
This is a preprint of a Chapter in: Loreto et al. (eds.) Participatory Sensing, Opinions
and Collective Awareness. Springer Verlag, Berlin/Heidelberg, Germany. In Press

Chapter 6
Collective Sensing Platforms

Martin Atzmueller1, Martin Becker2,3, and Juergen Mueller1,3

Abstract This chapter provides an overview of web-based information and com-
munications technology platforms that collect and display sensor based information.
We focus on collective sensing platforms that allow to extend the collected sensor
information, e. g., using tags or other annotations. We provide an overview on such
platforms and discuss critical issues such as big data and sensor cloud storage. Fur-
thermore, we discuss specific technological challenges, covering the complete data
cycle from the smartphone application to the web system, and its effectiveness.

6.1 Introduction

Collectively organized information like citizen science applications using sensors
– as a form of sensor-based crowdsourcing – enable a variety of scientific as well
as industrial applications [28] in addition to enhancing our understanding of certain
phenomena for the overall benefit of human knowledge and science. The collected
data of such applications and its embedded collective intelligence [2, 36, 38] can
then be leveraged for enhancing methods in various application contexts, e. g., for
recommendations, various resource optimization problems, or for obtaining insights
into social interactions, e. g., [31, 40–42], see also Chapter “Observing Human Ac-
tivity through Sensing” by Gautama et al. With the advent of ubiquitous and mobile
computing, many new applications have been designed for mobile devices enabling
people to record environmental data (light, noise, etc.) by making use of embedded
sensors, such as a microphone, camera, accelerometer, gyroscope, and GPS receiver.
Hence, methods and techniques of flexibly acquiring and handling this data play a
central role in paving the way towards behavioral shifts within large citizen popula-
tions. In this chapter, we provide an overview on collective sensing platforms, and
discuss critical issues such as big data processing and sensor cloud storage.

University of Kassel, Research Center for Information System Design · University of Wuerzburg,
Data Mining and Information Retrieval Group · University of Hannover, L3S Research Center

1



2 Martin Atzmueller, Martin Becker, and Juergen Mueller

The remainder of this chapter is organized as follows: Section 6.2 provides an
overview on aspects concerning collective sensing. After that, we summarize issues
of big data processing in Section 6.3, and sensor cloud storage aspects in Section 6.4.
Next, we discuss specific platforms in Section 6.5. Finally, Section 6.6 concludes the
chapter with a summary and outlook on interesting future directions.

6.2 Overview

In the following, we provide a brief overview on aspects concerning collective sens-
ing. This includes a brief review of the involved topics, as well as platforms. We
will discuss these in more detail in the following sections, including the respective
platforms. In addition, we discuss issues of big data processing in the context of data
analytics, data processing and data management. Furthermore, we discuss important
aspects of storage in the context of collective sensing.

Resch [44] defines collective sensing as “analyzing aggregated anonymized
data coming from collective networks”, including systems like Flickr, Twitter,
Foresquare, and the mobile phone network “collective networks”. The focus is
mainly subjective data created by users such as comments, impressions, or percep-
tions. Blaschke et al. [23] takes a more general approach and proposes “interoper-
able, standardized data fusion options” to be the key feature to collective sensing
while not being restrictive about the data sources. Similar to Resch, the emphasis is
on the ability to create “new information [. . . ] through a combination of individual
data-threads”. Personal sensing is mentioned as a part of collective sensing. Vu-
ran et al. [47] define collective sensing in the context of wireless sensing networks
(WSN), with the main feature of gaining knowledge from collectively gathered in-
formation. The term “collective sensing” is also used in robotics with the same con-
notation [22]. Thus, all definitions of collective sensing share the same underlying
principle: combining a possibly large set of data streams from different sensors in
order to yield information, which is not extractable from any single data stream. The
most general approach does not restrict the data types being combined.

In order to leverage the wide variety of possible data streams, data must be col-
lected, stored, and provided to applications, which aim to extract knowledge from
the collected information. To this end, middleware platforms, which centralize the
process of storing, processing, and accessing the collected data, such as Xively,
ThingSpeak, or Ubicon/EveryAware, have emerged. Such platforms must handle
certain layers of the collective sensing process, which include to certain extents:
data definition (what kind of data can be accessed or stored), data alignment (store
relations between data points, e. g., time, type, etc.), data processing (aggregation
and evaluation of data) and data communication (querying and notification flexi-
bility, access rights, visualization). At the data definition layer there are different
sensing paradigms to handle, e. g., remote sensing, in situ sensing, stationary sens-
ing, mobile sensing, citizen science as mobile, people driven sensing, densely vs.
sparse, high vs. low quality, subjective vs. objective, etc.



6 Collective Sensing Platforms 3

All those paradigms must be handled so that the incoming data can be stored opti-
mally for a possibly large set of different processing algorithms, and can be flexibly
accessed later. The data alignment layer is closely related to data storage. Some
data alignment aspects can be handled by standardized data formats. Other aspects
of data alignment must be handled by post-processing the data, which is covered by
the processing layer. The processing layer itself includes data alignment, but also
prepares data for access and visualization. On top of that, data mining algorithms
can be applied to aggregate and evaluate data and extract knowledge, which must
also be prepared for easy access. Finally, the access layer provides the interface to
access the processed data by applications and individual users. It may also push data
to recipients. At this level it is important to correctly handle access rights as well.

6.3 Big Data Aspects

With the emergence of large-scale data collection, e. g., provided by web-based ap-
plications, social computing, ubiquitous computing, mobile computing, and collec-
tive sensing, the storage, processing and abstraction of big data is one of the current
key research topics [24, 32].

In this section, we will focus on big data processing, aggregation, and abstraction
aspects. In particular, we focus on the Lambda architecture [39] for handling big
data, the Map/Reduce framework [25], and other challenging aspects in the context
of collective sensing platforms [20]. In the following, we first outline some typical
system properties and challenges in Big Data systems, before we briefly summarize
the Lambda architecture, and the Map/Reduce framework.

