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II. METHOD

In the following, we first discuss some related work set-
ting the context of the proposed approach. After that, we
summarize the adaptive classification approach utilizing class
association rules, for which the technical implementation is
described in [7] in detail.

A. Related Work

1) Classification of Sensor and Human Activity Data:

Classification of activities using wearable sensors, e. g., as
also integrated into mobile phones, or attached to parts of
the human body, is a prominent research area, e. g., [13]–
[17]. This also relates to the medical context, in particular
for Parkinson’s disease, e. g., Bachlin et al. [18], Mazilu et
al. [19], as well as Moore et al. [20], [21]. In contrast to
most of the works mentioned above, we concentrate on a set
of special activities, i. e., regarding the freezing of gait for
Parkinsons disease patient, as well as activities (some of which
require active interaction) observed using smartphone sensors.
Furthermore, we explicitly focus on explicative approaches,
i. e., data mining and machine learning methods that lead
to interpretable classifiers that can provide explanations for
the respective models and decisions. This is a novel area, not
addressed by the works mentioned above.

2) Subgroup Discovery: A broadly applicable and powerful
method for descriptive and exploratory data mining is given by
subgroup discovery [9], [10], [22], for which there are a range
of efficient algorithms, e. g., [23]–[26]. In general, subgroup
discovery aims at identifying patterns describing subsets of a
dataset that are interesting as estimated by a quality function,
e. g., [10], [22], [27]. As an example, consider a subset of a
dataset that is rather specific for a certain human activity, and
can be described by a logical conjunction of descriptors (e. g.,
attribute–value pairs). Typically, the discovered patterns are
simple to interpret. This is also one of the foci of this paper.
However, we go one step further than typical subgroup dis-
covery methods that just report the interesting set of patterns
to the user. For our explicative approach for human activity
recognition, we will also present how to map the resulting
patterns into class association rules, and how to combine these
into a single classifier which is discussed in the next section.

3) Associative Classification: Associative classification in-
tegrates association rule mining into a classification approach,
e. g., [28]–[30]. In the context of IoT and Wearable sensors,
Hemalatha and Vijay [31] present an approach for human
activity recognition and specifically fall detection using ac-
celerometer data. For that, they mine frequent bit patterns for
integration into associative classifiers. While the approach is
similar regarding the pattern representation, the method pro-
posed in this paper is more targeted using subgroup discovery
for a specific class. Furthermore, it provides a refined ruleset
of CARs in contrast to only focusing on frequent patterns.
In addition, this procedure allows for suitable selection of a
(complex) quality function for obtaining the rules, in contrast
to the (simple) confidence/support-based approaches applied
by association rule mining approaches.

4) Explicative Modeling: Explicative, i. e., exploratory,
explainable and interpretable models have become a strong
focus in the machine learning community recently, e. g., [3]–
[6], [32]. Here, explanation-aware techniques [2] can be ap-
plied for a better explanation of models and their underlying
mechanisms.

Explanation-aware methods are especially relevant for es-
tablishing trust in the method, e. g., [33], since the results
of the method (and often also the derivation proces) can be
inspected in detail in order to provide assessment and valida-
tion options. There are different flavors of explanation-aware
systems. In a reconstructive explanation [34], for example, the
explainer generates explanations by transforming a trace, e. g.,
based on intermediate results of the classification (problem
solving process), into a plausible explanation story, cf. [35].

Specifically, in the area of machine learning, simple models
can be targeted that feature explainability “by construction”,
e. g., decision trees or rule-based methods. For classification,
e. g., decision paths can be followed and individual rules can
then be inspected. This is the general approach taken in this
paper, in contrast to methods that learn “black box” models
and need to interpret them later in a second step. We apply
a hybrid strategy, directly focusing on interpretable models
that can then be further inspected using explanation-aware
techniques in more detail, as needed.

