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Abstract—The Internet of Things as well as smart devices
enable the capture of multi-modal social interaction data at large-
scale. For understanding the behavior of the involved actors,
as well as to enable structural modeling, the analysis of the
according social interaction networks is essential. In contrast
to standard approaches that capture social network data using
questionaires, this paper describes an analysis at larger scale
using sensor data collected by Radio Frequency Identification
(RFID) tags. We complement it by informant self-report data
obtained using surveys. We focus on the social network of
a students’ freshman week, and investigate research questions
concerning the communication behavior and structure, gender
homophily, and inter-relations of sensor-based (RFID) and self-
report social networks.

I. INTRODUCTION

With the emergence of the Internet of Things (IoT) the
collection of multi-modal social interaction data is enabled
at unprecedented scale. For providing insights into human
behavior, the analysis of social interaction structures, patterns,
and their dynamics is an important task. This is enabled
by ubiquitous and mobile devices, sensor networks, and in
particular using wearable sensors, cf. [1]–[4].

In this paper, an adapted and substantially extended re-
vision of [5], we present an analysis of social interactions
on networks of face-to-face proximity complemented by self-
report data in the context of a students’ freshman week.
This combination enlarges the focus on individual attributes
and interrelationships due to social processes [6]. We ob-
served a set of freshman (psychology) students during their
first week at university. We collected two types of network
data: Person-to-person (face-to-face) interaction using (1) self-
report questionnaires and (2) active RFID tags with proximity
sensing, cf. [2]. Such a combined content-based analysis of
the different networks can provide more general and more
reliable understanding and insight into the actual interactions
and their subjective motivation. We focus on structural and
dynamic behavioral aspects as well as gender homophily.
Furthermore, we investigate the relation of social interaction
networks of face-to-face (F2F) proximity and networks based
on self-reports (SRN), extending the analysis in [7]. The
applied RFID tags were developed by the Sociopatterns1

1http://www.sociopatterns.org

consortium. They provide the unique feature of measuring
face-to-face proximity interactions [2] that can be used for
constructing a social interaction network (cf. Section IV for
more details). We consider F2F proximity as a proxy for
actual face-to-face communication between participants. On
the students’ freshman week, we can study group interaction
and dynamics at large scale, since the event took place on five
consecutive days. Our insights can provide important clues for
the organization and impact of such an introductory week –
one of its major goals is networking and establishing contacts
between students, for facilitating the start of studies, students’
collaboration and their benefits of one another.
Our analysis focuses on three research questions:

1) Can we observe distinctive structural and behavioral pat-
terns in the face-to-face proximity network with respect
to the freshman week?

2) Can we identify gender homophily effects on F2F?
3) How is the F2F interaction network structurally associ-

ated with the multiple SRNs?

Summarizing our results, we show that there are distinctive
structural and behavioral patterns in the face-to-face proximity
network corresponding to the activities of the freshman week.
In particular, we analyze the evolution of the contact structure,
as well as the individual connectivity and densification of the
network according to the phases of the event. Furthermore, we
show the influence of gender homophily on the face-to-face
proximity activity. Finally, our results also show a correlation
between F2F and SRN. These results indicate that there
are relations between the different networks, also concerning
different types of communication. However, F2F and SRN
are still complementary and should both be considered for
analyzing the contact network data.

The rest of the paper is structured as follows: Section II dis-
cusses related work. After that, Section III briefly summarizes
basic definitions and concepts of graph and network theory
used throughout the paper. Next, Section IV summarizes the
applied method; we describe the data collection setup, the
collected datasets, and discuss data validity. Then, Section V
presents the analysis results and discusses these in detail. After
that, Section VI discusses limitations of our study. Finally,
Section VII concludes with a summary and outlines interesting
directions for future work.978-1- 5386-1208-8/18/$31.00 c⃝ 2018 IEEE
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II. RELATED WORK

The analysis of human contact patterns and their underlying
structure is an interesting and challenging task. An analysis,
e. g., using proximity information collected by bluetooth de-
vices as a proxy for human proximity is presented in [8].
However, given the range of interaction of bluetooth devices,
the detected proximity does not necessarily correspond to face-
to-face contacts [2].

The SocioPatterns collaboration developed an infrastructure
that detects close-range and face-to-face proximity (1-1.5
meters) of individuals wearing proximity tags with a temporal
resolution of 20 seconds [9]. This infrastructure has been
deployed in various environments for studying the dynamics of
human contacts, e. g., conferences [9]–[11], schools [12], [13],
museums [14] and workplaces [15], [16]. For the latter, [15],
[16] also analyze RFID and survey data. Similarly, [10]
analyzes the interactions and dynamics of the behavior of
participants at conferences; the connection between research
interests, roles and academic jobs of conference attendees is
further analyzed in [11]. The Sociopattern framework also
provides the technical basis of our Conferator system [17], [18]
– a social conference guidance system. Another approach for
observing human face-to-face proximity and communication
is the Sociometric Badge [19].2 It records more details of the
social interaction, but requires significantly larger devices.

The analysis of interaction and groups, and their evolu-
tion, respectively, are prominent topics in social sciences,
e. g., [20]–[25]. The temporal evolution of contact networks
is analyzed, for example, in [26]. Also, the evolution of
social groups has been investigated in a community-based
analysis [27] using bibliographic and call-detail records. Fur-
thermore, the analysis of link relations and their prediction
is investigated in, e. g., [28]–[30]. Overall, social interaction
networks in online and offline contexts, important features, as
well as methods for analysis are summarized in [31].

In contrast to the approaches summarized above, this paper
focuses on networks of face-to-face proximity (F2F) at a
students’ freshman week, combining RFID-based networks
of a newly composed group with networks obtained by self-
reports (SRN). To the best of the authors’ knowledge, this is
the first time that such an analysis has been performed using
real-world networks of face-to-face proximity of a newly com-
posed group together with the corresponding questionaire data.
Specifically, we analyze patterns and interaction dynamics in
those networks, investigate gender homophily and assess the
relations between F2F and SRN.

