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ABSTRACT
The analysis of sequential trails and patterns is a prominent
research topic. However, typically only explicitly observed
trails are considered. In contrast, this paper proposes the
DASHTrails approach that enables the modeling and analy-
sis of distribution-adapted sequential trails and hypotheses.
It presents a method for deriving transition matrices given
a probability distribution over certain events. We demon-
strate the applicability of the proposed approach using real-
world data in the mobility domain, i. e., car trajectories and
spatio-temporal distributions on car accidents.
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1. INTRODUCTION
The analysis of human behavior is a prominent topic in

web and network science, e. g., for analyzing human naviga-
tion trails on the web or for exploring movement patterns in
mobile and spatio-temporal applications. The HypTrails ap-
proach [18], for example, allows the comparison of hypothe-
ses with such trails, for identifying the hypotheses that show
the largest evidence concerning the observed data. However,
the approach considers explicitly observed trails, e. g., nav-
igational trails in social online systems. In contrast, this
paper outlines an approach for the extended modeling and
analysis of sequential hypotheses and trails, i. e., by deriv-
ing according transition matrices in a distribution-adapted
approach. Then, we can analyze, e. g., geo-tagged datasets
or (social) network data, with a probability distribution as-
signed to the data points and nodes of the network, respec-
tively. There is a vast range of possible application areas.
These include, e. g., the derivation and analysis of paths in
mobile applications and social software, as well as analyzing
complex heterogeneous networks in industrial plants, where
e. g., connections between sensors (assets), events in alarm
logs, and human (operator) actions can be investigated.
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Objectives. Understanding the influence factors for trail-
related events is important, e. g., for predictive modeling.
This paper provides a systematic approach for modeling se-
quential trails and hypotheses – as a set of transitions be-
tween discrete states represented as transition matrices –
given a probability distribution on these states. We can then
model, e. g., (human) location-based indicators, geo-tagged
datasets, or time-stamped events on complex networks, us-
ing the respective distributions. Specifically, we can model
both observed and derived transition matrices and analyze
them in a unified framework, given by the DASHTrails ap-
proach. In this paper, we exemplify the approach presenting
first experiments that focus on the real world problem of un-
derstanding trail-related effects on car accidents, which can,
e. g., be beneficial for resource planning and load balancing
in health care, dynamic pricing for insurance companies as
well as road planning and traffic control.
Contribution. Our contribution is summarized as follows:

1. We propose a systematic method for the modeling and
analysis of sequential trails and hypotheses that are de-
rived from observed data, i. e., estimated given a prob-
ability distribution of certain events. This enables a
data-driven approach for analysis, comparison and as-
sessment of sequential trails and hypotheses.

2. We present a modeling method that applies a certain
process interpretation for deriving transition matrices,
e. g., based on flow-based mechanisms: The transition
matrices incorporate thus a certain interpretation of
the data towards a sequential representation. This
enables a comprehensive analysis approach, e. g., by
estimating and comparing evidence for the hypothe-
ses induced by a set of influence factors, statistically
grounded utilizing Bayesian estimation techniques.

3. We demonstrate the applicability of the proposed ap-
proach and provide first results using real-world data
in the context of the Telecom Italia Big Data Chal-
lenge 20151: We model human sequential trails given
a spatio-temporal distribution on car accident claim
data in seven different cities in Italy. Hypotheses in-
clude one given observed car trajectories.

The remainder of the paper is organized as follows: Sec-
tion 2 discusses related work. After that, we introduce the
proposed approach in Section 3. Section 4 presents the re-
sults using real world mobility data from the Big Data Chal-
lenge 2015. Finally, Section 5 concludes the paper with a
discussion and some interesting directions for future work.