6.3.1 Overview

According to the four V criteria [32] (i. e., velocity, volume, variety, and veracity),
big data requires efficient methods to handle the rapidly incoming data with ap-
propriate response time (velocity), the large number of data points (volume), many
different heterogeneously structured data sources (variety), and data sources with
different quality and provenance standards (veracity). Therefore, there are several
challenges that have to be addressed, such as the handling of structured and unstruc-
tured data, metric vs. qualitative data, information extraction for textual data, as
well as integration techniques for the comprehensive set of data sources. For semi-
structured data, e. g., rule-based methods [11,33] and expectation-driven approaches
can often be successfully applied (e. g., [12, 34]). Possible extensions include tech-
niques for handling unstructured data, and according learning methods.

Modeling large and heterogeneous data in a data-warehouse [48] requires ac-
cording modeling and indexing techniques. These can be implemented, e. g., using
the Map/Reduce framework [25] summarized below.



4 Martin Atzmueller, Martin Becker, and Juergen Mueller

Before starting with a data processing framework, different questions and re-
quirements need to be clarified, e. g., according to the types, structure and accuracy
of data that is to be implemented, which can often be supported using exploratory
approaches, e. g., [3]. For subjective data, e. g., adequate validation and introspec-
tion methods, e. g., [6,15,16] often need to be applied in order to ensure a sufficient
data quality in the further big data processing pipeline. Then, also data alignment,
aggregation, and analysis requirements need to be defined.

Furthermore, in addition to data processing frameworks, big data as obtained
by collective sensing solutions can be turned into smart data by the integration of
semantic information, cf., [20]. This can also help in determining aspects of data
quality, validity and trust, e. g., considering provenance information of the data, see
also Chapter “Privacy, Trust and Incentives in Participatory Sensing” in this part of
the book, for a discussion on socioeconomic issues. Considering the four V criteria
discussed above, especially the velocity aspect also requires support for continuous
semantic annotation, in order to ensure valid and high quality data.

6.3.2 Lambda Architecture

According to Marz and Warren [39], system properties of a Big data system typi-
cally exhibit the following system properties: They should provide a general data
framework that is extensible, enables ad-hoc queries with minimal maintenance, and
debugging capabilities. For data storage, this implies mechanisms for handling the
complexity of data, e. g., for preventing corruption issues and maintenance issues.
Further, robustness and fault-tolerance should be enforced, as well as low latency
reads and updates. This also points to scalability issues concerning horizontal and
vertical scalability, and the option of obtaining intermediate results and views, ac-
cording to some concept of reproducibility.

The lambda architecture incorporates these system principles and especially
tackles the concept of reproducibility of results and views for dynamic process-
ing. Essentially, it allows to compute arbitrary functions on arbitrary datasets in
real-time [39]. The lambda architecture is structured into several layers briefly sum-
marized in the following:

• Batch layer: continuously (re-)computes batch views using the immutable mas-
ter data records.

• Serving layer: indexes query view, performs updates, and provides access to the
dataset. Only batch updates and random reads are supported, no (distributed)
writes.

• Speed layer: high-latency updates; fix batch layer lag; needs fast algorithms for
incremental updates.

• Complexity isolation: random writes only need to be supported in speed layer.
Results are then merged with the precomputed data from the batch layer.



6 Collective Sensing Platforms 5

In the next section, we briefly summarize the Map/Reduce framework, that can
be utilized for implementing, e. g., the batch layer.

6.3.3 Map/Reduce

Map/Reduce [25] is a paradigm for scalable distributed processing of big data.
Its core ideas are based on the functional programming primitives map and re-
duce. Whereas map iterates on a certain input sequence of key-value pairs, the re-
duce function collects and processes all values for a certain key. The Map/Reduce
paradigm is applicable for a certain computation task, if this task can be divided
into independent computational tasks, such that there is no required communication
between these. Then, large tasks can be split up into subtasks according to a typical
divide-and-conquer strategy.

Map/Reduce is a powerful paradigm for processing big data – with a prominent
implementation given by the Hadoop framework1 supported by the HDFS filesys-
tem, and big data databases such as Hive2 and HBase3. Map/Reduce tasks can also
be utilized for batch processing in the Lambda architecture discussed above, such
that continuous views are (re-)computed by the respective Map/Reduce jobs. These
batch tasks can then be complemented by tools for distributed realtime computation
like the Storm framework4, or the Flink5 platform. This allows a comprehensive
data processing pipeline for big data in the Lambda architecture, combining real-
time together with Map/Reduce techniques. Alternatives to Map/Reduce, especially
considering in-memory computation with large datasets include, for example, the
Spark6 [50] and Flink platforms.

6.4 Sensor Cloud Storage Aspects

As outlined above, collective sensing usually goes along with a huge amount of col-
lected data that need to be organized and stored in an efficient way. The data are
usually of different data types, which increases the complexity, i. e., they exhibit
a large variety as described above. Also, there are many areas that require con-
tinuous information in order to ensure high quality services and/or products, e. g.,
areas like healthcare, manufacturing, or environmental monitoring. Wireless sensor
networks (WSN) provide this continuous information. They consist of distributed

1 http://hadoop.apache.org/
2 http://hive.apache.org/
3 http://hbase.apache.org/
4 http://storm.apache.org/
5 http://flink.apache.org/
6 http://spark.apache.org/



6 Martin Atzmueller, Martin Becker, and Juergen Mueller

nodes that gather data for a given purpose, creating a huge amount of data that has
to be stored and processed. However, they suffer from different disadvantages that
are subject of recent research: limited memory, energy, and computation capabilities
to name just a few of them [1, 43].

Cloud computing offers virtually unlimited storage, processing power, no energy
issues, and more. Therefore, a combination of both, WSN and cloud computing, ad-
dresses the previously mentioned issues [27,49]. In this context, relational databases
are not capable to handle the data efficiently in the cloud. Therefore, NoSQL
databases have emerged, utilizing a hashed key-value storage. NoSQL is able to
deal with very large semi-structured data – with the following challenges [29, 30]:
• High performance: The data must be quickly accessible, independent of the

amount of stored data. Reading and writing must happen in real-time, especially
in high concurrency scenarios.