III. BACKGROUND

Below, we summarize basic definitions and concepts of
graph and network theory used throughout the paper. For more
details, we refer to standard literature, e. g., [32]–[34]. For
instantiations, we used the igraph and sna software packages
of the R platform for statistical computing.3

2http://hd.media.mit.edu/badges
3http://www.r-project.org

A. Networks & Graphs

An (undirected) graph G = (V,E) is an ordered pair,
consisting of a finite set V containing the vertices (or nodes),
and a set E of edges (or connections) between the vertices,
with n := |V |, m := |E|. In a directed graph, E denotes a
subset of V × V . For simplicity, we write (u, v) ∈ E in both
cases for an edge belonging to E. We represent a (social)
network as a graph, and use the terms synonymously in the
following. A weighted graph is a graph G = (V,E) together
with a function w : E → R+ that assigns a positive weight to
each edge. For the adjacency matrix A ∈ Rn×n with n = |V |
holds Aij = 1 (Aij = w(i, j)) iff (i, j) ∈ E for i, j ∈ V ,
assuming a bijection from 1, . . . , n to V .

The degree deg(i) of a node i in a network is the number of
connections it has to other nodes, i. e., deg(i) := |{j |Aij =
1}| . In weighted networks, we complement the degree of a
node i by its strength s(i) =

∑
j Aij , i. e., the sum of the

weights of the attached edges. The density d of a graph is the
propertion of the set of all possible edges that are actually
present: for undirected graphs, d := 2m

n(n−1) , for directed
graphs d := m

n(n−1) . The clustering coefficient (or transitivity)
Cv [35] for a vertex v ∈ V in a graph G = (V,E) is defined as
the fraction of possible links among v’s neighbors which are
contained in E. It quantifies how densely the neighborhood of
a node is connected. The graph’s clustering coefficient C is
given by the mean of all node’s clustering coefficients. A path

v0 →G vn of length n in a graph G is a sequence v0, . . . , vn
of nodes with n ≥ 1 and (vi, vi+1) ∈ E for i = 0, . . . , n− 1.
A shortest path between nodes u and v is a path u →G v
of minimal length. The diameter dia(G) of a graph G is
the largest shortest path distance between any pair of nodes
contained in G. A strongly connected component of G is a
subset U ⊆ V , such that u →G∗ v exists for every u, v ∈ U . A
weakly connected component is defined accordingly, ignoring
the direction of edges.

B. Centrality Measures

In network theory, the centrality of a node v ∈ V in a
network G is usually an indication of how important the vertex
is [34]. The betweenness centrality bet measures the number
of shortest paths of all node pairs that go through a specific
node. bet(v) =

∑
s ̸=v ̸=t∈V

σst(v)
σst

. Hereby, σst denotes the
number of shortest paths between s and t and σst(v) is the
number of shortest paths between s and t passing through v.
Thus, a vertex has a high betweenness centrality if it can be
found on many shortest paths between other vertex pairs.

The closeness centrality clos considers the length of these
shortest paths. Then, the shorter its shortest path length to all
other reachable nodes, the higher a vertex ranks: clos(v) =

1∑
t∈V \v dG(v,t) . dG(v, t) denotes hereby the geodesic distance

(shortest path) between the vertices v and t.
The eigenvector centrality eig of a node is an important

measure of its influence. Intuitively, a node is central, if it
has many central neighbors. The eigenvector centrality eig(v)
of node v is defined as eig(v) = λ

∑
{u,v}∈E eig(u) , where

λ ∈ R is a constant.



C. Comparing Graph Structures and Rankings

Besides standard statistical measures of correlation and
ranking, e. g., [36], we apply the quadradic assignment pro-
cedure [37] (QAP) for comparing network structures. For
comparing two graphs G1 and G2, it estimates the correlation
of the respective adjacency matrices [37] and tests a given
graph level statistic, e. g., the graph covariance, against a
QAP null hypothesis. QAP compares the observed graph
correlation of (G1, G2) to the distribution of the respective
resulting correlation scores obtained on repeated random row
and column permutations of the adjacency matrix of G2.

Furthermore, we apply Cohen’s Kappa [38] for comparing
directed network structures denoting the agreement on their
adjacency matrices. That is, we consider each directed link as
a rating of an observer, depending on the respective direction,
cf. [7]. We define a n×n confusion matrix F ∈ Rn×n; an entry
Fij defines the number of cases that the first observer assigned
a particular case to category i and the second observer to
category j. Then, Fjj measures the number of agreements for
category j. The observed (proportional) agreement is given by
Po := 1

N

∑k
j=1 Fjj , and the expected proportional agreement

by Pe := 1
N2

∑k
i=1 rici, where ri :=

∑k
j=1 Fij and cj =

∑k
i=1 Fij are the row and column totals for categories i and

j, respectively. Then, the final Cohen’s Kappa measure is the
following: κ = Po−Pe

1−Pe
.

IV. METHOD

Below, we describe the method applied for observing social
interactions. We discuss context, setup, and describe the ap-
plied dataset. Finally, we discuss data collection and validity.

A. Context and Setup

We examined the first week of freshman students at a
psychology degree program. This freshman week is organized
as a special course (five days) before the regular courses start,
with a total attendance time of about 25 hours. The course
aims to provide the new students with relevant information
about the university, the degree program, and its contents.
Furthermore, professors and other lecturers, the department
chairs, and important committees are introduced. In particular,
this week offers a major opportunity to become acquainted
with fellow students. For the freshman week that we analyze
in the context of this paper, 75% of the time (i. e., about
19 hours over five days) the events took place in a separate
facility, which was suitable for the intended data collection
and technically equipped for this purpose.

The structure of the freshman week included organized
plenary sessions and ’free sessions’. The first day consisted
of a general introduction (plenary) and a special introductory
(free) session helping students to get to know each other. In
the following days, plenary sessions mixed with ’free sessions’
took place. Figure 1 shows the contact activity during the
freshman week. In particular, on the first day (Monday) the
students got welcomed, spent time to get to know one another
and got the relevant overall information about the studies. On
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Fig. 1. Overview on the contact behavior: Contact count (per second) during
the freshman week.