1http://www.telecomitalia.com/tit/en/
bigdatachallenge/
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2. RELATED WORK
The investigation of human interactions in social networks,

their dynamics, and finally sequential analysis are interest-
ing and challenging tasks in data mining and social science.
Contacts patterns, for example, and their underlying mech-
anisms, e. g., [13, 15] are a classic topic of social network
analysis. Also, the analysis of human behavioral and mobil-
ity patterns has received increasing attention recently, cov-
ering localization, human interactions, as well as proximity
and mobility patterns, cf., [23, 4, 7, 9, 6, 17, 2, 12, 3, 1].
Macek et al. [12], for example, analyzed the dynamics of
participants’ contact patterns, and also the connection be-
tween academic jobs and status at a conference. Further-
more, Atzmueller et al. [2] described the dynamics of com-
munity structures and roles at conferences, while Kibanov
et al. [11] focused on their evolution. However, the analysis
in these contexts does not transcend to sequential mobility,
and modeling approaches. For that, important goals con-
cern, e. g., analysis [9], modeling and characterization [23],
and the predictability of mobility patterns [20]. In addi-
tion, there are several approaches for mining such patterns,
e. g., [7, 22, 10]. Furthermore, navigational patterns, as a
kind of mobility patterns in online systems, have been ana-
lyzed and modeled, e. g., [16, 19].

In contrast to those approaches, the proposed approach is
not only about comparing sequential patterns. We provide
a systematic approach for the analysis of sequential transi-
tion matrices derived given a probability distribution over
certain events. Thus, similar to evidence networks in the
context of social networks, e. g., [14], we can model accord-
ing transitions assuming a certain interpretation of the data
towards a sequential representation.

Singer et al. [18] propose HypTrails for comparing hy-
potheses on human trails. Like for DASHTrails, a trail
is represented by a sequence of transitions between states.
Originally, HypTrails has been applied to click data on the
web and recently to geo-spatial trajectory data [5], but no
work has been proposed that incorporates probability distri-
butions for deriving transitions with a Markov chain model-
ing [19] interpretation so far. Hence, DASHTrails enables an
extended modeling approach compared to HypTrails, while
utilizing its Bayesian inference [21, 19] technique.

With respect to our human mobility example, relation-
ships between traffic accidents and other influcence factors
like weather and lightning conditions have been reviewed in
[8]. In contrast to that, our work is not about prediction,
but on the assessment of certain (complex) hypotheses in
order to identify those that explain the observed data best.

3. METHOD
In the DASHTrails approach, we integrate modeling and

analysis of transition matrices given a probability distribu-
tion of certain states (events). We assume a discrete set
of such states Ω (without loss of generality Ω = {1, . . . , n},
n ∈ N, |Ω| = n). We derive the transition matrices (model-
ing transitions between the respective events) using a certain
transition modeling function τ : Ω × Ω → R. For that, we
utilize the given probability distribution, e. g., concerning
frequencies of page views, human presence in a certain loca-
tion, or alarms in a sensor network. The transition modeling
function τ captures a certain interpretation of the probabil-
ities, e. g., based on flow-based mechanisms.

Figure 1: Our example compares a transition matrix
derived from car accident claims (observed data) to
two hypotheses in order to identify the one which
explains the accident claims best: random driver
hypothesis (null model), or car trajectory model.

Using τ , we can model derived matrices corresponding to
the observed data, e. g., given densities on accidents on a
spatial grid, as well as hypotheses on these trails. In our ex-
ample, these correspond, e. g., to accident transition prob-
abilities between the individual grids. For trails, we need
to map the transition matrices into derived counts in rela-
tion to the data; for hypotheses we provide the (normalized)
transition probabilities. For assessing a set of hypotheses
that consider different transition probabilities between the
respective states, we apply HypTrails [18] for comparing a
set of hypotheses representing certains beliefs with respect
to an (observed) transition matrix. Please note, that Hyp-
Trails can be seen as a special case of DASHTrails, if we
only consider explicitly observed trails, since then we do not
need to apply our distribution-adapted modeling approach.

3.1 Overview
Given data for constructing trails and a set of hypotheses,

we perform three steps, exemplified for our case study as
shown in Figure 1; the extension to other domains, e. g., web
pages and view counts, or event counts on sensor networks is
straight-forward. Below, we present a behavioral analytics
example in the domain of human mobility.

1. Modeling: Determine a transition model given the re-
spective probability distribution using a transition mod-
eling function τ : Ω × Ω → R . Transitions between
sequential states i, j ∈ Ω are captured by the elements
mij of the transition matrix M , i. e., mij = τ(i, j) .