B. CARMA: Adaptive Associative Classification

In the following, we summarize the applied CARMA frame-
work for adaptive mining of class association rules and asso-
ciative classification. For a detailed discussion, we refer to [7].

1) Learning: The first phase of CARMA, the learning
phase constructs the predictive model: Given a set of classes,
CARMA discovers class association rules for each one. In
the case of a two-class problem we can optionally focus on
one class only, e. g., on the minority class, since subgroup
discovery is well suited for imbalanced datasets [10]. In that
case, we basically focus on class association rules targeting
only one particular class (e. g., the minority class). Also,
for simple interpretability, we consider rules with a maximal
length of the corresponding patterns. CARMA utilizes an
adaptive strategy for balancing rule complexity (size) with
predictive accuracy. For that purpose, a ruleset assessment
function is applied complemented by a rule selection function.
The ruleset assessment function can be seen as an optional
heuristic. It checks, if the quality of the ruleset is good enough.
If the outcome of this test is positive, CARMA continues with
mining rules for the next class. Otherwise, the maximal length
of a rule is increased, up to user-definable threshold. The rule
selection function considers the final set of all class association
rules for all classes. It selects a set of class association rules
that optimize predictive power on the trainingset.

2) Classification: In the second phase, i. e., the classifica-
tion phase, we utilize all the rules contained in the obtained
model. Basically, given a data record, we first obtain all
matching rules. Then, we aggregate their predictions using a
specific rule combination strategy, e. g., cf. [36].



III. DATASETS

In our experiments, we applied two datasets. For the first
dataset, we utilized the publicly available Daphnet Freezing

of Gait dataset1 [18] in the domain of personalized health.
Specifically, this dataset covers the area of detecting freezing
of gait episodes for patients with Parkinson’s disease. The
second dataset we collected ourselves, using smartphones for
detecting activity data from a variety of sensors.

A. Daphnet Freezing of Gait Dataset

The Daphnet Freezing of Gait (FoG) dataset [18] (Daph-

net/FoG) was collected, e. g., to assess (sensor-based) methods
for recognizing FoG episodes: For that, wearable sensors
(accelerometers) were attached to ankle, thigh, and trunk (hip)
of 10 patients with Parkinson’s disease (PD). There are two
classes in the dataset, no-freezing and freezing (FoG) which
were assigned by manual annotation based on observational
data as well as video recordings. We refer to [18] for a detailed
description of the dataset and the data collection procedure.

For preprocessing the time series data, we used a sliding
window with a size of four seconds for feature extraction,
which is a standard parameter for activity recognition in
that context, cf. [18], [19]. Furthermore, we employed data
cleaning such that data records with an unknown class label
were removed. This resulted in 35531 valid single activities.
The final class distribution is given by 32072 data records
with a label indicating “no-freezing” and 3459 data records
with the label indicating “freezing (FoG)”. Furthermore, we
applied standard methods for feature engineering from sensor
time series data in activity recognition, specifically for FoG
detection and prediction cf. [19], [21]. We constructed time
domain features based on several standard statistical metrics
(mean, standard deviation, variance, median, range, maximum
and minimum): Specifically, we considered that for each of the
three accelerometer sensors (ankle, thigh and trunk), for each
of their three axes (3D accelerometers), and for the squared
sums of these (magnitude). This resulted in a total of 84 time
domain features. Furthermore, we considered frequency do-
main features (based on spectral information using fast fourier
transformation techniques). For that specific medical domain,
we also considered special features targeting combinations of
specific information from the frequency domain information,
e. g., combining frequency band information from the freeze
band (3 → 8Hz) and the locomotor band (0.5 → 3Hz), as well
as the power and energy of the locomotor band, cf. [37] for
details, and the freeze bands as well as the locomotor band,
cf. [21] for details. As before, we computed these features
for each of the three accelerometer sensors (ankle, thigh and
trunk), for each of their three axes, and for the squared sums
of these (magnitude). This resulted in a total of 61 frequency
domain features. Therefore, for our experiments we applied
145 features in total. We applied supervised discretization [38]
for deriving (nominal) selectors, i. e., attribute-value pairs, in
order to utilize these for class association rule mining.