Tuesday students were introduced to the various departments,
which was continued on Wednesday. On Thursday, students
were given information about possible post-graduate occupa-
tional areas. Finally, on Friday the students got information
about the exams and chose the cources for their first semester.
Further, they got much time to interact freely during an one
hour lunch buffet. As shown in Figure 1, the time spent in the
equipped accomodation varied over the five consecutive days.

B. Dataset

The dataset contains data from 77 students (60 females and
17 males) attending the introductory freshman week. We asked
each student to wear an active RFID tag while they were
staying at the facility. In total, the dataset contains 16780
proximity contacts, i. e., all detected contacts during the indoor
activities including breaks and intervening periods. Moreover,
also close smoking areas, the garden and the outer entrance
area could be reached as well.

Using the F2F proximity networks, we generated a set of
undirected networks F2F (i) using a minimal contact duration
i in order to distinguish weaker and stronger ties. An edge
{u, v} is created, iff a face-to-face contact with a duration of
at least i seconds among participants u and v was detected
(i ∈ {0, 60, 180, 300}. While in general topical importance in
conversation varies, e. g., [39], we utilize the methodological
approach using increasing minimal contacts lengths for focus-
ing on stronger ties, cf. [10], [12]: As presented, e. g., in [10],
[11] longer contacts tend to correlate with more homophily-
induced conversations. Furthermore, the ’filter’ thresholds
were selected acording to the thresholds used for detecting
the end of a contact, and on the empirical fact that there



TABLE I
HIGH LEVEL STATISTICS FOR NETWORKS F2F (i) OF FACE-TO-FACE PROXIMITY WITH A MINIMAL CONTACT (DURATION) THRESHOLD i, COLLECTED

USING THE RFID DEVICES. STATISTICS ARE DETERMINED ACCORDING TO THE AGGREGATED CONTACT LENGTH AND MINIMAL INDIVIDUAL CONTACT
THRESHOLDS i: NUMBER OF NODES AND EDGES, AVERAGE DEGREE, AVERAGE STRENGTH (WEIGHTED DEGREE), AVERAGE PATH LENGTH APL,

DIAMETER dia , DENSITY d , CLUSTERING COEFFICIENT C , AVERAGE BETWEENNESS, EIGENVECTOR AND CLOSENESS CENTRALITIES, NUMBER AND SIZE
OF THE LARGEST WEAKLY CONNECTED COMPONENT #CC AND |CC|max , RESPECTIVELY.

Network |V | |E| ∅deg. ∅str. APL dia d C ∅bet. ∅eig. ∅clos. #CC |CC|max

F2F (0) 77 1622 42.13 67286.55 1.45 3 0.55 0.65 48.89 0.14 9.6 · 10−05 1 77
F2F (60) 77 1176 30.55 60613.71 1.61 3 0.40 0.51 45.16 0.12 3.8 · 10−05 1 77
F2F (180) 76 592 15.58 44404.00 1.90 3 0.21 0.33 53.68 0.10 1.1 · 10−05 1 76
F2F (300) 75 374 9.97 33882.88 2.20 4 0.13 0.27 68.92 0.08 5.8 · 10−06 1 75

were breaks of about 300 seconds between longer items of
the schedule of the freshman week. For each edge {u, v},
we determine a weight according to the sum of all according
contact durations between u and v. Note that we chose to
aggregate contacts over the whole event (in contrast, for
example, to the procedure in [14]), due to the total short
duration of the observed time during the event. Table I contains
summary statistics for F2F (i), (i ∈ {0, 60, 180, 300}.

C. Collection and Validity of RFID data

The RFID deployment at the freshman week utilized a
variant of the MYGROUP [18] system for data collection.
Participants volunteered to wear active RFID proximity tags,
which can sense and log the close-range face-to-face proximity
of individuals wearing them. During the freshman week,
participants then integrated the RFID tags into their name tags.
This setup allowed us to map out time-resolved networks of
face-to-face contacts among the attendees.

A proximity tag sends out two types of radio packets:
Proximity-sensing signals and tracking signals. Proximity ra-
dio packets are emitted at very low power and their exchange
between two devices is used as a proxy for the close-range
proximity of the individuals wearing them. Packet exchange
is only possible when the devices are in close enough con-
tact to each other (1-1.5 meters). The human body acts as
an radio frequency shield at the carrier frequency used for
communication [9]. As in [9], we record a face-to-face contact
when the length of a contact is at least 20 seconds. A contact
ends when the proximity tags do not detect each other for
more than 60 seconds. The tracking signals are received by
antennas of RFID readers installed at fixed positions in the
facility environment. These tracking signals are then used to
relay proximity information to a central server.

With respect to the accuracy of the applied RFID tags,
we refer to the results of Cattuto et al. [9] who confirm
(1) that if the tags are worn on the chest, then very few false
positive contacts are observed, (2) face-to-face proximity can
be observed with a probability of over 99% using the interval
of 20 seconds for a minimal contact duration. This is in the
range of human inter-annotator-agreement [40]. Compared to
their experiments, our setup is even more conservative since
we use a threshold of 60 seconds when determining the end of
a contact. Furthermore, it is important to note that we focus on
face-to-face proximity as a proxy for actual communication;

due to the applied thresholds (see above), face-to-face proxim-
ity situations which include episodes that are, e. g., briefly side-
by-side or over the shoulder, can typically also be captured.

D. Collection and Validity of Self-Report Data

At the very end of the week we captured all the self-reported
communication network ties: Each student was handed out
exhaustive name lists. Then, we asked the students to select
those fellow students, with whom (1) they interacted much
during the introductory course, (2) they would like to cooper-
ate, (3) they would ask for advice (mentoring). Using this data
we modeled according matrices denoting directed networks
with links from respondents (rows) to persons to be selected
(columns).

Although the RFID-data contain almost all interactions tak-
ing place at the equipped venue, the self-reports also contain
the times that could not be captured (e.g., the evenings in
a restaurant), cf. [7]. Of course, communication and social
interaction self-reports underly certain biases, cf. [41]–[43].
When asking the students to mark their fellows on an ex-
haustive name list, whom they communicated much during
the introductory week, we are faced with several cognitive
filters. The understanding of "much", memory effects and
the emotional weighting of contacts influence the informant
data. However, these cognitive filters are very relevant [7],
[42], [44], as they capture the perceived importance of a
tie. Therefore, we explicitly interpret the survey data as the
interaction network as perceived by the students.