2. Generation: Collect sequential transition matrices for
the sequential trail and hypotheses. Obtain a tran-
sition matrix M specifying the sequential transitions
given the respective transition model τ .

3. Estimation: Apply HypTrails, cf., [18] on the given
trail transition matrix and the respective hypotheses,
and return the resulting evidence.

In the estimation step, we apply the core Bayesian esti-
mation step of HypTrails for comparing a set of hypotheses
representing beliefs about transitions between states. Be-
low, we describe how we construct the transition matrices
for modeling and analysis of distribution-adapted sequential
hypotheses and trails.
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Figure 2: Example: Spatial distribution of accident
claims for the city of Rome (left) and its downtown
area(right). Darker regions indicate a higher density
of accident claims per grid.

3.2 Modeling Approach
For modeling sequential hypotheses and trails, we consider

a sequential interpretation (Markov process) with respect
to the targeted transition probabilities (Markov chain). As
outlined above, this results in a transition matrixM between
a set of states Ω. In the case of mobility trails, these can,
for example, correspond to spatially-layouted grids.

For explicitly observed trails as sequences of certain states
we can simply construct transition matrices counting the
transitions between the individual states, e. g., correspond-
ing to the set of points in a grid. Then, τ(i, j) = |suc(i, j)| ,
where suc(i, j) denotes the successive sequences from state
i to state j contained in the trail. In contrast, for deriv-
ing transition matrices from a probability distribution over
certain events, we need to apply a more complex modeling
approach.

Intuitively, when deriving the transition matrices, we can
construct transitions between neighboring grids, for exam-
ple, with increasing (or decreasing) density. Thus, we as-
sume flow-based processes, such that transitions occur sim-
ilarly to gradient ascent in the distributions. By intuition,
probability flows along the grids towards the regions with
high density. Then, we can test whether we can find evi-
dence for explaining these transitions. Figure 3 shows an
example of the spatial distribution of accident claims in the
city of Rome: The figure indicates the regions with higher
(and lower) densities, such that we can intuitively spot the
transitions with increasing density. Figure 3 visualizes this
idea using the spatial event information (accident claim fre-
quencies): The arrows show the transitions with increasing
density. Intuitively, these are the transitions that we model
using the given transition modeling function τ utilizing the
information contained in the events and their distributions.

3.3 Matrix Construction
For generating transition matrices, we utilize the given

probability distribution on certain events. In the case of
time-stamped events, we can aggregate data by a sliding
window in order to provide different detail levels, e. g., by
aggregating data per day. Without loss of generality, we
can then convert non-sequential data (e. g., accident claim
data) into a transition matrix by counting frequencies of
accident claims within the respective sliding window position
and modeling these distributions. Furthermore, our mobility
example also uses a pre-specified grid of states.

Figure 3: Example for modeling spatial (grid-based)
transitions using accident frequencies (for Rome).

3.3.1 Transition Modeling
Formally, let G = {g1, g2, ..., gn} be a set of grids (and

accordingly Ω = {1, 2, . . . , n}, assuming a suitable bijection)
with a neighborhood defined by the function:

adj(gi, gj) =

{
1 if grid gi is adjacent to gj

0 otherwise

Furthermore we define the functions freq(gi) to count the
number of data points within a grid (in a time-based analy-
sis: relative to the current sliding window position). Using
τ as described below, we construct the |G| × |G| transition
matrix M with the entries mij for transitions between grids:

mij = adj(gi, gj) · δ(gi, gj) ,
with

δ(gi, gj) =
freq(gj)− freq(gi)∑

gk∈G freq(gk)
.

We will refer to this case as a linear transition. Intuitively,
mij will be 1 when we have a transition from grid gi to gj
with maximum increasing frequency, i. e.,

freq(gi) = 0, and freq(gj) =
∑
gk∈G

freq(gk) .

In contrast mij will be -1 when we have a transition from
grid gi to gj with maximum decreasing frequency, i. e.,

freq(gi) =
∑
gk∈G

freq(gk), and freq(gj) = 0 .