• Huge storage: The most basic need is to store all data. This includes large
partitions on the one hand and a great extent of distribution on the other hand.

• High scalability: The infrastructure has to be able to increase with a growing
number of collected data and participants. On the other hand, it should be able
to reduce the required infrastructure when the share is decreasing.

• High availability: Data should be accessible from everywhere. This enables
flexible monitoring and analysis of the data collected so far.

• Complex queries: In order to enable complex data analysis, an advanced query
language has to be provided. It has to handle multiple tables with lots of data
across multiple distributed platforms.

• Resource optimization: Freeing sensor nodes from some of their tasks like
storing and processing of data, reduces their complexity. This can lead to
cheaper sensor nodes, a reduction in power consumption, and a maximization
of the networks’ life time.

• Lower management and operational costs: Proprietary devices are often not
able to communicate between different vendors. Collecting all data in a central
repository with a standardized protocol can overcome this.

Zheng et al. [51] propose a cloud storage platform for pervasive computing envi-
ronments. The authors address the limitations of single sensor nodes, as mentioned
before, and present an architecture to solve them, mainly focusing on proprietary
daily live sensors like smartphones or media players. However, their approach is
too narrow to support wider ranges of sensor values like environmental monitoring
data. In contrast, a modern sensor cloud storage should support literally every kind
of data and provide as flexible access to it as possible. An exemplary generic and
highly extensible data model for sensor cloud storage has been implemented, for
example, in the context of the EveryAware project described below.

Another important dimension of sensor data storage and access concerns the is-
sue of privacy. While this issue is very relevant, it is nevertheless not very prominent
throughout the majority of the available frameworks and platforms. A notable ex-
ception is the Ubicon software platform which is discussed in the next section. It
provides flexible privacy settings for data access, implementing according to guide-
lines for the socio-technical design of ubiquitous computing systems, cf., [7, 19].



6 Collective Sensing Platforms 7

6.5 Collective Sensing Platforms

There are a number of frameworks and toolkits supporting collective sensing on dif-
ferent levels regarding the layers discussed in Section 6.2. In this section, we cover
several such platforms. We compare their capabilities and highlight differences. In
particular, we focus on the Ubicon [4, 5] software platform for ubiquitous social
computing, and the conceptual data model devised for the EveryAware backend
built on top of Ubicon [5, 21]. Both are available under an open source license7.

In the following, we start with a description of Ubicon, and provide and overview
on its system architecture. After that, we discuss the conceptual data model used in
EveryAware, as an example of a generic and highly extensible data model for sensor
data. Finally, we summarize several related platforms and discuss them in context.

6.5.1 Ubicon

The Ubicon software platform [4, 5] aims at enhancing ubiquitous and social net-
working, as a platform for flexibly implementing applications in that context. It aims
at supporting applications at the intersection of ubiquitous and social computing,
integrating functionalities of both environments, providing efficient and effective
for building applications in areas like ubiquitous and social computing, internet of
things, participatory sensing, and social crowd sourcing.

Ubicon provides a number of components for data collection, processing, and
serving. At its core, it provides the means for creating and hosting customized ap-
plications. Grounded by fundamental principles of big data storage, processing, and
analytics [39], Ubicon features flexible ways for adaptions and extensions in the re-
spective applications. Below, we first present the general system architecture, before
we describe the specialized conceptual data model implemented for the EveryAware
backend. This model provides for easy implementation of collective sensing mod-
ules, as exemplified by the EveryAware applications described in the next chapter.

6.5.1.1 System Architecture

Figure 6.1 shows a conceptual overview of the system’s architecture. From a data-
centric view, Ubicon implements a data storage, processing, and serving pipeline
similar to the lambda architecture [39] for handling and managing big data. In that
way, core concepts such as immutability and recomputation are transparently en-
abled by the platform. Accordingly, the data flow is organized in the layers im-
mutable data storage, data processing, and data serving providing flexible and
transparent access to the data, e. g., for implementing big data analytics using
Map/Reduce [25]. The functionality for each of these layers is backed by the Ubi-

7 https://bitbucket.org/ubicon/ubicon



8 Martin Atzmueller, Martin Becker, and Juergen Mueller

con core which provides canned functionality, i. e., framework classes and inter-
faces, which can be utilized throughout different applications. For more details on
the architecture, see Atzmueller et al. [5].

B i P i

Ubicon Layer Architecture Ubicon Core

Immutable
Data Storage

• Basic Privacy 

• Data Analytics

Data Processing

• Generic Data Logic

• Query APIData Processing • Query API

• Social Connectors

Data Serving
• User Management

• Web CoreWeb Core

Fig. 6.1 Conceptual overview on the architecture of the Ubicon software platform [5].

Overall, Ubicon enables the observation of physical and social activities. Typi-
cally, applications utilize the provided core components, interfaces, and classes and
extend the overall workflow according to their individual application requirements,
as also described in the chapter “Applications for Environmental Sensing in Ev-
eryAware” by Atzmueller et al. in this part of the book, for the applications of the
EveryAware web application backend built on top of Ubicon. Other applications
include, for example, the Conferator [8], a social conference guidance system, and
MyGroup, an application for enhancing social interaction in working groups. Both
use active SocioPattern8 RFID tags, which allow to localize participants and to col-
lect their face-to-face contacts. This allows for highly personalized profiles in the
systems, which can be applied, e. g., for community mining and for generating rec-
ommendations or notifications. The tags allow the coupling of real world (offline)
data, i. e., face-to-face contacts, with the online social world, e. g., given by online
interactions within the system or in linked online social networks. Using collective
sensing data obtained using the Conferator system, Atzmueller et al. [9] analyze the
interactions and dynamics of the behavior of participants at conferences; similarly,
the connection between research interests, roles and academic jobs of conference at-
tendees is further analyzed in Macek et al. [37]. Connecting collective sensing data
to online data, Scholz et al. [46] analyzed the predictability of links in face-to-face
contact networks and additional factors also including online networks.