1http://www.ife.ee.ethz.ch/research/activity-recognition-datasets.html

TABLE I
BASELINE RESULTS USING C4.5 AND RIPPER.

Dataset Algorithm Accuracy
Ruleset Complexity

#Rules ∅Conditions

Daphnet/FoG
C4.5 95.16 3518 8.77

Ripper 94.79 126 5.92
Smartphone

Sensing
C4.5 69.02% 1394 6.76

Ripper 66.87% 176 3.40

B. Smartphone Sensing Dataset

Below, we summarize the applied smartphone sensing

dataset, and refer to cf. [7] for a detailed description. The
dataset contains a diverse set of activities (classes) which
included device usage as well as walking activities. We defined
five scenarios that consisted of sets of different activities for
data collection; these scenarios were performed by a total of 39
subjects; each scenario was repeated six times. The resulting
dataset consists of a total of 3077 valid single activities,
capturing data from eight different sensors.

For processing the sensor time series data, we used window-
based techniques with a fixed window size of one second. This
size was already proven to be efficient for walking activities
[39]. We created six features per window and per sensor,
cf. [7] for details on the technical implementation. Alltogether,
this resulted in 116 features. As for the first dataset, we
employed (supervised) discretization [38] in order to construct
nominal selectors (attribute-value pairs) for subsequent class
association rule mining.

IV. EVALUATION

In our experiments, we utilize two baselines: Rip-
per [40] as a rule-based learner, and the decision-tree learner
C4.5 [41] – in the JRip and J48 implementations provided
by WEKA2 [42]. For subgroup discovery we applied the
BSD algorithm [25] in the implementation provided by the
VIKAMINE3 system [43]. According to the results described
in [44] BSD is rather efficient for small search depths. For
the evaluation, we consider (multi-class) model accuracy and
model complexity as evaluation metrics. Accuracy is defined
as the proportion of samples that were classified correctly.
Complexity is estimated using the total number of rules
contained in a rule-based model, and their average complexity.
All experiments were performed in a standard 10-fold cross-
validation setting.

A. Baseline Results

Table I shows the performance and complexity metrics of
the baseline algorithms. For both datasets, C4.5 showed better
classification performance but built more complex models with
3518 and 1394 rules, respectively. The average rule complexity
scored 8.77 and 6.76, respectively. Compared to C4.5, the
accuracy of Ripper is slightly lower. However, the built models
are much smaller with only 126 and 176 rules, and an average
rule length of 5.92 and 3.40, respectively.

2https://www.cs.waikato.ac.nz/ml/weka/
3http://www.vikamine.org



B. Experiments

In the following, we first summarize the instantiation of the
experiments. After that, we present and discuss the results in
detail, also concerning the explicative aspects.

1) Instantiation:

• Ruleset assessment function: We apply different instan-
tiations depending on the characteristics of the applied
dataset: For the smartphone sensing dataset which is a
multi-class problem, the class distribution is not skewed;
we just check, if the median of the rules’ confidences
is above a certain threshold τc. In our experiments, we
applied a threshold τc = 0.5. Regarding the Daphnet/FoG

dataset, we focus on the minority class freezing (Fog) and
aim to mine rather precise rules, i. e., those with a very
high confidence. Therefore, we opt for a relatively large
threshold τc = 0.99.

• Rule selection function: We performed several exper-
iments using different rule selection functions, see
e. g., [28], [29]. Based on our empirical results, we chose
the rule selection strategy that we proposed in [7], i. e.,
the CBA* selection function. It basically ensures, that
for each class there is at least one rule in the final
classifier. If there is none contained in the initial set of
classification rules, then a default rule is added. For a
detailed discussion, we refer to [7] for details.

