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Abstract. Computational sensemaking aims to develop methods and systems to
“make sense” of complex data and information. The ultimate goal is then to pro-
vide insights and enhance understanding for supporting subsequent intelligent
actions. Understandability and interpretability are key elements of that process
as well as models and patterns captured therein. Here, declarativity helps to in-
clude guiding knowledge structures into the process, while explication provides
interpretability, transparency, and explainability. This paper provides an overview
of the key points and important developments in these areas, and outlines future
potential and challenges.
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1 Introduction

Computational sensemaking aims to “make sense” in the context of complex informa-
tion and knowledge processes. This is enabled using computational methods for analy-

sis, interpretation, and intelligent decision-support. While the latter is mostly supported
by human-computer interaction techniques, the former two are supported by data min-
ing approaches, in particular, explicative data mining methods.

Overall, data mining systems are commonly applied to obtain a set of novel, po-

tentially useful, and ultimately interesting patterns from (large) data sets [27]. While
the resulting patterns are typically interpretable, e. g., in pattern mining, the large re-
sult sets of potentially interesting patterns that the user needs to assess, require further
exploration and interpretation techniques. In general, facilitating the understandability
and interpretability of the process as well as its “products” (e. g., in the form of pat-
terns) need to consider two important aspects: declarativity, in order to include guiding
knowledge structures into the process, as well as explication in order to provide in-
terpretability, transparency, and explainability. Both declarative as well as explicative

approaches work together in that context, complementing each other. This paper pro-
vides an overview of the key points and important developments in these areas, and
outlines future potential and challenges.
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2 Declarative Aspects in Explicative Data Mining

While declarative approaches allow for the incorporation of background knowledge and
the guidance of the data mining process, explicative data mining [3] focuses specifically
on obtaining interpretable models and patterns, on transparency on the data mining pro-
cess, and on explanainable or explanation-aware mining. In that way, both complement
each other quite well, such that declarative aspects can be incorporated into explicative
data mining for enhancing interpretability, transparency, and explainability.

Below, we briefly introduce declarative aspects on data mining, especially focussing
on the modeling of background knowledge and the specification of knowledge to be in-
corporated into the data mining process. For that, we first introduce explicative data
mining methods, including exploratory and explanation-aware approaches. Here, we
discuss examples in the context of pattern mining methods [1, 2, 4, 13, 45, 94], since
pattern mining is a prominent research direction for obtaining interpretable patterns,
enabling a transparent data mining process. In particular, we discuss the relation to
incorporating prior knowledge, e. g., in the form of knowledge patterns [12] and knowl-
edge graphs [16, 36, 92] into the data mining process. This enables hybrid approaches
that incorporate semantic knowledge into the process, e. g., supporting modeling and
explanation methods.

2.1 Explicative Data Mining

Data mining methods are commonly applied to obtain a set of novel, potentially useful,
and ultimately interesting patterns from (large) data sets cf., [27]. This can be achieved
e. g., utilizing exploratory data mining techniques like association rule mining or sub-
group discovery, as sketched above.

However, most common data mining methods and approaches lack important as-
pects, i. e., interpretability, transparency and explainability in order to be explicative

towards its users. Especially considering complicated black-box models this becomes
relevant, e. g., when providing recommendations and filtering. Prominent application
examples include, for example, large online social networks, e. g., when providing posts
or news to users, but also in predictive settings such as user scoring or classification in
e-commerce. Here, intransparent methods and models make it more difficult to spot
mistakes and can lead to biased decisions, e. g., based on incorrect training data; in
general, they stretch the trust humans have (and should rightfully have) in the respec-
tive predictions. Then, the potential competitive advantage through better predictions
for humans, for businesses, and for society as a whole comes at the cost of reduced
explanatory power.

This is particularly important in the light of the European Union’s new General
Data Protection Regulation, which will as of this year enforce a “right to explanation”
(providing users the right to obtain an explanation for any algorithmic decisions that
were made about them). Overall, there will be a major impact on business, technology,
and society. In particular, in the area of data mining, these developments give rise to
major research challenges and a major impact on the interaction of humans with such
algorithms and according technology in itself, cf., [31].



Explicative data mining [3] is a comprehensive paradigm for interpretable, trans-
parent and explainable data analysis. Similar to the philosopical process of explica-

tion cf., [19, 54] which aims to make the implicit explicit, explicative data mining aims
to model, describe and explain the underlying structure in the data.

