegion R1, KillInSystem S3 3754 
Primary SecureSpace, KillInRegion R1, KillInSystem S2 3702 
KillInRegion R1, KillInSystem S1 3852 
KillInSystem S1 3853 

Table 1: Top ten Exceptional Communities Solarsystem 
 

Furthermore, we performed a speedup evaluation. Figure 6 shows the speedup using different 
mappers and reducers. In our configuration, we also observe a speedup that is linear with 
growing problem size, which demonstrates the applicability of the approach for large datasets. 
Thus, SD-MapR/COMODO is scalable for large-scale (exceptional) community detection tasks. 

http://www.dict.cc/englisch-deutsch/close.html�


 

 Figure 6. SD-MapR/COMODO speedup on the attributed graph dataset (massive multiplayer 
online game) 
 
 
   

CONCLUSION 

In this chapter, we presented the novel SD-MapR algorithmic framework for large-scale local 
exceptionality detection. We demonstrated the implementation using subgroup discovery 
methods that were instantiated utilizing the Map/Reduce framework. We outlined the basic 
algorithm and evaluated several scenarios using both real-world and synthetic datasets – ranging 
from structured tabular data to complex network data, i.e., in the form of attributed graphs. In 
summary, our evaluation results proved the scalability of the presented approach for large data 
sets. 

 



FUTURE RESEARCH DIRECTIONS 

For future research, we envision a large-scale processing and local exceptionality detection in 
heterogeneous data, including structured, semi-structured and unstructured (textual data) which 
is a typical requirement in many Big Data scenarios (McAfee et al. 2012). For that, information 
extraction (Cowie & Lehnert 1996) approaches, for example, statistical (e.g., McCallum et al. 
2000) or rule-based methods (e.g., Atzmueller et al. 2008; Atzmueller & Nalepa 2009; Kluegl et 
al. 2009) can be applied. Here, also the detailed inspection of the patterns (Atzmueller & Puppe 
2008) and the option of generating explanations (Roth-Berghofer 2004; Roth-Berghofer et al. 
2005; Atzmueller & Roth-Berghofer 2010) for the discovered patterns are important future 
directions. In addition, data quality (e.g., Wang & Strong 1996) is an important aspect for large-
scale data mining. Here, quality measures for the extracted relations (e.g., Atzmueller et al. 
2005b) and the assessment and validation of the data, e.g., checking expected relations 
(Atzmueller et al. 2005a) can then provide critical tools for estimating the data quality and for 
implementing strategies for increasing that. 
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