• Quality function: In the multi-class case (smartphone

sensing dataset) we selected the adjusted residuals quality
function, cf. [45], which directly maps to significance
criteria. For the Daphnet/FoG dataset, we experimented
with several quality functions. Since the precision (i. e.,
high confidence) of the rules was the major criterion, the
relative gain quality function, e. g., [10], showed the best
results in the end.

• Pattern Length: We opted for interpretable patterns with
a maximal length of 7 conditions.

• Number of Patterns (TopK): In the evaluation, we used
three different TopK values: 100, 200 and 500.

• Rule combination strategy: Based on our experiments
in [7] we investigated different strategies, cf. [36], i. e.,
(1) UnweightedVote, which aggregates individual (un-
weighted) predictions, and chooses the class with the
highest vote, (2) LaplaceVote, which selects according to
the same principle, but the rules’ weights are determined
according to the Laplace value of the respective rules,
(3) BestConfidence which classifies according to the rule
with the highest confidence, and finally (4) BestLaplace

which classifies equivently but according to the best
scoring Laplace value. As described in [7], confidence is
estimated by the respective relative frequency of the class
contained in the data records covered by the respective
rule, while the Laplace value lval(r) of a rule r is

determined by lvar(r) = pr
i+1∑

cj∈C pr
j+|C| , where prj (and

pri ) are the numbers of covered examples by rule r that
belong to the respective classes cj considering all possible
classes C, and class ci of the rule, respectively.
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Fig. 2. Daphnet/FoG dataset: Accuracy of the proposed approach utilizing
different rule combination strategies compared to the two baselines.
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Fig. 3. Smartphone sensing dataset: Accuracy of the proposed approach
utilizing different rule combination strategies compared to the two baselines.

2) Results and Discussion: For the two applied datasets,
Figures 2-3 depict an overview on our experimental results,
while Table II provides these in more detail.

Confirming our initial results presented in [7] for the
CARMA framework, we observe that the proposed approach
outperforms both baselines in accuracy as well as in complex-
ity. In particular, the results indicate that the rule combination
strategy UnweightedVote together with larger TopK values
consistently achieves higher classification accuracies, which
can be explained by both a more refined rule selection as well
as a more precise rule combination step. The former is able
to choose out of a larger set of rules in order to construct
the classification model ruleset, while the latter can weight in
different local patterns for estimating the final classification.



TABLE II
DETAILED EVALUATION RESULTS FOR THE DAPHNET/FOG AND THE SMARTPHONE SENSING DATASETS: THE TABLE SHOWS CLASSIFICATION

ACCURACY AND COMPLEXITY (NUMBER OF RULES, AVERAGE NUMBER OF CONDITIONS) OF THE PROPOSED APPROACH DEPENDING ON DIFFERENT

CHOICES OF k, AND THE APPLIED RULE COMBINATION STRATEGIES: UnweightedVote (UNWEIGHTED VOTING), LaplaceVote (VOTING USING LAPLACIAN

WEIGHTS), BestLaplace (BEST RULE USING LAPLACE VALUE), AND BestConfidence (BEST RULE ACCORDING TO RULE CONFIDENCE), CF. [36].

TopK
Daphnet/FoG Smartphone Sensing

Accuracy #Rules ∅ Conditions Accuracy #Rules ∅Conditions

100

UnweightedVote 92.96 % 70.8 3.96 ± 1.63 67.31 % 345.3 2.82 ± 1.04
LaplaceVote 92.73 % 70.2 3.97 ± 1.68 66.96 % 345.0 2.81 ± 1.04
BestLaplace 92.79 % 71.1 3.94 ± 1.65 59.10 % 345.4 2.79 ± 0.98
BestConfidence 91.77 % 61.9 4.00 ± 0.00 62.19 % 352.5 2.81 ± 0.96