Explicative data mining targets interpretable (and transparent) models utilizing ex-
ploratory and explanation-aware methods. These can be constructed and inspected on
different layers and levels. This ranges from pure data summarization to pattern-based
exploratory data mining. Furthermore, these features also provide for different options
for including the human in the loop, e. g., using visualization methods embedded into
interactive and semi-automatic approaches and methods.

Below, we discuss how to include declarative aspects into explicative data min-
ing, focussing on interpretable models as well as explainable or explanation-aware ap-
proaches. For the former, we focus on how to model and provide explication knowl-
edge that is then integrated into the data mining process. We take a pragmatic view,
and consider the typical data mining process, e. g., structured according to the CRISP-
DM [20, 93] cycle, “as is” – and thus incorporate important elements of purely declar-
ative approaches, e. g., [17, 18]. We first focus on exploratory approaches, before we
discuss explanation-aware methods.

2.2 Exploratory Data Mining

In the scope of explication, exploratory data mining techniques can provide a first view
on the data in order to detect interesting patterns. Exploratory techniques span from sta-
tistical approaches for characterizing a dataset or determining key (influence) factors,
e. g., [29,89] to more refined (semi-)automatic approaches, e. g., for local pattern detec-

tion [43, 58, 59]. Local pattern detection aims to discover local models chacterizing (or
describing) parts of the data given an interestingness measure, e. g., [43]. In addition,
interactive visualization methods, e. g., [28, 30, 39, 42, 76, 78, 79, 82, 86] can be applied
(or combined with automatic methods) for further supporting data exploration.

Pattern Mining Overall, a broadly applicable and powerful set of methods is pro-
vided by the area of pattern mining. Common methods include those for association
rule mining [1] or subgroup discovery, e. g., [2, 40, 94]. The latter is at the intersection
of descriptive and predictive data mining [45] and can be applied for a variety of dif-
ferent analytical tasks. Essentially, subgroup discovery [2, 40, 45, 94] is an exploratory
approach for discovering interesting subgroups – as an instance of local pattern detec-
tion [2, 43, 48, 58, 59]. The interestingness is usually defined by a certain property of
interesting formalized by a quality function. Essentially, subgroup discovery is a flexi-
ble method for detecting relations between dependent (characterizing) variables and a
dependent target concept, e. g., comparing the share or the mean of a nominal/numeric
target variable in the subgroup vs. the share or mean in the total population, respectively.
The interestingness of a pattern can then be flexibly defined, e. g., by a significant devi-
ation from a model that is derived from the total populatioctn. In the simplest case, (see
the example above) a binary target variable is considered, where the share in a subgroup
can be compared to the share in the dataset in order to detect (exceptional) deviations.



More complex target concepts consider sets of target variables. Here, exceptional

model mining [2, 25, 47] focuses on more complex quality functions, considering com-
plex target models, like comparing regression models or graph structures. Essentially,
exceptional model mining tries to identify interesting patterns with respect to a local
model derived from a set of attributes, cf., [23, 24]. This can be extended, e. g., for
network analysis and (exceptional) graph mining, e. g., [38]. Below, we introduce and
define subgroup models (and patterns), as well as association rules more formally.

Domain Knowledge for Semantic Data Mining In many domains, a lot of (semantic)
domain knowledge is available in order to support reasoning processes. However, in
data mining, semantic knowledge is scarcely exploited so far. Domain knowledge is a
natural resource for knowledge-intensive data mining methods, e.g., [37,70], and can be
exploited for improving the quality of the data mining results significantly. Appropriate
domain knowledge can increase the representational expressiveness and also focus the
algorithm on the relevant patterns. Furthermore, for increasing the efficiency of the
search method, the search space can often be constrained, e.g., [9].

There are several approaches, which show how to effectively provide and include
domain knowledge into data mining approaches, e. g., [9, 22, 56, 57, 60, 64, 88] thus
supporting explicative data mining by providing semantic specifications. For modeling
expected relations for pattern discovery, for example, according methods are presented
in [7] utilizing Bayesian network formalizations. For relational data analysis approach,
also the comparison of hypotheses with a semantic data model using Bayesian tech-
niques (first order Markov chains) has been targeted in [11]. Furthermore, statistical
relational learning, e. g., [21, 65, 71] combines both probabilistic and complex rela-
tional learning approaches, in particular also enabling complex logic-based methods.
Such methods then enable powerful declarative approaches in order to provide domain
knowledge for data mining.