8 http://sociopatterns.org/



6 Collective Sensing Platforms 9

There are several related frameworks and platforms, e. g., concerning context-
awareness. The Context Toolkit [26,45], for example, provides a conceptual frame-
work for the rapid development of context-aware applications. Similarly, Bannach et
al. [17,18,35] present the context recognition network toolkit/toolchain for building
context-aware pervasive applications.

Compared to these toolkits, Ubicon focuses at supporting applications that con-
sider both ubiquitous and social aspects. In addition, Ubicon is no general toolkit
for rapid prototyping, but aims at providing general framework support for imple-
menting and hosting ubiquitous and social applications in high-availability online
scenarios. This is achieved by providing a layered template architecture with an
efficient and effective data storage and processing chain. Then, applications imple-
ment this template using the modules provided by the Ubicon core components. In
addition, applications can also make use of the same platform components, such
that they are hosted on the same server for potentially sharing data and providing an
integrated user experience across applications.

6.5.1.2 Conceptual Data Model used in EveryAware

The EveryAware project facilitates the combination of sensor and subjective data,
i.e., sensor measurements like noise or air quality related recordings and impres-
sions, perceptions and social context. The platform enables users to collect and vi-
sualize environmental information and at the same time augment the collected data
with arbitrary information explicitly supporting subjective context.

According to these requirements, we designed a specialized extensible data
model. In the following, we first introduce the core data model which enables the
combination of subjective and objective data and then give a short introduction into
the EveryAware access and visibility concepts.

Core Data Model

The Ubicon framework provides several building blocks to support collective sens-
ing that can be embedded into its generic data storage, processing, and serving
pipeline as introduced above. In addition, it implements structures for user manage-
ment and privacy handling. In order to support arbitrary sensor data, a specialized
data model has been defined in the context of the EveryAware project. This also
especially addresses the integration of subjective data, such as user perceptions or
tags, which was one of the goals of the EveryAware project. Thus, the conceptual
layer of EveryAware defines corresponding basic entities and features.

Core concepts are data points (with descriptions), sessions, and feeds. Data points
and sessions can be extended by other data points. Each data point consists of a set
of fixed description attributes in addition to the actual data. These attributes ensure
the processability as well as dynamic querying of arbitrary content. The description
attributes are divided into three categories:



10 Martin Atzmueller, Martin Becker, and Juergen Mueller

• Meta attributes are attributes which allow to keep track of data independent
information like received time, recording time, device ID, or session ID.

• Geo attributes make it possible to record the location of the sample being taken
including longitude and latitude as well as accuracy and the provider of the
location fix.

• Content attributes describe the content and its format. They help the system to
further process the data. These attributes include the data type (e. g., air, noise)
and format (e. g., JSON, XML, PNG).

Based on these attributes it is possible to define a variety of concepts for augment-
ing the data and provide subjective or social context. These concepts are sessions,
extensions and feeds as listed below.

• Sessions are collections of data points limited to a fixed timespan. Sessions
allow to introduce semantic entities such as “my way to work” or “a stroll in the
park”.

• Using extensions, data points as well as sessions can be extended with addi-
tional information using other data points. This makes the data representation
very flexible and inherently supports the augmentation of objective data with
a semantic context. One application is tagging. Sessions and data points can
be tagged by extending them using tag data points referring to the respective
data point or session IDs to be tagged. Tagging is not only restricted to actual
text-tags but can be any kind of data including videos, sound files, or air quality
measurement. Using this scheme, it is also possible to update data points as well
as sessions after they have been sent without losing the original data. Since no
raw data is deleted, this also allows to always access the version history of a
data point.

• Feeds can be used for organizing data points. A data point is always part of the
global feed, but can also be pushed into several other feeds. Users can contribute
to existing feeds or create their own ones. While useful for organizing data
points, feeds also allow to attach data points to real world entities such as major
events like music festivals, places like the Eiffel Tower, or portable things like a
smartphone. Feeds can be access restricted and a visibility level can be specified
for each data point in a feed.

Access & Visibility

As discussed above, privacy is a major concern for users of data collection plat-
forms. Therefore, adequate mechanisms and structures for privacy with respect to
storage, processing and data serving need to be implemented. From an application
perspective, this usually relates specifically to data access and visibility. Therefore,
we aim at providing access and visibility concepts that give the users fine-grained
control of what they want to share with others. To this end we base our model on
feed-wise access and further define visibility levels within feeds allowing the user
to choose if data can be accessed in detail or only aggregated with other data.



6 Collective Sensing Platforms 11

In general, feeds can be open or closed concerning read and write access, where
write access refers to the possibility of adding new data points to a feed. Open
feeds are accessible by everyone including anonymous users. Closed feeds are only
accessible by a limited set of users (i. e., members). The access restriction allows
users to create feeds and share them with friends or other interested users without
making their data publicly available.

Since users may want to contribute in different ways to the data collected within
feeds and corresponding statistics which might be derived from it, the EveryAware
concept introduces visibility levels for each data point in a feed.

There are four visibility levels:

1. Details allows everyone who has access to the feed to see the raw content as
well as the description attributes of the data point.

2. Statistics restricts the data point to be considered in user statistics derived from
the data points in the feed, e. g., average values for the corresponding user.

3. Anonymous restricts the data point to only be considered in overall statistics
derived from the data points in the feed, e. g., average values for an area or
timespan. No association with the user is possible.

4. None allows only the owner of the data point to access the data point and its
description attributes.

This scheme was introduced in order to allow users to share their data even if they
are concerned about single data points or user specific statistics being shared.

6.5.2 Other Platforms

After introducing Ubicon and EveryAware in detail, we now summarize character-
istics and features of several other platforms which support collective sensing. We
especially focus on the different data models and querying capabilities. Note that
regarding privacy, none of the systems includes access and visibility settings as pro-
posed by the EveryAware backend. Most other systems group their collected data
into feeds which can then be made accessible to other users, directly or by access
key. In this regard, EveryAware provides a more flexible way of granting access to
the shared data if correctly implemented. However, even EveryAware currently does
not provide explicit support for post-processing or anonymizing location data.

