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Abstract. For the validation of ontologies, test cases can be applied. In order
to ease the acquisition of such test cases, automatic methods can be used. This
paper introduces such an approach to unit testing of ontologies using subgroup
discovery methods. The tests are given by small ontologies, which will be com-
pared to an existing ontology. The generation of the test ontologies uses subgroup
discovery methods to derive concepts and relations from real data which refers to
the ontology. For each concept of the ontology, we apply subgroup discovery in
order to identify subgroup patterns consisting of concepts that are (un-)correlated
with the target concept. Then, subgroups with very high (or low) confidence will
be selected for the testing ontology. We exemplify the approach using real-world
data from the ophthalmology domain, and present first results and experiences of
a case study demonstrating the test case generation process.

1 Introduction

Not only ontology learning [9], but also the evaluation [15] of the learned ontologies is
getting more and more important. In particular, this relates to the automatic evaluation
of ontologies [17]. In this area, there exist different approaches like OntoClean[8] and
AEON (Automatic Evaluation of Ontologies)[13]: OntoClean, for example aims for
validating an ontology with the taxonomic relationships while AEON continues this
approach with an automatically tagging of the OntoClean meta-properties.

One prominent method for the validation of knowledge systems considers the uti-
lization of test cases, e. g., [14, 7]. Below, we sketch a method for ontology validation
using automatically generated testing ontologies. For obtaining the appropriate test ax-
ioms automatically, we apply subgroup discovery – a versatile method for data analyt-
ics. Subgroup discovery [16, 3] aims at identifying interesting subsets of a dataset with
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respect to a certain property of interest. Each subset that can be characterized by a cer-
tain descriptive pattern is then called a subgroup. For the construction of test cases, we
generate patterns that are correlated with the target concept, or those that exclude the
target concept.

Intuitively, we identify candidates for derivable axioms using patterns that have a
high share of a certain target concept, i. e., the concepts making up the description of
the pattern show a (strong) correlation with the target concept. Likewise, we obtain
candidates for non-derivable axioms by constructing relations for which we are sure
that they are not observed in the data. That is, for the validation of an ontology O, we
apply two test ontologies as in [14]: T+ and T−, that specificy all axioms that should
be derivable from the given ontology O, and the axioms that should not be derivable
given O.

Below, we first introduce some background before we sketch our novel approach for
the generation of automatic test cases. After that, we provide a case study using real-
world data from the ophthalmology domain. The data is extracted from anonymized
surgery sheets which are filled in by the eye specialist itself. These sheets include struc-
tured data like which eye was medicated or which medicine was used. We demonstrate
the test case generation process, and discuss first experiences and implications.

2 Background

In this section, we briefly summarize necessary notation and basic concepts on subgroup
discovery and the proposed approach for ontology validation using test ontologies.

2.1 Patterns and Subgroups

Formally, a database DB = (I, A) is given by a set of individuals I and a set of
attributes A. A selector or basic pattern selai=vj is a Boolean function I → {0, 1}
that is true if the value of attribute ai ∈ A is equal to vj for the respective individual.
The set of all basic patterns is denoted by S. For a numeric attribute anum selectors
selanum∈[minj ;maxj ] can be defined analogously for each interval [minj ;maxj ] in the
domain of anum. The Boolean function is then set to true if the value of attribute anum is
within the respective range.

Definition 1. A subgroup description or (complex) pattern sd is given by a set of basic
patterns sd = {sel1, . . . , sell} , where sel i ∈ S, which is interpreted as a conjunction,
i.e., sd(I) = sel1 ∧ . . . ∧ sel l, with length(sd) = l.

Without loss of generality, we focus on a conjunctive pattern language using nom-
inal attribute–value pairs as defined above in this paper; internal disjunctions can also
be generated by appropriate attribute–value construction methods, if necessary.

Definition 2. A subgroup (extension)

sgsd := ext(sd) := {i ∈ I|sd(i) = true}

is the set of all individuals which are covered by the pattern sd .