For the linear function we observed that transitions could
have a value near zero because of small variance in the fre-
quency distributions of the grids. To account for this prob-
lem, we also investigated other transitions by transforming
mij with a non-linear function.
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Figure 4: Exemplification of different logarithmic
transformation options.

We can perform, e. g., a logarithmic transformation to
have a larger “spread”of the values across the domain range,
i. e., giving smaller differences in the frequencies a higher im-
pact. The transformation for a given base b is given as:

m′
ij(b) = sign(mij) · log(|mij |+ 1)

log(b)

Different transformation options are shown in Figure 4, demon-
strating the effects of parameter b in order to have a larger
weight also for smaller differences between two distributional
points.

Finally, we map the values v of the matrix entries mij

(and m′
ij(b), respectively) from the range [−1, 1] to [0, 1].

This can be done by applying the function

standardize(v) =
1

2
· (v + 1) ,

or by strictly taking the negative neg(v) or positive pos(v)
values. The latter allows us to interpret our gradient ascent
idea rather strictly, by focusing on increasing frequencies.
After that, we normalize M as outlined above.

pos(v) =

{
v if v > 0

0 otherwise
, neg(v) =

{
−v if v < 0

0 otherwise

3.3.2 Null Model
In our experiments we also used a random model (e.g.

random driver with equal distributed weight) as a (lower
bound) base line. We define the |G|× |G| random transition
matrix R by computing:

rij =

⎧⎪⎨
⎪⎩
( ∑
gp,gq∈G

adj(gp, gq)
)−1

if adj(gp, gq) > 0

0 otherwise

4. CASE STUDY
In the following, we describe first results of an example

case of the proposed approach using a real-world dataset in
the mobility domain. Below, we first describe the dataset
and the applied data preprocessing steps. After that, we
describe and discuss the results in detail.

4.1 Dataset
We utilized data from the Telecom Italia Big Data Chal-

lenge 2015, including about 56 GB of floating car data in
seven different cities (Bari, Milano, Napoli, Palermo, Roma,
Torino, Venezia), i. e., trajectories (ordered sequences of lo-
cations/points) of different vehicles in those cities arranged
in different trips per car. Additionally, raw car accident
claim data with a total of about 1 MB was provided denot-
ing when and where an accident had occurred. In addition,
the dataset contained also information about the individual
layout of the grids for the different cities.
After preprocessing, we obtained an extended accident

claim dataset of about 77 MB, and a floating car dataset of
about 4.3 GB modeling the car trajectories. Both datasets
were anonymized and contained the information per day of
the week as temporal context information. Table 1 provides
an overview on characteristics of the data.

Table 1: Description of the used data of the Telecom
Italia Big Data Challenge 2015: For each city, the
table shows the grid size, the number of car accident
claims and the number of trips corresponding to the
car trajectories.

Grid Size No. Claims No. Trips
Bari 144x144 2836 4787547
Milano 1419x1419 4739 6259796
Napoli 535x535 6657 11822672
Palermo 165x165 1799 3250460
Roma 928x928 7031 7229498
Torino 571x571 3147 3273889
Venezia 496x496 881 1365384

4.2 Modeling Transition Matrices
We applied the process described above for transition mod-

eling and matrix generation using the spatial information
about the grid layout as given in the dataset.

4.2.1 Car Accident Claims Data
Using the accident claims data, we applied the transition

modeling step outlined above, and obtained transition ma-
trices for the different cities accordingly relative to the re-
spective claims distributions. Also, since a trail should be
explained best by an according hypothesis, we considered
a claims hypothesis, i. e., that transitions between grids are
distributed by insurance claims from car accidents.

4.2.2 Car Trajectory Data
For the car trajectory hypothesis, we made use of the given

sequential car trajectories as sequences of grids.
Let

Si = [s1, s2, ..., sm]

with si ∈ G be a sequence of grids (e.g. for a floating car
trip) and Si(n) denote the n-th element of the sequence.
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Figure 5: Exemplary results for Milano (MI) and Torino (TO). The modeled car accident claims transitions
(Claims) are much better explained by the car trajectories (Float/Car) than by the null model (Random) –
for increasing degree of belief (parameter k) On the right, we observe the effect of the log2 transformation.