In the remainder of this section, we first outline the Xively platform. Afterwards,
we compare the other platforms with regard to corresponding similarities and dif-
ferences.



12 Martin Atzmueller, Martin Becker, and Juergen Mueller

6.5.2.1 Xively

On the data definition level, Xively 9 defines data points as pairs of timestamps
and values. Values can be any kind of textual input. Data points are grouped into
data streams, where a data stream usually represents a sensor or “channel” on a
device. Data streams are defined by a name, tags, the unit of the values, and a symbol
describing the unit. Tags are used for searching data streams. While unit and symbol
restrict the input of the data stream on a semantic level, they are not enforced when
uploading data. Data streams are then grouped together into feeds. Feeds usually
represent devices which are made of several sensors, e. g., a sensor box such as
the Air Quality Egg10. Each feed may have one location stream. Feeds may also
have several meta attributes like tags, a description, a website, or an associated e-
mail address. Based on their definition of data streams Xively offers visualization
capabilities for numeric streams. The definition of data streams is limited in a sense
that data alignment or coupling between streams of a device can only be achieved
based on timestamps, i. e., data streams are semantically independent.

Complex data types, as for example, accelerometer data consisting of a triple of
values, either need to be modelled as several data streams or by defining a string rep-
resentation used to set the value of the stream. The latter will break the visualization
capabilities and limit the possible set of queries. Xively does not offer any advanced
data processing besides calculating basic statistics of numeric data streams. On the
data communication layer, Xively offers several endpoints for querying data. Query
parameters include feeds, streams, and time intervals. It also defines a trigger API
which enables to push messages upon certain events, like receiving a new value or
when a value grows above a certain level. For device management, Xively features
mechanisms to efficiently deploy and manage batches of devices including access
restrictions based on API keys.

6.5.2.2 ThingSpeak

ThingSpeak11 has the same basic structure as Xively. The vocabulary is a little dif-
ferent: ThingSpeak defines channels (Xively: feeds), feeds (Xively: data streams),
and events (Xively: data points) as basic building blocks. We will use the Xively ter-
minology for clarity reasons. For ThingSpeak feeds are limited to eight data streams
extended by a location stream as well as a 140 characters long status stream. Each
data point actually is a tuple of eight values, one for each data stream, as well as a
location and a status message. This also allows to retrieve the tuple as a unit. Thus,
in contrast to Xively, data streams are not independent making data alignment easier
between data streams of the same feed. There is no additional meta-data like units
or tags attached to data streams.

9 https://xively.com/
10 http://airqualityegg.com/
11 https://thingspeak.com/



6 Collective Sensing Platforms 13

On the feed level several meta-attributes are available including a description,
tags, a URL, and a video. The missing tags on the stream level complicate the search
for data streams. Also, due to missing units as well as missing tags on the stream
level, additional knowledge is required when comparing individual data streams.
Just like in Xively data processing is limited. Querying data is based on time inter-
vals. Additionally, numeric values can be constrained by upper and lower bounds
and values can be summarized using different statistics like average, sum, or me-
dian. In addition, ThingSpeak allows to push data via Twitter or HTTP requests
when a data stream reaches a certain status.

6.5.2.3 Open.Sen.se

Open.Sen.se12 is very similar to Xively in how it organizes data. Just like in ThingS-
peak the vocabulary is slightly different but the semantics are the same: Open.Sen.se
defines devices (Xively: feeds), feeds (Xively: data streams), and events (Xively:
data points) as basic building blocks. Again we will be using Xively’s terminology.
Just like Xively a feed may contain several data streams where data points from the
same “sensor” are collected. As in Xively the streams are independent. No explicit
location stream is defined. Thus, when uploading a location (or any tuple based data
type), longitude and latitude must either be posted in different streams and those
streams must be aligned using the timestamp, or the location must be posted as a
custom character string (the documentation only shows numeric data values as in-
put).

The Open.Sen.se API13 does not allow to add tags or any descriptive content to
feeds or streams which makes collected data less understandable. Data points can
specify a unit, but this is not enforced. The request API allows to retrieve by data
feed or for each data stream separately. Simple constraints can be specified when
accessing the data, like “greater than”, “lesser than” or “equals”.

6.5.2.4 Exosite Portals

Exosite Portals14 is devided into two components: the One Platform15 which is the
backend used by the Portals component as backend. Portals is a web based API
managing One Platform resources. Both use different vocabulary, but in general
the structure consists of data ports (Xively: data streams) and data points. Data
ports are grouped together by clients which are not really an equivalent of feeds
in Xively since they are missing specific location streams and additional meta data.
Data points can be numeric or character strings. Binary data is also supposed to be

12 http://open.sen.se, accessed on 19.02.2014
13 http://open.sen.se/dev/, accessed on 19.02.2014
14 https://exosite.com/, accessed on 19.02.2014
15 http://support.exosite.com/hc/en-us/articles/200397956, accessed on 19.02.2014



14 Martin Atzmueller, Martin Becker, and Juergen Mueller

supported but this is not documented in the API16. Data streams are independent
and no explicit location stream is defined. Thus, as in Open.Sen.se, locations (just
like other tuple based data types) must be emulated.

There are two further concepts in Exosite Portals which are worth mentioning:
client hierarchies and data processing. As mentioned before clients in Exosite Por-
tals do not match feeds. Clients can contain any data port and data ports can be
part of any client. Exosite Portals can build hierarchies of clients. This feature is
used mainly for access restrictions. Furthermore Exosite Portals explicitly supports
data processing. When defining data ports it already allows to modify incoming
data in the fly, by using functions like module, addition, etc.. Further more it allows
to write custom scripts in the Lua scripting language and store results in new data
ports. When querying data from Exosite Portals a single data port is accessed. Clas-
sically, time intervals constraints are supported. Additionally simple downsampling
is supported. Exosite Portals also provides a powerful events and alert API enabling
to push data triggered by a large variety of triggers. Custom triggers are supported.

6.5.2.5 Other

There are other platforms taking similar approachs as Xively, ThingSpeak, etc.. In
the following, we provide more examples and sketch the main differences.