As search space for subgroup discovery the set of all possible patterns 2S is used,
that is, all combinations of the basic patterns contained in S. For the practical imple-
mentation, we utilize the VIKAMINE platform [5] that provides efficient algorithms
e. g., [10, 3] and according interestingness measure described below.

2.2 Interestingness of a Pattern

The interestingness of a pattern is determined by a quality function, that is selected
according to the analysis task.

Definition 3. A quality function q : 2S → R maps every pattern in the search space
to a real number that reflects the interestingness of a pattern (or the extension of the
pattern, respectively).

While a large number of quality functions has been proposed in literature, many
quality functions for a single target concept, e. g., in the binary or numerical case, trade-
off the size n = |ext(sd)| of a subgroup and the deviation tsd − t0, where tsd is the
average value of a given target concept in the subgroup identified by the pattern sd and
t0 the average value of the target concept in the general population. In the binary case,
the averages relate to the share of the target concept. Then, this is equivalent to the
concept of confidence commonly used in the field of association rule mining, e. g., [1].
In our context, we focus on binary target concepts only. Then, the subgroup patterns
introduced above are equivalent to class association rules [11].

For subgroup discovery, typical quality functions are of the form

qa(sd) = na · (tsd − t0), a ∈ [0; 1] .

For binary target concepts, this includes, for example, the weighted relative accuracy for
the size parameter a = 1 or a simplified binomial function, for a = 0.5. An extension
to a target concept defined by a set of variables can be defined similarly, by extending
common statistical tests.

The result of a subgroup discovery task is then the set of k (subgroup) patterns
sd1, . . . , sdk , where sd i ∈ 2S with the highest interestingness according to the qual-
ity function. For our experiments in test ontology generation, we applied the simplified
binomial function q0.5 described above that conventiently balances the size of the sub-
group with a high target share of the target concept.

2.3 Formalization of Test Ontologies

For the unit testing of ontologies, we adopt the approach proposed by Vrandecic and
Gangemi [14]: We consider two testing ontologies. The ontology T+ contains the ax-
ioms that should be derivable, and T− contains the axioms that essentially should not
be derivable. Thus, according to [14], for ontology O we have

O |= A+
i ∀A

+
i ∈ T+ ,

for all axioms A+
i ∈ T+, i = 1, . . . , n, and for all axioms A−i ∈ T−, i = 1, . . . ,m:

O |= A−i ∀A
−
i ∈ T − .



In this framework, the specific axioms themselves can be considered as atomic test
cases for the ontology that need to be formalized accordingly. In the next section, we
describe our approach for generating these axioms in an automatic fashion.

3 Method: Generating Test Ontologies

In the following, we first provide an overview on the proposed approach, before we
discuss the test ontology generation in detail and present an algorithm for this task.

3.1 Overview

The basic idea of test ontology generation using subgroup discovery is the following:
We start with all relevant test concepts contained in ontology O and map these to our
test instances contained in the dataset. Then, for each target concept t ∈ S, we discover
subgroups according to the total selector set S using a specific quality function (we used
q0.5 in our experiments). After that, we map these subgroup patterns to axioms that are
integrated in the testing ontologies T+ and T−, respectively. For that step, we create
complex classes for each selected subgroup pattern.

3.2 Generating Test Ontologies

For generating test ontologies from the subgroup discovery results, we map (un-)correlated
patterns to the axioms of T+ and T−, respectively. Intuitively, when generating the ac-
cording axioms using the discovered subgroup patterns, there must be a value which
decides which subgroup is used and which not. There are several strategies for select-
ing the respective subgroup patterns used for creating the axioms. Below, we consider
two variants: A confidence-based approach, and a test-coverage-based one.