200

UnweightedVote 94.31 % 106.2 3.99 ± 0.11 68.36 % 421.5 2.86 ± 0.97
LaplaceVote 92.75 % 99.0 3.99 ± 0.29 68.16 % 425.0 2.90 ± 1.07
BestLaplace 93.17 % 112.7 3.97 ± 0.37 59.63 % 423.1 2.88 ± 1.01
BestConfidence 93.56 % 112.3 3.99 ± 0.11 64.93 % 422.8 2.89 ± 1.04

500

UnweightedVote 95.92 % 187.3 3.99 ± 0.10 70.66 % 517.2 3.01 ± 0.86
LaplaceVote 94.90 % 184.1 3.99 ± 0.08 69.96 % 522.1 3.05 ± 0.96
BestLaplace 94.49 % 187.7 3.99 ± 0.10 60.60 % 521.7 3.04 ± 0.97
BestConfidence 94.68 % 186.3 3.99 ± 0.10 66.80 % 520.6 3.06 ± 0.97

Furthermore, we observe that the proposed approach also
outperforms the baselines considering the aspect of complexity
(or simplicity) of the generated models.

We summarize our experimental results as follows:

1) The proposed explicative approach utilizing the CARMA

framework clearly generates less complex models than
the baselines (C4.5, Ripper).

2) The presented method achieves comparable or higher
accuracies with respect to the baselines (C4.5, Ripper).

Overall, these results indicate the efficacy of the proposed
approach concerning accuracy and model complexity. Next,
we discuss the explicative aspects of the proposed approach.

C. Explicative Classification Aspects

In order to assess the explication capabilities quantitatively,
we first consider both rule complexity as well as the total
number of rules. As already mentioned above, the results
clearly show significant improvements compared to the base-
line approaches. Rules with a low complexity are easier to
understand and also provide better capabilities for statistical
explanation due to less overfitting, e. g., [46], [47]. This
supports, e. g., the explanation of classifications, when the
set of the involved rules is presented. Therefore, this shows
the efficacy concerning the interpretability and explainability.
Furthermore, considering complexity measures of rule-based
models, in particular the number of rules, and the average
length of a rule cf. e. g., [48] it is obvious that CARMA also
outperforms the baselines on that level, in particular for the
C4.5 model which is the best performing baseline model.

Regarding rule coverage of the dataset, we note that larger
TopK parameters also yield larger rule coverage fractions of
the dataset, which is expected. Then, a larger number of
both rules and covered examples is involved. This tackles
both transparency as well as explainability since the patterns
itself have more coverage and are thus backed by more
examples which can be exploited in generating explanations,
and inspecting patterns from different explicative perspectives,
e. g., cf. [2], [11].

V. CONCLUSIONS

Human activity recognition and interpretable models for
classification are prominent research directions, especially
considering the ever-increasing amount of available sensor
data made available by IoT contexts, e. g., in domains such
as mobile assistants, health care, and Industry 4.0.

In this paper, we presented a novel approach for explicative
human activity recognition using adaptive association rule-
based classification. We showed the efficacy of the proposed
approach in an evaluation using two real-world datasets: (i) In
the context of personalized health using wearable sensors, and
(ii) for activity recognition using smartphones. Our results
showed, that the proposed approach outperforms the baseline
approaches clearly, both in terms of accuracy and complexity
of the resulting predictive models. This demonstrates the
explicative capabilities of the presented approach for providing
interpretable rulesets and explainable models.

For future work, we aim to investigate the applicability
of the proposed approach in further domains, e. g., in the
context of Industry 4.0 and according heterogeneous data.
Furthermore, we plan to extend it towards complex network
analytics and mining [49], and for classifying heterogeneous
mobile and dynamic social media, e. g., [50], [51]. Regarding
the explicative properties, we are also currently investigating
the integration of prior knowledge into a hybrid explica-
tive approach, e. g., combining the rule-based explications
of the classification model with semantic knowledge for en-
hancing explanation-awareness. Formalizations in knowledge
graphs [52], [53], for example, are an interesting direction to
consider for future work.
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