Easing Knowledge Acquisition Costs However, knowledge acquisition is often chal-
lenging and costly, a fact that is known as the so-called knowledge acquisition bottle-

neck. Thus, an important idea is to ease the knowledge acquisition by reusing existing
domain knowledge, i.e., already formalized knowledge that is contained in existing on-
tologies or knowledge bases. Furthermore, we aim to simplify the knowledge acqui-
sition process itself by providing knowledge concepts that are easy to model and to
comprehend.

We propose high-level knowledge, such as properties of ontological objects for de-
riving simpler constraint knowledge that can be directly included in the data mining
step, as discussed, e.g., in [8, 9]. Modeling such higher-level ontological knowledge,
i.e., properties and relations between domain concepts, is often easier for the domain
specialist, since it often corresponds to the mental model of the concrete domain. Be-
low, we outline simple specifications of domain knowledge, before we discuss more
complex modeling approaches including integrated knowledge graphs and statistical
relational learning approaches.



Subgroups and Association Rules Subgroup models [9, 41], often provided by con-
junctive rules, describe ’interesting’ subgroups of cases, e. g., "the subgroup of 16-20
year old men that own a sports car are more likely to pay high insurance rates than
the people in the reference population." Subgroup discovery [2, 40, 46, 94] is a pow-
erful method, e. g., for (data) exploration and descriptive induction, i. e., to obtain an
overview of the relations between a so-called target concept and a set of explaining
features. These features are represented by attribute/value assignments, i. e., they cor-
respond to binary features such as items known from association rule mining [1]. As
discussed below, in its simplest case the target concept is often represented by a binary
variable, but can also extend to more complex target concepts, e. g., considering sets of
variables, and their relations.

Formally, a database DB = (I, A) is given by a set of individuals I and a set
of attributes A. For each attribute a 2 A, a range dom(a) of values is defined. An
attribute/value assignment a = v, where a 2 A, v 2 dom(a), is called a feature. We
define the feature space V to be the (universal) set of all features.

Basic elements used in subgroup discovery are patterns and subgroups. Intuitively, a
pattern describes a subgroup, i. e., the subgroup consists of instances that are covered by
the respective pattern. It is easy to see, that a pattern describes a fixed set of instances
(subgroup), while a subgroup can also be described by different patterns, if there are
different options for covering the subgroup’ instances. In the following, we define these
concepts more formally, following an adapted notation of [12].

Definition 1. A (subgroup) pattern P is defined as a conjunction

P = s1 ^ s2 ^ · · · ^ sn

of (extended) features si ✓ V , which are then called selection expressions, where each

si selects a subset of the range dom(a) of an attribute a 2 A.

A selection expression s is thus a Boolean function I ! {0, 1} that is true if the
value of the corresponding attribute is contained in the respective subset of V for the
respective individual.

Definition 2. A subgroup (extension) IP := ext(P) := {i 2 I|P(i) = true} is the set

of all individuals which are covered by the pattern P .

The subgroup mentioned above, for example, is described by the relation between
the independent (explaining) variables (Sex = male, Age  20, Car = sports car). Fur-
thermore, there is a dependent (target) variable, i. e., Insurance Rate = high; this target
variable relates to the concept of interest used in subgroup discovery, which is utilized
to estimate the interestingness of a subgroup using a quality measure. This is captured
by the notion of a subgroup model described below.

In general, the applied quality measure can also be defined using a set of target
variables, or more complex models such as Bayesian networks or topological graph
structures which relates to the area of exceptional model mining [2, 25]. In the scope of
this paper and our simple example, we focus on simple binary target variables given by
(simple) features as defined above.



An association rule, e.g., [1], is given by a rule of the form PB ! PH , where
PB and PH are patterns; the rule body PB and the rule head PH specify sets of items.
For the insurance domain, for example, we can consider an association rule showing a
combination of potential risk factors for high insurance rates and accidents:

Sex = male ^ Age  20 ^ Car = sports car
! Insurance Rate = high ^ Accident Rate = high

A subgroup model is a special association rule, namely a horn clause P ! e, where P

is a pattern and the feature e 2 V is called the target variable. For subgroup discovery,
a fixed rule head is considered.

In general, the quality of an association rule is measured by its support and con-
fidence, and the data mining process searches for association rules with arbitray rule
heads and bodies, e. g., using the apriori algorithm [1]. For subgroup models there exist
various (more refined) quality measures, e.g., [2,40]: Since an arbitrary quality function
can be applied, the anti-monotony property of support used in association rule mining
cannot be utilized in the general case.