V. ANALYSIS

In the following we present the analysis results focussing
on the three research questions outlined above and discuss the
results in detail. In particular, we investigate

1) structural and behavioral patterns of F2F,
2) aspects of gender homophily of F2F, and
3) structural associations between F2F and SRN.

A. Structural Patterns - Contact Network

We first consider structural aspects of the contact network.
After that, we investigate homophily effects.

1) Distributional Contact and Degree Patterns: Table I
shows that the contact network is well connected, with a
rather low diameter (d = 3). As expected, the density of the
network is reduced with an increasing minimal contact (dura-
tion) threshold i, while the diameter remains relatively stable.
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Fig. 2. Aggregated contact lengths for the networks F2F (i), i ∈ {0, 60, 180, 300} seconds.
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Fig. 3. Degree distributions for the networks F2F (i), i ∈ {0, 60, 180, 300} seconds.

Furthermore, we observe an increasing average betweenness
centrality for longer conversations, while the eigenvector cen-
trality is slightly decreasing. Considering F2F (300) the aver-
age degree is similar to the value of the self-report networks,
see Table IV, which already indicates the impact of longer
contacts. For increasing minimal conversation thresholds, the
average degree is decreasing which can be explained by more
focused conversations. This is also in line with the findings
of [12], [45] on friendship network structures, group sizes and
respective levels of intimacy.

Figures 2 and 3 showing the cumulative aggregated con-
tact length and degree distributions depict these patterns in
more detail. The contact length distribution follows a typical
long-tailed distribution similar to those observed at confer-
ences [10], [11] – with an increasing minimal contact threshold
we observe a shift focusing on the longer conversations.
Also, the degree distributions show that an increasing minimal
contact threshold helps to select the more “active” participants
with respect to a set of diverse contacts, indicated by medium
to high degree nodes.

Concerning the degree distribution, we furthermore investi-
gated the trend between the strength and the degree of a node,
measured by the average strength s(k) of nodes of degree k in
comparison to the degree (k). As described in [26], typically a
linear dependency of the average strength of nodes of a certain
degree with the average link weight and the degree is expected.
Then, a deviation of the trends of the lines shown in Figure 4
indicates some interesting trends: We observe increasing trends
for the strength/degree lines that are more pronounced for the
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Fig. 4. Strength/degree proportion.

networks with lower thresholds, while the 300s network is
almost converging to a horizontal trend line. This indicates
the importance of certain “super-spreader” nodes with a large
degree, cf. [26], that seem to be relatively important for shorter
conversations: The increasing trends are stronger for smaller
minimum contact thresholds, while they tend to decrease
slightly in the network with the largest minimum contact



TABLE II
AGGREGATED CONTACT LENGTH STATISTICS AND NETWORK PROPERTIES

FOR NETWORKS F2F (i); CONTACTS FOR female (f) AND male (m)
PARTICIPANTS: AVERAGE DEGREE, AVERAGE STRENGTH, AVERAGE

BETWEENNESS, EIGENVECTOR AND CLOSENESS CENTRALITIES,
RESPECTIVELY.

Network ∅deg. ∅str. ∅bet. ∅eig. ∅clos.
F2F(0, f) 43.12 71084.70 49.81 0.16 9.6 · 10−05

F2F(0,m) 38.65 53881.30 45.65 0.06 9.5 · 10−05

F2F(60, f) 31.43 64244.57 40.30 0.15 3.8 · 10−05

F2F(60,m) 27.41 47798.94 62.38 0.05 3.8 · 10−05

F2F(180, f) 16.15 46942.93 59.00 0.12 1.1 · 10−05

F2F(180,m) 13.40 34883.00 33.80 0.02 1.1 · 10−05

F2F(300, f) 10.05 35384.07 67.17 0.10 0.6 · 10−05

F2F(300,m) 9.67 27878.13 75.93 0.01 0.6 · 10−05

threshold (300s). This is also in line with the observation of
the decreasing degree distributions for higher thresholds. A
possible explanation for these findings concerns the spread of
small talk (lower thresholds) in the social interaction network,
while more meaningful (longer) conversations are more evenly
distributed accross the nodes (higher thresholds). Such super-
spreader nodes are rather important in the context of the
freshman week for establishing initial connections between
participants. A detailed investigation of their descriptive char-
acteristics using SRN and additional information is therefore
one major point of future work.
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Fig. 5. Aggregated contact lengths for the contact networks between female
(f) and male (m) participants.

2) Homophily Effects: In the following, we investigate
gender-related differences in the contact networks. We fo-
cused on gender, because it is a very salient attribute in
the context of examining psychology freshman in Germany.
However, attributes such as age and ethnicity can influence
the choice of interaction partners as well. Though, for our
sample, we found age and ethnicity to be not varying very

much. Table II shows network statistics for a set of aggregated
contact networks contructed according to minimum contact
thresholds as described above. The degree values of the
larger group (females) are always larger than the co-group
(males). This is consistent accross the networks induced by
different minimal conversation thresholds, and also holds for
the different strengths. This can already be regarded as a weak
indicator of gender-related differences.

Figure 5 shows the aggregated cumulative contact lengths
distributions between female and male participants. As shown
in the figure, mixed-gender edges tend to correspond to
shorter aggregated contacts compared to interactions between
individuals of the same gender - intra-group communication
is more frequent (red and black lines) compared to inter-
group communication (blue line). Overall, the observations
shown in Figure 5 confirm the trends of [12] in a new
context: The results indicate, that the aggregated contacts are
broadly distributed – there is no typical contact duration for a
specific type of contact, and no characteristic time scale can
be determined.

Table III shows further network statistics for female -
female, female - male, and male - male contacts. As shown in
the table, the intra-group networks are much more dense than
the inter-group network, while the betweenness centrality in
the inter-group network is the highest. A closer look reveals,
that the betweenness values are rather unevenly distributed.
There are many nodes with a betweenness value of zero
(exclusively females), while there are also many with extreme
values (e.g., betweenness > 100), a group that is dominated by
male participants. This can be explained by the bi-partite graph
structure and the smaller share of male participants which then
act as important bridges in the graph.