• SensorCloud17 focuses on an efficient binary data protocol. The website also
states efficient visualizations and custom analysis using scripting languages like
Octave.

• Device Cloud18 also allows to manage firmware updates of devices and focuses
on large sensor deployments and their maintenance.

• Eye on Earth19 takes a different approach, focusing on letting users create and
share custom maps.

• OpenIoT2021 is not a platform itself but a project focused on providing a com-
plete toolchain for internet of things deployments.

• Fulcum22 and EpiCollect are more focused on forms submitted by users than
on sensor data and the internet of things aspect which is a key theme in the
collective sensing aproach.

16 https://github.com/exosite/api/tree/master/rpc#identifying-resources, accessed on 19.02.2014
17 http://www.sensorcloud.com/
18 http://www.etherios.com/products/devicecloud/
19 http://www.eyeonearth.org/
20 http://openiot.eu/
21 https://github.com/OpenIotOrg/openiot/wiki/OpenIoT-Architecture
22 https://web.fulcrumapp.com



6 Collective Sensing Platforms 15

6.6 Conclusions

In this chapter, we have outlined several dimensions and specific aspects of col-
lective sensing systems including an overview on definitions of collective sensing
and state-of-the-art platforms. Furthermore, we discussed critical dimensions in this
context, i. e., aspects of big data analytics, processing, and management, as well
as sensor cloud storage. We discussed these issues in detail considering the server
applications, in particular the Ubicon software platform, cf., [4, 5], applied in the
EveryAware research project.

Overall, the presented systems mostly focus on data generated by sensors. No-
table exceptions are given by Ubicon, and the applications built on top of it, respec-
tively. For example, the EveryAware backend explicitly supports to augment data,
in particular for including subjective information like user perceptions or tags, and
supports it using a highly extensible data model for sensor data. Further examples
are the Conferator and MyGroup applications implemented using Ubicon which al-
low the annotation of (abstracted) sensor data [7].

These subjective and user driven aspects are very important in order to gain
deeper understanding of the processes and environments generating the data. For
example, an unexpected high value of temperature carries more value if a user
also provides the cause of such a measurement, the respective event, and its con-
text. Thus, the collected data can only be fully leveraged if information is collected
which allows to derive the data’s context and how it is to be interpreted. Future
platforms should directly support collecting such meta data and explicitly include
user feedback. In addition, these platforms should further try to interpret user feed-
back and extract joint information from the combination of subjective and objec-
tive data, also using exploratory tools and methods for getting first insights into the
data, e. g., [10, 13, 14].

References

1. Alamri, A., Ansari, W.S., Hassan, M.M., Hossain, M.S., Alelaiwi, A., Hossain, M.A.: A sur-
vey on sensor-cloud: Architecture, applications, and approaches. International Journal of Dis-
tributed Sensor Networks (2013). DOI 10.1155/2013/917923

2. Atzmueller, M.: Onto Collective Intelligence in Social Media: Exemplary Applications and
Perspectives. In: Proc. 3rd International Workshop on Modeling Social Media (MSM 2012),
Hypertext 2012. ACM Press, New York, NY, USA (2012)

3. Atzmueller, M.: Subgroup Discovery – Advanced Review. WIREs: Data Mining and Knowl-
edge Discovery 5(1), 35–49 (2015). DOI 10.1002/widm.1144

4. Atzmueller, M., Becker, M., Doerfel, S., Kibanov, M., Hotho, A., Macek, B.E., Mitzlaff, F.,
Mueller, J., Scholz, C., Stumme, G.: Ubicon: Observing social and physical activities. In:
IEEE International Conference on Cyber, Physical and Social Computing, CPSCom 2012,
Besancon, France, 20-23 November, 2012, pp. 317–324. IEEE, Washington, DC, USA (2012).
DOI 10.1109/GreenCom.2012.75

5. Atzmueller, M., Becker, M., Kibanov, M., Scholz, C., Doerfel, S., Hotho, A., Macek, B.E.,
Mitzlaff, F., Mueller, J., Stumme, G.: Ubicon and its Applications for Ubiquitous Social



16 Martin Atzmueller, Martin Becker, and Juergen Mueller

Computing. New Review of Hypermedia and Multimedia 20(1), 53–77 (2014). DOI
10.1080/13614568.2013.873488

6. Atzmueller, M., Beer, S., Puppe, F.: A Data Warehouse-Based Approach for Quality Man-
agement, Evaluation and Analysis of Intelligent Systems using Subgroup Mining. In: Proc.
22nd International Florida Artificial Intelligence Research Society Conference (FLAIRS), pp.
402–407. AAAI Press, Palo Alto, CA, USA (2009)

7. Atzmueller, M., Behrenbruch, K., Hoffmann, A., Kibanov, M., Macek, B.E., Scholz, C.,
Skistims, H., Söllner, M., Stumme, G.: Socio-technical Design of Ubiquitous Computing Sys-
tems, chap. Connect-U: A System for Enhancing Social Networking. Springer Verlag, Hei-
delberg, Germany (2014)

8. Atzmueller, M., Benz, D., Doerfel, S., Hotho, A., Jäschke, R., Macek, B.E., Mitzlaff, F.,
Scholz, C., Stumme, G.: Enhancing social interactions at conferences. it – Information Tech-
nology 53(3), 101–107 (2011)

9. Atzmueller, M., Doerfel, S., Hotho, A., Mitzlaff, F., Stumme, G.: Face-to-face contacts at
a conference: Dynamics of communities and roles. In: Modeling and Mining Ubiquitous
Social Media. International Workshops MSM 2011, Boston, MA, USA, October 9, 2011, and
MUSE 2011, Athens, Greece, September 5, 2011, Revised Selected Papers, Lecture Notes
in Computer Science, vol. 7472, pp. 21–39. Springer, Berlin / Heidelberg, Germany (2012).
DOI 10.1007/978-3-642-33684-3 2

10. Atzmueller, M., Doerfel, S., Mitzlaff, F.: Description-Oriented Community Detection using
Exhaustive Subgroup Discovery. Information Sciences 329, 965–984 (2016)