The applied quality function can also combine the difference of the confidence and
the apriori probability of the rule head with the size of the subgroup. Since mining for
interesting subgroup patterns is more complicated, usually a fixed, atomic rule head is
given as input to the knowledge discovery process.

Declarative Specifications of Domain Knowledge As we have presented in [12], a
prerequisite for the successful application and exploitation of domain knowledge is
given by a concise declarative specification of the domain knowledge. A concise spec-
ification also provides for better documentation, extendability, and standardization. Be-
low, we summarize the approaches proposed in [12] and provide examples of its instan-
tiation in the field of pattern mining as outlined above.

In contrast to existing approaches, e.g., [70,95] we focus on domain knowledge that
can be easily declared in symbolic form. Furthermore, the presented approach features
the ability of deriving simpler low-level knowledge (constraints) from high-level onto-
logical knowledge. In general, the search space considered by the data mining methods
can be significantly reduced by shrinking the value ranges of the attributes. Further-
more, the search can often be focused if only meaningful values are taken into account.
This usually depends on the considered ontological domain.

The considered classes of domain knowledge include ontological knowledge and
(derived) constraint knowledge, as a subset of the domain knowledge described in [8,9].
Figure 1 shows the knowledge hierarchy proposed in [12], from the two knowledge
classes to the specific types, and the objects they apply to.

Prolog-based Specifications For specifying the properties and relations of the con-
cepts contained in the domain ontology, we utilize Prolog rules as a compact and ver-
satile representation, cf., [12]. Using these rules, we obtain a suitable representation
formalism for ontological knowledge. Using these, we can automatically derive ad-hoc
relations between ontological concepts using (simple) rules.
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Fig. 1. Hierarchy of (abstract) knowledge classes and specific types, cf., [12].

Essentially, the declarative features of Prolog allow simple and transparent knowl-
edge specification, integration and advancement: Depending on the experience of the
domain specialist, new knowledge can be added extending the existing knowledge, new
relations can be introduced, and furthermore additional advanced features like deriva-
tion rules can be directly implemented using Prolog. In addition, using domain specific
languages built on top, e. g., [75, 85] the declarativity can even be further enhanced,
while also providing an even simpler interface to the domain specialist. Then, this both
provides for a concise specification and also comprehensive overview, documentation
and summary for the domain specialist, which is typically easy to comprehend, to in-
terpret and to extend.

Below, we focus on selected examples proposed in [12]. For brevity, we focus on
simple examples considering attributes, e. g., using attribute weights, and attribute in-
clusion/exclusion constraints, cf., Figure 1. With these, attributes can be selected (or ex-
cluded) such that they do not occur in patterns constructed by the applied pattern mining
method. In that way, for example, exclusion constraints restrict the pattern space. Also,
combination constraints inhibit the examination of specified sets of concepts. In that
way, they help to find more understandable results. For increasing the representational
expressiveness and thus the interpretability of patterns, modifications of the considered
attributes (and their combinations) can be utilized to make the discovered patterns and
models more meaningful for the user. It is easy to see, that the specifications regard-
ing combinations of attributes, and their explicit exlusion and inclusion directly map to
attribute values, and features, respectively. Then, regarding the presented pattern min-
ing methods the format of the considered patterns, and their “building blocks” can be
conveniently

Examples. As outlined above, we summarize some simple examples regarding the
declarative specifications presented in [12], for which we refer to for an in-depth de-
scription and detailed discussion.



As a first example, partition class information, provides semantically distinct groups
of attributes. These disjoint subsets usually correspond to certain problem areas of the
application domain. E.g., in the medical domain such partitions are representing dif-
ferent organ systems like liver, kidney, pancreas, stomach, stomach, and intestine. For
each organ system a list of attributes is given:

a t t r i b u t e _ p a r t i t i o n ( i n n e r _ o r g a n s , [
[ f a t t y _ l i v e r , l i v e r _ c i r r h o s i s , . . . ] ,
[ r e n a l _ f a i l u r e , n e p h r i t i s , . . . ] , . . . ] ) .

Furthermore, attribute weights denote the relative importance of attributes, and are
a common extension for knowledge-based systems [14]. In the car insurance domain,
for example, we can state that the attribute Age is more important than the attribute Car

Color, since its assigned weight is higher:

w e ig h t ( age , 4 ) .
w e ig h t ( c a r _ c o l o r , 1 ) .