In order to ground the statistical analysis further, we in-
vestigated the empirical contact distributions following the
approach proposed in [12]: We compare the empirically de-
termined contact ratios to a null model constructed by graphs
such that the probability of an edge connecting two nodes is
independent of the genders of the nodes, in order to assess
the probability that the empirically observed contact networks
is generated from such a network structure. For obtaining
the null-model values and according confidence intervals we
basically apply the approach presented in [46] for generating a
set of random networks by rewiring the original one. Figure 6
shows the empirical values of the fraction of edges between
female - female (ff), female - male (fm), and male - male (mm)
participants, in comparison to the null-model as discussed
above. The null model plot for each network covers the 95%
confidence interval.

As can be observed from Figure 6, we can reject the null
hypothesis of gender independence at the 5% confidence level:
The communication edges are not gender-independent, since
none of the empirical values fit with the 95% confidence
interval of the null models. In line with this observation, the
ratio of edges for female participants is always above the
values obtained from the null model, as well as the edge
ratio of males. Conforming to the analysis results discussed



TABLE III
AGGREGATED CONTACT LENGTH STATISTICS AND NETWORK PROPERTIES FOR F2F (0): ALL CONTACTS, AND THOSE BETWEEN female (f) AND male (m)

PARTICIPANTS: NUMBER OF NODES AND EDGES, AVERAGE DEGREE, AVERAGE STRENGTH, AVERAGE PATH LENGTH APL, DIAMETER d, DENSITY,
CLUSTERING COEFFICIENT C , AVERAGE BETWEENNESS, EIGENVECTOR AND CLOSENESS CENTRALITIES, NUMBER AND SIZE OF THE LARGEST WEAKLY

CONNECTED COMPONENT #CC AND |CC|max .

Network |V | |E| ∅deg. ∅str. APL d density C ∅bet. ∅eig. ∅clos. #CC |CC|max

F2F (all) 77 1622 42.13 67286.55 1.45 3 0.55 0.65 48.89 0.14 9.6 · 10−05 1 77
F2F (f /f ) 60 1052 35.07 63548.33 1.41 2 0.59 0.66 38.42 0.15 12.0 · 10−05 1 60
F2F (f /m) 77 483 12.55 11744.99 2.03 4 0.17 0 69.56 0.06 5.7 · 10−05 1 77
F2F (m/m) 17 87 10.23 27282.35 1.38 3 0.64 0.79 14.4 0.45 28.2 · 10−05 1 17

above, the ratio of edges for mixed-gender interactions is
below the values of the null model. This points to same-
gender preferences, similar to results of [12] in the contexts
of schools. Furthermore, we observe an impact of stronger
ties, since the ratios for single gender contacts increase for
increasing minimal conversation thresholds, while the ratios
for mixed gender contacts decrease.
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Fig. 6. Comparison of empirical edge ratio vs. null-model results (95%
confidence interval) of the contacts of female and male participants.

B. Communication Behavior and Dynamics

For assessing the dynamic behavior and evolution of con-
tacts, we performed a time-based analysis for which we
partitioned the contact networks into time-slices of consec-
utive minutes and computed the according statistics for the
cumulated contact count, the average degree and the density
of the respective networks. The analysis results are shown
in Figure 7. The figure shows the cumulated contact count,
average degree and density, where we focused on the networks
F2F (0), F2F (180), and F2F (300) including all contacts vs.
the longer minimal contact thresholds. Furthermore, the figure
includes a normalized version using the respective maximum
value of the individual measures as a reference factor. As can
be observed in the figure, the distributions follow the overall
contact activity, see Figure 1.

However, there are certain effects that can also be dis-
tinguished: As the first day consisted of an introduction
and a special introductory session helping students to know
each other well, the increase in the contacts and degree is
expected. However, on the second and especially the last
day there is a significant increase of contacts and degree as
well. Furthermore, considering longer contacts we see that the
density grows continuously and is again supported by the last
day with many interactions, which indicates that the week
indeed had a rather positive effect for strengthening interaction
and contacts between participants.

Specifically, if we consider the normalized analysis results
of degree and density of the respective networks, we observe
that there is always a strong increase during the first and last
day; however, for longer conversations the effect on the first
day is not that strong compared to the last day – the behavior
on the first day is mainly concerned with the weaker links –
which confirms the expected behavior during the introductory
sessions. For all measures, the growth of stronger links is
more pronounced especially for the days later in the week,
in particular the last day. Furthermore, we can consider the
individual structures of the different days, i. e., concerning
structured and free sessions: In general, in free sessions we
observe significantly more contacts than during the structured
sessions, as expected. However, for the last day we also
observe a higher fraction of contacts (and also stronger ties as
discussed above), while the time available for free interaction
of the participants was the same as on the first day. Thus, in
comparison to the first day, we observe more frequent and also
more intense contact behavior. This shows the overall effect
of the freshman week for supporting the groups’ networking
and contact behavior.

C. Structural Associations between F2F and SRN

As described above, we collected self-report data using
questionaires including information about interactions, co-
operation and mentoring relations. Table IV shows some
statistics regarding the networks as undirected for an easier
comparison to the F2F network. For the self-report interaction
network (SRN.int), for example, we observe that the number
of connections (483), diameter (4), the average degree (9.29)
and the density (0.17) are rather different compared to the F2F,
cf. Table I. We measure rather large deviations concerning the
average degree and the density. As expected, this indicates
that F2F covers more interactions during the observed time.
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Fig. 7. Time-based analysis: Cumulated contact count/minute, average degree and density for the networks F2F (0), F2F (180), F2F (300), as well as
normalized versions; contact count (top), average degree (middle) and density (bottom).

These findings are also true for the cooperation and mentoring
networks, while both surprisingly show a diameter that is
actually equal to the diameter of F2F.

TABLE IV
OVERALL (UNDIRECTED) NETWORK PARAMETERS OF THE SELF-REPORT
NETWORKS. #NODES (V), #EDGES (E), AVG. DEGREE, DIAMETER (D),

DENSITY.