11. Atzmueller, M., Kluegl, P., Puppe, F.: Rule-based information extraction for structured data
acquisition using textmarker. In: Lernen, Wissensentdeckung und Adaptivität, LWA 2008,
Würzburg, Germany – October 06-08, 2008. Proceedings. University of Würzburg, Würzburg,
Germany (2008)

12. Atzmueller, M., Lemmerich, F.: VIKAMINE - Open-Source Subgroup Discovery, Pattern
Mining, and Analytics. In: Proc. European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases. Springer, Heidelberg, Germany (2012)

13. Atzmueller, M., Lemmerich, F., Krause, B., Hotho, A.: Who are the Spammers? Understand-
able Local Patterns for Concept Description. In: Proc. 7th Conference on Computer Methods
and Systems (2009)

14. Atzmueller, M., Mueller, J., Becker, M.: Mining, Modeling and Recommending ’Things’ in
Social Media, chap. Exploratory Subgroup Analytics on Ubiquitous Data. No. 8940 in LNAI.
Springer, Heidelberg, Germany (2015)

15. Atzmueller, M., Puppe, F.: A Case-Based Approach for Characterization and Analysis of Sub-
group Patterns. Journal of Applied Intelligence 28(3), 210–221 (2008)

16. Atzmueller, M., Puppe, F., Buscher, H.P.: Profiling Examiners using Intelligent Subgroup Min-
ing. In: Proc. 10th International Workshop on Intelligent Data Analysis in Medicine and Phar-
macology (IDAMAP-2005), pp. 46–51. Aberdeen, Scotland (2005)

17. Bannach, D., Amft, O., Lukowicz, P.: Rapid prototyping of activity recognition applications.
IEEE Pervasive Computing 7(2), 22–31 (2008). DOI 10.1109/MPRV.2008.36

18. Bannach, D., Kunze, K.S., Weppner, J., Lukowicz, P.: Integrated tool chain for recording and
handling large, multimodal context recognition data sets. In: 12th ACM International Con-
ference Adjunct Papers on Ubiquitous Computing, Ubicomp 2010, Copenhagen, Denmark –
September 26-29, 2010. Proceedings, pp. 357–358. ACM, New York, NY, USA (2010). DOI
10.1145/1864431.1864434

19. Baraki, H., Geihs, K., Hoffmann, A., Voigtmann, C., Kniewel, R., Macek, B.E., Zirfas, J.:
Towards Interdisciplinary Design Patterns for Ubiquitous Computing Applications. Tech.
rep., Research Center for Information System Design (ITeG), University of Kassel, Germany
(2014)

20. Barnaghi, P., Sheth, A., Henson, C.: From data to actionable knowledge: Big data challenges
in the web of things. Intelligent Systems 28(6), 6–11 (2013). DOI 10.1109/MIS.2013.142

21. Becker, M., Mueller, J., Hotho, A., Stumme, G.: A generic platform for ubiquitous and subjec-
tive data. In: 2013 ACM International Joint Conference on Pervasive and Ubiquitous Comput-



6 Collective Sensing Platforms 17

ing , UbiComp 2013; 1st International Workshop on Pervasive Urban Crowdsensing Architec-
ture and Applications, PUCAA 2013, Zurich, Switzerland – September 8-12, 2013. Proceed-
ings, pp. 1175–1182. ACM, New York, NY, USA (2013). DOI 10.1145/2494091.2499776

22. Bishop, J., Klavins, E.: Collective sensing with self-organizing robots. In: 45th IEEE Con-
ference on Decision and Control, CDC 2006, San Diego, CA, USA – December 13-15, 2006.
Proceedings, pp. 4175–4181. IEEE, New York, NY, USA (2006). DOI 10.1109/CDC.2006.
377102

23. Blaschke, T., Hay, G.J., Weng, Q., Resch, B.: Collective sensing: Integrating geospatial tech-
nologies to understand urban systems–an overview. Remote Sensing 3(8), 1743–1776 (2011).
DOI 10.3390/rs3081743

24. Cuzzocrea, A., Song, I.Y., Davis, K.C.: Analytics over large-scale multidimensional data: The
big data revolution! In: 14th International Workshop on Data Warehousing and OLAP at 20th
International Conference on Information and Knowledge Management, CIKM 2011, Glasgow,
United Kingdom – October 24-28, 2011. Proceedings, pp. 101–104. ACM, New York, NY,
USA (2011). DOI 10.1145/2064676.2064695

25. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. Communi-
cations of the ACM 51(1), 107–113 (2008). DOI 10.1145/1327452.1327492

26. Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for supporting the
rapid prototyping of context-aware applications. Human-Computer Interaction 16(2), 97–166
(2001). DOI 10.1207/S15327051HCI16234 02

27. Foster, I.T., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree
compared. In: Grid Computing Environments Workshop at IEEE International Conference
for High Performance Cpmputing, Networking, Storage and Analysis, GCE 2008, Austin,
TX, USA – November 12-16, 2008. Proceedings. IEEE, New York, NY, USA (2009). DOI
10.1109/GCE.2008.4738445

28. Haklay, M.: Citizen science and volunteered geographic information: Overview and typol-
ogy of participation. In: Crowdsourcing Geographic Knowledge: Volunteered Geographic
Information (VGI) in Theory and Practice, pp. 105–122. Springer, Netherlands (2013). DOI
10.1007/978-94-007-4587-2 7

29. Han, J., E, H., Le, G., Du, J.: Survey on nosql database. In: 6th International Conference on
Pervasive Computing and Applications, ICPCA 2011, Port Elizabeth, South Africa, October
26-28, 2011. Proceedings, pp. 363–366. IEEE, New York, NY, USA (2011). DOI 10.1109/
ICPCA.2011.6106531

30. Han, J., Song, M., Song, J.: A novel solution of distributed memory nosql database for cloud
computing. In: IEEE/ACIS 10th International Conference on Computer and Information Sci-
ence, ICIS 2011, Sanya, China – May 16-18, 2011. Proceedings, pp. 351–355. IEEE, New
York, NY, USA (2011). DOI 10.1109/ICIS.2011.61