Furthermore, let

S = {S1, S2, ..., Sn}
be the set of all sequences (in a time-based analysis: within
the respective sliding window position, e. g., all trips within
the morning rush hour). We define the following function to
count successive sequence elements:

suc(Sv, gi, gj) = |{e | gi = Sv(e) ∧ gj = Sv(e+ 1)}|
The |G| × |G| transition matrix F for trajectory data is

then computed by:

fij =

∑
Sv∈S suc(Sv, gi, gj)

argmaxgj∈G

∑
Sv∈S suc(Sv, gi, gj)

4.2.3 Null Model
We constructed a null model using the random driver hy-

pothesis described above, utilizing the grid information, such
that transitions between grids are uniformly distributed.

4.3 Results and Discussion
In our experiments, we investigated how good the claim

data fit with the car trajectory data. Thus, we modeled a
derived transition matrix concerning the accident claim dis-
tribution, and according transition matrices for the car tra-
jectory data as hypotheses, for each city. A trail should be
explained best by an according hypothesis, therefore we also
included an according accident claims hypothesis (using the
derived claims transition matrix) for comparison. In addi-
tion, we applied the null model given by the random driver.
Given the observed (claims) data, we expected the floating
car hypothesis to be between both hypotheses (claims, ran-
dom driver) – modeling transitions between grids according
to car trajectories. Intuitively, the closer the evidence of the
floating car hypothesis to the claims hypothesis, the better.
This provides us with an indication how good the insurance
claims can be explained by transitions in the car trajectories.

Results can be observed in Figure 5, exemplarily shown
for the cities Milano (MI) and Torino (TO) - the results for
the other five remaining cities yielded similar trends.
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Figure 6: Example of the logarithmic transforma-
tion for Milano (MI): Three transformed car ac-
cident hypotheses compared to the car trajectory
trails, for increasing belief (k).

Overall, the obtained evidence values indicate a reason-
able fit of the floating car hypothesis and the accident claims’
trails for the different cities. The floating car hypotheses de-
rived from the car trajectory data scores better (in terms of
evidence) than the random driver, indicating that the acci-
dent claims can indeed be explained by floating car data to a
certain extent. Furthermore, we observe the derived claims
hypothesis as an upper bound compared to the floating car
hypothesis which also supports the validity of our modeling
approach. In addition, the (logarithmic) transformation op-
tions can be used for targeted adjustments with respect to
the transitions – with the effect of improving the relative
evidence compared to the linear transformation. Figure 6
also shows an example of three transformed hypotheses.
These results already indicate the potential of DASHTrails

for distribution-adapted modeling and analysis: As a data-
driven approach, DASHTrails provides a powerful tool –
grounded on Bayesian estimation [18] – for assessing influ-
ence factors with respect to derived and observed data.



5. CONCLUSIONS
In this paper, we presented a systematic approach for

modeling and analysis of distribution-adapted sequential hy-
potheses and trails. Using the generated transition matrices,
evidence for different hypotheses (e. g., based on potential
influence factors) can be estimated and analyzed in a data-
driven approach that is statistically grounded. Furthermore,
we demonstrated the applicability of the proposed approach
by first results in the context of real-world urban mobility
data from the Telecom Italia Big Data Challenge 2015.

We are currently extending the approach into diverse sce-
narios, e. g., for modeling and analyzing complex heteroge-
neous networks (as complex graph structures) in industrial
production contexts, where e. g., connections between sen-
sors (assets), alarms, and human (operator) actions are ana-
lyzed. Here, the fit of certain hypotheses from dynamic and
static behavior (represented by according hypothesis) in the
corresponding log data can be modeled and analyzed using
DASHTrails.

In future work, we aim to investigate further transition
modeling adaptations in more detail, e. g., for the applica-
tion and extension of the approach towards network-structured
and complex graph data and according interpretation mech-
anisms. Furthermore, we also aim to extend the approach for
analyzing combinations of hypotheses and temporal (prop-
agation) processes, and their introspection.
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