Network |V | |E| ∅deg. d density
Interaction 77 483 12.54 4 0.17
Cooperation 77 433 11.25 2 0.15
Mentoring 77 434 11.27 2 0.15

For assessing the networks on an individual level, we
postprocessed the F2F such that it becomes comparable with
the (directed) SRN.int. We aggregated contact duration and
frequency over the whole week for each tag pair. Then, we
defined a contact to be meaningful, when its frequency or dura-
tion scored above a certain threshold τF (frequency, F2F.freq)
and τD (duration, F2F.dur). We selected the observed average
duration of 13:19 (mm:ss) and average frequency 5.17 of all
contacts as initial thresholds, cf. [7].

We then tested the matching of the self-report and the
postprocessed F2F data by computing Cohen’s Kappa [38]:
This measure is typically used to assess the average agree-
ment of two observers, e. g., with respect to their ratings of
behavior [47]. Accordingly, we treat the self-report and the
face-to-face contact data sources as two independent observers,
obtaining 3239 comparable ratings. Furthermore, we applied
the QAP test for measuring network correlation common
in social network analysis. Cohen’s Kappa yielded a value
of κ = .507 (SRN.int vs. F2F.dur; 84.8% agreement) and
κ = .485 (SRN.int vs. F2F.freq; 83.5% agreement), suggesting
a fair congruence [7], [48]. This is also reflected by a QAP-
Test: SRN.int vs. F2F.dur (0.32), SRN.int vs. F2F.freq (0.55),
significant at p < 0.001. When we varied the thresholds
τF and τD we observed only very small variations in the
Kappa values which indicates that the thresholds were chosen
rather well for the postprocessed F2F interaction network, also
confirmed by the QAP-test values.

For the self-report cooperation and mentoring networks in-
terestingly the matching between F2F and SRN was better for
higher duration thresholds, i. e., stronger links (also confirmed



by higher duration thresholds). For the cooperation network
the best matching was obtained for a threshold τCD ≥ 20
minutes, while the best threshold for the mentoring network
was even higher, with τMD ≥ 23.3 minutes. Again, this
indicates the impact of longer conversations and the relation
to SRN. This enables the option of deriving SRN information
from F2F data given suitable thresholds. When we focus on

TABLE V
DEGREE CORRELATION BETWEEN THE AGGREGATED F2F NETWORK WITH

DIFFERENT MINIMAL CONTACT THRESHOLDS AND SELF-REPORT
INTERACTION NETWORKS ESTIMATED USING SPEARMAN’S RANK ORDER

CORRELATION COEFFICIENTS: *P < .05, **P < .01, TWO-TAILED.

Threshold Interaction Cooperation Mentoring
0 .267* .292* .202

180 .419** .393** .325**
300 .374 .399** .370**

the centrality measures, especially on the degree centrality we
also observe correlations between F2F and SRN, see Table V
focusing on the aggregated contact networks according to
different minimal contact thresholds. These confirm our ob-
servations for the matching between the networks discussed
above. We observe the trend that the larger the (face-to-
face) interaction, the higher the chance to be selected for
cooperation or mentoring.

VI. LIMITATIONS

Like any empirical investigation, this study has some limi-
tations. First, providing subjects with wearable sensors might
bias the social situation and influence the subjects’ behavior.
However, the subjects’ situation of being new at university and
being provided with loads of information over a whole week,
is very demanding and should let them forget the wearables
soon. After the introductory week, the subjects described their
behavior as typical and not being influenced by data collection.

Second, asking the participants to select the fellows whom
they communicated "much" with during the introductory week
is not independent from individual interpretation. Other social
network approaches use targeted questions for weighting con-
tacts, such as asking for length or exact frequencies. However,
given the situation of 77 people who predominantly never met
before and the information flood they were exposed anyway,
we decided to use a less demanding network approach. That is,
we presumed participants to report the contacts they individu-
ally consider important and interpret the self-reports explicitly
as this. In the light of implementing RFID technology, we
received data about frequency and duration of contacts, so we
complement this with the self-reports.

Third, our sample consisted only of a group of psychology
students, primarily consisting of young adults with an uneven
gender distribution. While the gender and age distribution was
representative of the examined field of study, our findings do
not necessarily be generalizable to students groups of other
courses or more diverse groups. However, we were able to
capture data of a whole and newly composed group over time.
Moreover, all students filled out the surveys and wore RFID
tags. Thus, we achieved a return quote of 100%.

VII. CONCLUSIONS

This paper presented an analysis of social interaction on
networks of face-to-face proximity using wearable sensors.
The interaction data was collected in the context of a newly
composed group, complemented by self-report data of the
participants. Both datasets were used for modeling networks
capturing physical as well as perceived interactions in order
to understand physical and cognitively perceived network
structures and the behavior of actors therein.

We analyzed data of a students’ freshman week and showed
that there are distinctive structural patterns in the F2F data
corresponding to the activities of the freshman week. This
concerns the evolution of contacts, the individual connectivity
in the network, and the densification of the network according
to the phases of the event. Furthermore, we showed the effects
of gender homophily on the contact activity. Finally, our results
also indicate existing structural associations between the face-
to-face proximity network and various self-report networks.

In the context of introductory courses, this points out the
importance of stronger ties (long conversations) between the
students at the very beginning of their studies for fostering
an easier start, better cooperativeness and support between the
students. Our results especially show the positive effect of
the freshman week for supporting the connectivity between
students; the analysis also indicates the benefit of such a course
of five days with respect to the interaction and contact patterns
in contrast to shorter introductory courses. Also, sensor-based
and self-report complement each other with respect to various
aspects; therefore, we recommend complementary analysis.

For future work, we aim at exploring more of the con-
nections between the complementary data sources. Including
online data from social networks and social media for provides
an extended social context, e. g., [49], in order to investigate,
for example, if the online interactions can be predicted given
the offline (sensor) data and vice versa. This is especially
relevant in the context of mobile and smart devices, for
investigating the connection between the physical and the
virtual world, and for comprehensive modeling. Also regarding
cognitive processes, the analysis of perceived interactions can
then also yield important insights into subjective motivation
and interaction strategies.