Deriving Constraints. We can construct attribute exclusion constraints using attribute
weights to filter the set of relevant attributes by a weight threshold or by subsets of the
weight space.

d s d k _ c o n s t r a i n t ( e x c l u d e ( a t t r i b u t e ) , A) :�
w e ig h t (A, N) , N =< 1 .

d s d k _ c o n s t r a i n t ( i n c l u d e ( a t t r i b u t e ) , A) :�
w e ig h t (A, N) , N > 1 .

Partition class information can be used to infer attribute combination constraints in
order to prevent the combination of individual attributes that are contained in separate
partition classes. Alternatively, inverse constraints can also be derived, e.g., to specifi-
cally investigate inter-organ relations in the medical domain.

d s d k _ c o n s t r a i n t ( e x c l u d e ( a t t r i b u t e _ p a i r ) , [ A1 , A2 ] ) :�
a t t r i b u t e _ p a r t i t i o n ( _ , P ) ,
member ( As1 , P ) , member ( As2 , P ) , As1 \= As2 ,
member ( A1 , As1 ) , member ( A2 , As2 ) .

Finally, we can use a generic Prolog rule for detecting conflicts w.r.t. these rules and
the derived knowledge (automatic verification):

d s d k _ c o n s t r a i n t ( e r r o r ( i n c l u d e _ e x c l u d e (X) , Y) :�
d s d k _ c o n s t r a i n t ( i n c l u d e (X) , Y) ,
d s d k _ c o n s t r a i n t ( e x c l u d e (X) , Y ) .
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Fig. 2. Overview on a framework for mixed-initiative feature engineering and data mining using
knowledge graphs, cf., [13] for a detailed discussion.

Knowledge Graphs A further effective approach for modeling explication knowledge
is given by constructing a knowledge graph cf., e. g., [16,36]: Here, the data is integrated
into a comprehensive knowledge structure capturing the relations between concepts
and their properties in an explicit way, cf., [16, 36, 72, 92]. Then, this structure can be
exploited in order to facilitate data mining, e. g., by applying ontologies in the data
mining step. However, so far the approaches only apply a “shallow” coupling, that is,
typically there is no deep integration of knowledge graph and mining approach.

First approaches for integrating knowledge graphs, i. e., based on ontologies and a
set of instance data has been proposed in the area of semantic data mining [66, 87, 88].
In [87, 88] an ontology is used for instantiating pattern elements. Compared to the ap-
proach making use of declarative specifications discussed above, this makes of the re-
lations modeled in the ontology, in order to connect different concepts. However, com-
pared to the logic-based approach using the versatile Prolog representation, no simple
specification/declaration of further processing knowledge like inference and derivation
rules is possible. Likewise, in [66] mainly the instantiation of the knowledge elements
is utilized in the mining process.

Typically, the knowledge graph mainly focuses on the structuring of the concepts
and their relations, while specific modeling tasks, as well as data characteristics (e. g.,
distributions, correlations) are typically not captured. [13] presents a mixed-initiative
approach, for semantic feature engineering using a knowledge graph. In a semi-automatic
process, the knowledge graph is engineered and refined. Finally, the engineered features
are provided for data mining. A similar approach is applied in [6]. Here, data from het-
erogeneous data sources is integrated into a knowledge graph, which then provides the
basis for data mining by supporting feature selection, pattern mining, and interpreta-
tion in an integrated way. In particular, the constructed knowledge graph serves as a
data integration and exploration mechanism, such that the modeled relations and addi-
tional information about the contained entities can be utilized by advanced graph mining
methods, that work on such attributed graphs, e. g., [11].

Also, the obtained knowledge graph itself can be applied for providing additional
context regarding the results of the data mining step, e. g., in order to provide explana-
tions [10, 83] as discussed below in more detail.



2.3 Explicative and Explanation-Aware Data Mining

The term explanation has been widely investigated in different disciplines. In this con-
text, explanation-aware approaches have been a prominent research direction in artifi-
cial intelligence and data science, e. g., [10, 44, 73, 91].

On Explanation Knowing about kinds of explanations helps with structuring available
knowledge and deciding which knowledge further is required for exhibiting certain ex-
planation capabilities. In [74], Roth-Berghofer and Cassens outline the combination of
goals and kinds of explanations, in the context of case-based reasoning. In [80], several
useful kinds of explanations are discussed in the context of knowledge-based systems,
referring to concept explanations, purpose explanations, why explanations, action ex-

planations, and how explanations, cf., [10, 80] for a detailed discussion.
In the data mining context, concept, why and how explanations are then particularly

useful, since they provide insights into knowledge elements utilized in modeling, and
also in the model itself by explicating model mechanisms and outcomes. Explanation
goals, on the other hand, help to focus on user needs and expectations towards expla-
nations. They aim at addressing to understand what and when the system has to be able
to explain (something). Sørmo et al. [77] suggest a set of explanation goals addressing
transparency, justification, relevance, conceptualisation, and learning.