1. A simple variant is a confidence-based approach. According to the share of the
target concept in the subgroup, i. e., its confidence, we use the respective confidence
of a subgroup to decide whether it should be used for the test ontology or not. If
the confidence is higher than a specific threshold, it is used as for the T+ ontology.
If the confidence is below a specific other threshold, it is used for the T− ontology.
The threshold for T− has to be very low or zero, because otherwise the test will
also fail for the same dataset. Therefore it is also possible to define that not all of
the test cases in the T− ontology have to pass. It would be suitable if for example
eight out of ten test cases pass to let the whole test pass.

2. An alternative approach is test-coverage-based and will be described using an ex-
ample. For a specific target value two subgroups were detected. These subgroups
only contain three different selectors. Subgroup one, for example, contains selector
A and B and subgroup two contains selector A and C. In our example we add the
two subgroups to the test ontology. In reality we would use a quality function to rate
them and only add for example the five best subgroups to the test ontology. Back to
our example with the two subgroups: If an ontology contains the target value and
is connected with two out of three selectors it would be a coverage of 2

3 . With this
approach we also need a threshold which decides if the test will pass or not. If this
threshold would be 1

3 , our test in the example would have passed.



In our algorithm presented below, we use the described confidence-based approach,
because it is easier to implement in this initial stage. In the future, we also plan a test-
coverage-based approach to compare the results.

3.3 Algorithm

For the automatic generation of the described test ontologies we developed the algo-
rithm shown in Listing 1.1. It uses subgroup discovery to derive interesting correlations
and transforms them to small test ontologies consisting of complex classes.

Listing 1.1: Algorithm in pseudo code

1 for each attribute{
2 subgroupset = findSubgroups(attribute)
3 candidatesTplus = [], candidatesTminus = []
4 for each subgroup in subgroupset{
5 if subgroup.confidence >= thresholdPlus
6 candidatesTplus.add(subgroup)
7 if subgroup.confidence <= thresholdMinus
8 candidatesTminus.add(subgroup)
9 }

10 makeComplexClasses(candidatesTplus, candidatesTminus)
11 }

In the first step, subgroup discovery is performed for each attribute of the dataset.
Therefore, the current attribute t ∈ S is used as target value. For each target variable
a set of subgroups is calculated. Each set contains all subgroups with the appropriate
target variable.

Each subgroup in the set that exceeds a certain confidence threshold is added as a
test candidate to the positive test candidate set (candidatesTplus). If the confidence is
under a specific different threshold. In this case the subgroup is added to the negative
candidate set (candidatesTminus). Thus each attribute has its own two test candidate
sets, which contain all test cases for the specific attribute. A test candidate consists of
any number of selectors that are associated by the AND function. This combination
of selectors is characteristic for the target variable related to a high confidence and
therefore will be added to the positive test candidate set. If we consider the exemplary
“vehicle”-domain, for example, then the target variable “vehicle type = tricycle” has the
significant describing combination of the selectors “number of wheels = 3” and “engine
= false”.

For the generation, we use the confidence as a threshold. From the test candidate
set a complex class is created for each attribute. This set is composed of the individual
test candidates concatenated by the OR function. Thus generated complex classes will
be compared or tested against an existing ontology in the next step.



4 Case Study

This section demonstrates the proposed approach using real-world data and presents
first results. It covers the ontology structure and the working on the generation of T+

ontologies.

4.1 Overview
In order to verify our approach we used anonymised operative reports from the cataract
surgery domain to set up a dataset for testing. We have extracted the structured data
from the data sheets. All records were reduced, encoded, typed and converted to a suit-
able format. Finally, after the data wrangling the latest version of the test dataset for this
work contained more than 500 instances described by 80 attributes. As output format
“ARFF”(Attribute-Relation File Format) was used, which is an input format for data
mining tools like WEKA or VIKAMINE. For subgroup discovery, the VIKAMINE plat-
form was used, because WEKA does not support subgroup discovery out of the box.
The VIKAMINE system offers a rich-client environment for subgroup discovery and an-
alytics [5]. We iterated over every attribute and performed a subgroup discovery with
VIKAMINE for each attribute as target value. With the results of the subgroup discov-
ery we create test ontologies for each attribute using the confidence based approach.
These test ontologies are written in a KnowWE(Knowledge Wiki Environment) Wiki.
KnowWE has export functions for the ontology which supports various popular formats
like Turtle, RDF/XML or RDF/JSON, cf. [2].