Furthermore, we aim to investigate theory-based approaches
in that context, formalizing models using basic principles from
(social) theory and prior knowledge. For example, we plan to
examine the paradigms of induced homophily, e. g., if people
that interact much are likely to become more similar over
time, which can be modeled as hypotheses [50] in order to
detect anomalies, and for further investigating longitudinal
processes. For that, subgroup discovery and exceptional model
mining, e. g., [51], provide interesting approaches for future
research, especially when combining compositional and struc-
tural analysis, i. e., on attributed graphs, [52], [53]. Here, also
the integration of prior knowledge, i. e., semantic knowledge
formalized in knowledge graphs [54] is a further interesting
direction to consider in future work.



REFERENCES

[1] N. Eagle and A. S. Pentland, “Reality Mining: Sensing Complex Social
Systems,” Pers. Ubiquit. Comput., vol. 10, no. 4, pp. 255–268, 2006.

[2] A. Barrat, C. Cattuto, V. Colizza, J.-F. Pinton, W. V. den Broeck,
and A. Vespignani, “High Resolution Dynamical Mapping of Social
Interactions with Active RFID,” PLoS ONE, vol. 5, no. 7, 2008.

[3] M. Atzmueller and K. Hilgenberg, “Towards Capturing Social Interac-
tions with SDCF: An Extensible Framework for Mobile Sensing and
Ubiquitous Data Collection,” in Proc. MSM (HT 2013). ACM, 2013.

[4] M. Atzmueller, “Social Behavior in Mobile Social Networks: Charac-
terizing Links, Roles and Communities,” in Mobile Social Networking.
Berlin: Springer, 2014, pp. 65–78.

[5] M. Atzmueller, L. Thiele, G. Stumme, and S. Kauffeld, “Analyzing
Group Interaction and Dynamics on Socio-Behavioral Networks of Face-
to-Face Proximity,” in Proc. UbiComp Adjunct. ACM, 2016.

[6] D. J. Brass, “A Social Network Perspective on Industrial/Organizational
Psychology,” in The Oxford Handbook of Industrial and Organizational
Psychology, S. W. J. Koslowski, Ed. New York: Oxford University
Press, 2012.

[7] L. Thiele, M. Atzmueller, S. Kauffeld, and G. Stumme, “Subjective
versus Objective Captured Social Networks: Comparing Standard Self-
Report Questionnaire Data with Observational RFID Technology Data,”
in Proc. Measuring Behavior, Wageningen, The Netherlands, 2014.

[8] N. Eagle, A. Pentland, and D. Lazer, “From the Cover: Inferring
Friendship Network Structure by using Mobile Phone Data,” PNAS, vol.
106, pp. 15 274–15 278, 2009.

[9] C. Cattuto, W. Van den Broeck, A. Barrat, V. Colizza, J.-F. Pinton,
and A. Vespignani, “Dynamics of Person-to-Person Interactions from
Distributed RFID Sensor Networks,” PLoS ONE, vol. 5, no. 7, 2010.

[10] M. Atzmueller, S. Doerfel, A. Hotho, F. Mitzlaff, and G. Stumme,
“Face-to-Face Contacts at a Conference: Dynamics of Communities and
Roles,” in Modeling and Mining Ubiquitous Social Media, ser. LNAI.
Berlin: Springer, 2012, vol. 7472.

[11] B.-E. Macek, C. Scholz, M. Atzmueller, and G. Stumme, “Anatomy of
a Conference,” in Proc. Hypertext. ACM, 2012, pp. 245–254.

[12] J. Stehle, F. Charbonnier, T. Picard, C. Cattuto, and A. Barrat, “Gender
Homophily from Spatial Behavior in a Primary School: A Sociometric
Study,” Social Networks, vol. 35, no. 4, pp. 604–613, 2013.

[13] M. C. Pachucki, E. J. Ozer, A. Barrat, and C. Cattuto, “Mental Health
and Social Networks in Early Adolescence: A Dynamic Study of
Objectively-Measured Social Interaction Behaviors,” Social Science &
Medicine, 2014.

[14] L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J.-F. Pinton, and W. V.
den Broeck, “What’s in a Crowd? Analysis of Face-to-Face Behavioral
Networks,” CoRR, vol. 1006.1260, 2010.

[15] K. Sailer, R. Pachilova, and C. Brown, “Human versus Machine - Testing
Validity and Insights of Manual and Automated Data Gathering Methods
in Complex Buildings,” in Proc. 9th Intl. Space Syntax Symp. Seoul,
Korea: Sejong Univ. Press, 2013.

[16] C. Brown, C. Efstratiou, I. Leontiadis, D. Quercia, and C. Mascolo,
“Tracking Serendipitous Interactions: How Individual Cultures Shape
the Office,” in Proc. CSCW. ACM, 2014, pp. 1072–1081.

[17] M. Atzmueller, D. Benz, S. Doerfel, A. Hotho, R. JÃschke, B. E. Macek,
F. Mitzlaff, C. Scholz, and G. Stumme, “Enhancing Social Interactions at
Conferences,” it - Information Technology, vol. 53, no. 3, pp. 101–107,
2011.

[18] M. Atzmueller, M. Becker, M. Kibanov, C. Scholz, S. Doerfel, A. Hotho,
B.-E. Macek, F. Mitzlaff, J. Mueller, and G. Stumme, “Ubicon and
its Applications for Ubiquitous Social Computing,” New Review of
Hypermedia and Multimedia, vol. 20, no. 1, pp. 53–77, 2014.

[19] L. Wu, B. N. Waber, S. Aral, E. Brynjolfsson, and A. Pentland, “Mining
Face-to-Face Interaction Networks using Sociometric Badges: Predicting
Productivity in an IT Configuration Task,” SSRN 1130251, 2008.

[20] J. C. Turner, “Towards a Cognitive Redefinition of the Social Group,”
Cah Psychol Cogn, vol. 1, no. 2, pp. 93–118, 1981.

[21] J. Coleman, Foundations of Social Theory. Cambridge, Mass.: Belknap
Press of Harvard Univ. Press, 2000.

[22] M. Kibanov, M. Atzmueller, C. Scholz, and G. Stumme, “Temporal
Evolution of Contacts and Communities in Networks of Face-to-Face
Human Interactions,” Science China, vol. 57, March 2014.