Explicative Modeling Recently, the concept of transparent and explainable models
has also gained a strong focus and momentum in the data mining and machine learning
community, e. g., [15,50,68], also see [32] for a survey on explaining black box models.
Several methods focus on specific model types, e. g., tree-based models [84] or pattern-
based approaches [26] for getting a better understanding of where a classifier does not
work using local pattern mining techniques. Here, also methods integrating associative
classification, i. e., based utilizing a set of (class) association rules [5, 49, 53, 81] can be
applied for obtaining interpretable models for explicative data mining. While the meth-
ods sketched above focus on specific modeling methods, there are several approaches
for model agnostic explanation methods, e. g., [67, 69]. In particular, general directions
are given by methods considering counterfactual explanation, e. g., [55, 90]. Further-
more, other general methods consider data perturbation and randomization techniques
as well as interaction analysis methods, e. g., [33–35].

In general, for explicative data mining, the transparency of the respective patterns
and models and their explanation-awareness is an important factor for supporting the
user. In particular, if explanations for the complete models, or parts thereof can be
provided, then the acceptance of the patterns and models, as well as their assessment
and evaluation can often be significantly improved, e. g., [10].

Explanation-Aware Data Mining The generation of explanations in the general data
mining process is described in [10], the mining and analysis continuum of explanation.
In particular, if explanations for the complete models, or parts thereof can be provided,
then the acceptance can often be significantly improved, e. g., [10]. As put forward
and described in the Mining and Analysis Continuum of Explaining [10] appropriate



data representation and abstraction can facilitate explanation-awareness, also support-
ing and featuring different analysis and presentation levels. Then, data and models can
be inspected at different levels of detail, from aggregated representations to the original
ones in drill-down fashion combined with appropriate explanation capabilities. Typi-
cally, the user starts on an aggregated view that can be refined subsequently, for getting
insights into the relations in the data and the constructed model, respectively. Here, dif-
ferent dimensions provide distinct view on the explanation space. Figure 3 provides an
overview on the explanation framework and its dimensions. For a detailed discussion,
we refer to [10].

In [4], for example, we consider symbolic representations, i. e., decision tree models
and sequence representations of time series given by the symbolic aggregate approxi-
mation (SAX) [51, 52] as a convenient data abstraction. In a general process model for
explanation-aware data analytics, we investigate this abstraction together with a deci-
sion tree model in the context of feature selection and assessment, and present a case
study in a petro-chemical production context.

Presentation styles

Knowledge containers

Ontological knowledge 
(Vocabulary) Pattern knowledgeInstance knowledge Context knowledge

Transparency

Justification

Relevance

Learning

Explanation Goals

Purpose explanation

How explanation

Why explanation

Concept explanation

Action explanation

Kinds of explanation Level of Details

Privacy

Conceptualisation

Fig. 3. Overview on the explanation dimensions of the mining and analysis continuum of expla-
nation cf., [10].

Some recent approaches for introducing declarativity in explanation-aware approaches,
include the knowledge-graph-based data mining approach outlined in [6] which is de-
tailed in [11] regarding the applied pattern mining techniques. Furthermore, linked open
data inspired approaches for interpreting pattern-based models, e. g., [62, 63] and also
explanations using linked open data for recommender systems [61] are first promising
starting points in that context.



3 Conclusions

In this paper, we have provided an overview on declarative aspects in explicative data
mining, targeting the overall goal of computational sensemaking. We have discussed
the modeling of domain knowledge as well as extended knowledge structuring using
knowledge graphs. Furthermore, we have summarized the paradigm of explicative data
mining providing interpretable, transparent and explainable approaches.

We have introduced explicative data mining as a comprehensive paradigm. Sim-
ilar to the philosopical process of explication cf., [19, 54] which aims to make the
implicit explicit, explicative data mining aims to model, describe and explain the un-
derlying structure in the data. In that way, this paves the way to computational sense-

making which focuses on computational methods and models for “making sense” of
complex data and information. Here, the goal is to understand structures and processes
and to provide intelligent decision support through analysis and (semantic) interpreta-
tion. Therefore, explicative data mining coupled with declarative approaches is crucial
since this can then both provide the necessary means for comprehensive analysis and
giving meaning to models and results, respectively.
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