4.2 Structure of the basic ontology
The output ontology follows a specific order. A cataract ontology[12] was designed and
the structure of the attribute is displayed in Figure 1. Each real attribute is a subclass of
the “Attribute”-class and each class has its own wiki page.

Fig. 1: Overview of the attribute classes of the ontology

The attribute value is stored in the instances of the specific attribute. A visualisation
of the the instances of the attribute “Pupille” (German for pupil) is shown in Figure 2.
This attribute has three possible values: “weit”, “eng” and “mittel”. For each value there
is a corresponding instance of the attribute with the matching data property. For the data
property the relation “hasValue” is used. As an example the instance “PupilleMittel” of
type “Pupille” has a data property “hasValue” with the value “mittel”.



Fig. 2: Pupil class with the corresponding individuals

4.3 Automatic generation of the test ontologies

Below, we describe first exemplary results of our proof-of-concept implementation of
the proposed approach. In the basic setting for subgroup discovery we applied the BSD
algorithm [10] with the quality function q0.5 and a minimum quality limit of 0.8.

After performing subgroup discovery and constraining the subgroup description
length to one concept for each attribute of our dataset we pick up exemplary the tar-
get value “Patient_unruhig = true” which means that the patient is nervous and in a
state of agitation during the surgery. One of the subgroups from the derived amount of
subgroups which fulfill the quality limit in this case is “Sedativum = true”. That is no
surprise because one of possible logical consequences for the operating surgeon could
be to sedate the patient. The resulting subgroup from the corresponding dataset con-
firms this practice. The identified pattern can now be used to generate a test case for
the cataract ontology because we know there is a correlation with a certain quality limit
between the above mentioned items. Incrementing the description length to two con-
cepts yields further patterns, for example, “Diabetes = true” is described among other
descriptions by the combination of concepts “Infusion_Lidocain = false” and “Gerin-
nungshemmer = true”. In this way further test cases can be created to extend our test
ontology by mapping the identified patterns to a complex class.

Our first results and experiences in the case study demonstrate, that the proposed
approach is working well. It is a very transparent process for test ontology generation
since the subgroup patterns can be directly inspected, cf. [6], and transparently mapped
to complex classes in the ontology. Currently, we are still refining the results with re-
spect to the testing ontologies T+ and T− and more complex test-coverage strategies.

5 Conclusions

In this paper, we have presented a novel approach for the automatic generation of test
ontologies. Using subgroup discovery, we identify patterns that are mapped to axioms
in our testing ontology. In particular, these are formalized using complex classes which
can then be directly implemented in unit testing manner. We demonstrated the basic
concepts in a case study using a real-world dataset. Currently, our proof-of-concept
implementation focuses on a confidence-based strategy for test ontology generation.
We aim to investigate the approach further for generating more complex testing on-
tologies (T+ and T−) and to apply a test-coverage-based approach in order to have
fine-grained control when a testing ontology passes or fails. Furthermore, the presented
basic approach can then also be extended using semi-automatic strategies, e. g., cf. [4].
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15. Vrandečić, D.: Ontology Evaluation. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies,
pp. 293–313. Springer Berlin Heidelberg (2009)

16. Wrobel, S.: An Algorithm for Multi-Relational Discovery of Subgroups. In: Proc. PKDD-97.
pp. 78–87. Springer, Heidelberg, Germany (1997)

17. Zablith, F., Antoniou, G., d’Aquin, M., Flouris, G., Kondylakis, H., Motta, E., Plexousakis,
D., Sabou, M.: Ontology Evolution: A Process-Centric Survey. KER 30, 45–75 (1 2015)