[23] C. Scholz, M. Atzmueller, and G. Stumme, “Predictability of Evolving
Contacts and Triadic Closure in Human Face-to-Face Proximity Net-
works,” SNAM, vol. 4, no. 217, 2014.

[24] M. Atzmueller, A. Ernst, F. Krebs, C. Scholz, and G. Stumme, “On the
Evolution of Social Groups During Coffee Breaks,” in Proc. WWW 2014
(Companion). IW3C2 / ACM, 2014.

[25] M. Atzmueller, “Data Mining on Social Interaction Networks,” Journal
of Data Mining and Digital Humanities, vol. 1, June 2014.

[26] A. Barrat and C. Cattuto, Temporal Networks, ser. Understanding Com-
plex Systems. Springer, 2013, ch. Temporal Networks of Face-to-Face
Human Interactions.

[27] G. Palla, A.-L. Barabasi, and T. Vicsek, “Quantifying Social Group
Evolution,” Nature, vol. 446, no. 7136, pp. 664–667, April 2007.

[28] D. Liben-Nowell and J. M. Kleinberg, “The Link Prediction Problem
for Social Networks,” in Proc. CIKM. ACM, 2003, pp. 556–559.

[29] C. Scholz, M. Atzmueller, and G. Stumme, “On the Predictability of
Recurring Links in Networks of Face-to-Face Proximity,” in Proc. WWW
2014 (Companion). IW3C2 / ACM, 2014.

[30] Christoph Scholz and Martin Atzmueller and Alain Barrat and Ciro
Cattuto and Gerd Stumme, “New Insights and Methods For Predicting
Face-To-Face Contacts,” in Proc. ICWSM. AAAI, 2013.

[31] M. Atzmueller, “Analyzing and Grounding Social Interaction in Online
and Offline Networks,” in Proc. ECML/PKDD, ser. LNCS, vol. 8726.
Berlin: Springer, 2014, pp. 485–488.

[32] R. Diestel, Graph Theory. Berlin: Springer, 2006.
[33] M. Gaertler, “Clustering,” in Network Analysis, ser. LNCS, U. Brandes

and T. Erlebach, Eds., vol. 3418. Springer, 2004, pp. 178–215.
[34] S. Wasserman and K. Faust, Social Network Analysis: Methods and

Applications, 1st ed. Cambridge University Press, 1994, no. 8.
[35] D. J. Watts and S. H. Strogatz, “Collective Dynamics of /‘small-world/’

Networks,” Nature, vol. 393, no. 6684, pp. 440–442, june 1998.
[36] L. Sachs, Applied Statistics. Berlin: Springer, 1982.
[37] D. Krackhardt, “QAP Partialling as a Test of Spuriousness,” Social

Networks, vol. 9, pp. 171–186, 1987.
[38] J. Cohen, “A Coefficient of Agreement for Nominal Scales,” Educational

and Psychological Measurement, vol. 20, no. 1, pp. 37–46, 1960.
[39] P. Bearman and P. Parigi, “Cloning Headless Frogs and Other Important

Matters: Conversation Topics and Network Structure,” Social Forces,
vol. 83, no. 2, pp. 535–557, 2004.

[40] C. Cattuto, Oral communication, December 1st, 2014.
[41] H. R. Bernard, P. Killworth, D. Kronenfeld, and L. Sailer, “The Problem

of Informant Accuracy: The Validity of Retrospective Data,” Annual
Review of Anthropology, vol. 13, no. 1, pp. 495–517, 1984.

[42] L. C. Freeman, A. K. Romney, and S. C. Freeman, “Cognitive Structure
and Informant Accuracy,” American anthropologist, vol. 89, no. 2, pp.
310–325, 1987.

[43] P. V. Marsden, “Network Data and Measurement,” Annual Review of
Sociology, vol. 16, no. 1, pp. 435–463, 1990.

[44] W. D. Richards, “Data, Models, and Assumptions in Network Analysis,”
Organizational communication: Traditional themes and new directions,
pp. 109–128, 1985.

[45] J. M. Vigil, “Asymmetries in the Friendship Preferences and Social
Styles of Men and Women,” Human Nature, vol. 18, no. 2, pp. 143–161,
2007.

[46] S. Maslov, K. Sneppen, and A. Zaliznyak, “Detection of Topological
Patterns in Complex Networks: Correlation Profile of the Internet,” Phys.
A: Statistical and Theoretical Physics, vol. 333, pp. 529–540, 2004.

[47] R. Bakeman and V. Quera, Sequential Analysis and Observational
Methods for the Behavioral Sciences. Cambridge, UK: CUP, 2011.

[48] J. L. Fleiss, Statistical Methods for Rates and Proportions, 2nd ed. New
York, NY, USA: Wiley, 1981.

[49] M. Atzmueller, “Mining Social Media,” WIREs: Data Mining and
Knowledge Discovery, vol. 2, pp. 411–419, 2012.

[50] M. Atzmueller, A. Schmidt, B. Kloepper, and D. Arnu, “HypGraphs: An
Approach for Analysis and Assessment of Graph-Based and Sequential
Hypotheses,” in New Frontiers in Mining Complex Patterns. Postpro-
ceedings NFMCP 2016, ser. LNAI. Berlin: springer, 2017.

[51] M. Atzmueller, “Subgroup Discovery – Advanced Review,” WIREs:
Data Mining and Knowledge Discovery, vol. 5, no. 1, pp. 35–49, 2015.

[52] M. Atzmueller, S. Doerfel, and F. Mitzlaff, “Description-Oriented Com-
munity Detection using Exhaustive Subgroup Discovery,” Information
Sciences, vol. 329, pp. 965–984, 2016.

[53] M. Atzmueller, “Detecting Community Patterns Capturing Exceptional
Link Trails,” in Proc. IEEE/ACM ASONAM. IEEE Press, 2016.

[54] P. Ristoski and H. Paulheim, “Semantic Web in Data Mining and Knowl-
edge Discovery: A Comprehensive Survey,” Web Semantics, vol. 36, pp.
1–22, 2016.