31. Kibanov, M., Atzmueller, M., Scholz, C., Stumme, G.: Temporal Evolution of Contacts and
Communities in Networks of Face-to-Face Human Interactions. Science China 57 (2014)

32. Klein, D., Tran-Gia, P., Hartmann, M.: Big data. Informatik-Spektrum 36(3), 319–323 (2013).
DOI 10.1007/s00287-013-0702-3

33. Kluegl, P., Atzmueller, M., Puppe, F.: Meta-level information extraction. In: KI 2009: Ad-
vances in Artificial Intelligence. 32nd Annual German Conference on AI, Paderborn, Ger-
many, September 2009. Proceedings, Lecture Notes in Computer Science, vol. 5803, pp. 233–
240. Springer, Berlin / Heidelberg, Germany (2009). DOI 10.1007/978-3-642-04617-9 30

34. Klügl, P., Toepfer, M., Lemmerich, F., Hotho, A., Puppe, F.: Collective Information Extraction
with Context-Specific Consistencies. In: Proc. ECML/PKDD, pp. 728–743 (2012)

35. Kunze, K., Bannach, D.: Towards dynamically configurable context recognition systems. In:
Activity Context Representation Workshops at the 26th AAAI Conference on Artificial Intel-
ligence, AAAI 2012, Toronto, Canada – July 22-23, 2012. Proceedings. AAAI, Palo Alto, CA,
USA (2012)

36. Leimeister, J.M.M.: Collective intelligence. Business and Information Systems Engineering
2(4), 245–248 (2010). DOI 10.1007/s12599-010-0114-8

37. Macek, B.E., Scholz, C., Atzmueller, M., Stumme, G.: Anatomy of a conference. In: 23rd
ACM Conference on Hypertext and Social Media, HT 2012, Milwaukee, WI, USA – June



18 Martin Atzmueller, Martin Becker, and Juergen Mueller

25-28, 2012. Proceedings, pp. 245–254. ACM, New York, NY, USA (2012). DOI 10.1145/
2309996.2310038

38. Malone, T.W., Laubacher, R., Dellarocas, C.: The collective intelligence genome. Spring
51(3), 21–31 (2010)

39. Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Realtime Data Sys-
tems, 1. edn. Manning, Shelter Island, NY, USA (2013)

40. Mitzlaff, F., Atzmueller, M., Benz, D., Hotho, A., Stumme, G.: Community assessment us-
ing evidence networks. In: Analysis of Social Media and Ubiquitous Data. International
Workshops MSM 2010, Toronto, Canada, June 13, 2010, and MUSE 2010, Barcelona, Spain,
September 20, 2010, Revised Selected Papers, Lecture Notes in Computer Science, vol. 6904,
pp. 79–98. Springer, Heidelberg, Germany (2011). DOI 10.1007/978-3-642-23599-3 5

41. Mitzlaff, F., Atzmueller, M., Benz, D., Hotho, A., Stumme, G.: User-relatedness and commu-
nity structure in social interaction networks. CoRR abs/1309.3888 (2013)

42. Mitzlaff, F., Atzmueller, M., Stumme, G., Hotho, A.: Semantics of user interaction in social
media. In: Complex Networks IV. Proceedings of the 4th Workshop on Complex Networks
CompleNet 2013, Studies in Computational Intelligence, vol. 476, pp. 13–25. Springer, Berlin
/ Heidelberg, Germany (2013). DOI 10.1007/978-3-642-36844-8 2

43. Ponmagal, R.S., Raja, J.: An extensible cloud architecture model for heterogeneous sensor
services. International Journal of Computer Science and Information Security 9(1), 147–155
(2011)

44. Resch, B.: People as sensors and collective sensing-contextual observations complementing
geo-sensor network measurements. In: Progress in Location-Based Services, Lecture Notes
in Geoinformation and Cartography, pp. 391–406. Springer, Berlin / Heidelberg, Germany
(2013). DOI 10.1007/978-3-642-34203-5 22

45. Salber, D., Dey, A.K., Abowd, G.D.: The context toolkit: Aiding the development of context-
enabled applications. In: SIGCHI Conference on Human Factors in Computing Systems, CHI
1999, Pittsburgh, PA, USA – May 15-20, 1999. Proceedings, pp. 434–441. ACM, New York,
NY, USA (1999). DOI 10.1145/302979.303126

46. Scholz, C., Atzmueller, M., Barrat, A., Cattuto, C., Stumme, G.: New insights and methods
for predicting face-to-face contacts. In: 7th International AAAI Conference on Weblogs and
Social Media, ICAPS 2013, Cambridge, MA, USA – July 8-10, 2013. Proceedings. AAAI,
Palo Alto, CA, USA (2013)

47. Vuran, M.C., Akan, Ö.B., Akyildiz, I.F.: Spatio-temporal correlation: Theory and applications
for wireless sensor networks. Computer Networks 45(3), 245–259 (2004). DOI 10.1016/j.
comnet.2004.03.007

48. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes Compressing and Indexing Docu-
ments and Images, 2. edn. Morgan Kaufmann, Burlington, MA, USA (1999)

49. Yuriyama, M., Kushida, T.: Sensor-cloud infrastructure - physical sensor management with
virtualized sensors on cloud computing. In: 13th International Conference on Network-Based
Information Systems, NBiS 2010, Takayama, Japan – September 14-16, 2010. Proceedings,
pp. 1–8. IEEE, New York, NY, USA (2010). DOI 10.1109/NBiS.2010.32

50. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster Comput-
ing with Working Sets. In: Proc. USENIX Conference on Hot Topics in Cloud Computing,
HotCloud’10, pp. 10–10. USENIX Association, Berkeley, CA, USA (2010)

51. Zheng, W., Xu, P., Huang, X., Wu, N.: Design a cloud storage platform for pervasive
computing environments. Cluster Computing 13(2), 141–151 (2010). DOI 10.1007/
s10586-009-0111-1


