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Abstract. Subgroup discovery and community detection are two approaches hav-
ing been studied in different research areas like data mining and social network
analysis. In this context, these techniques are especially helpful in order to pro-
vide for analytical and explorative data mining approaches. We present an orga-
nized picture of recent research in subgroup discovery and community detection
specifically focusing on attributed graphs. That is, we include complex relational
graphs that are annotated with additional information, e.g., attribute information
on the nodes and/or edges of the graph. In addition, we especially summarize a
method combining both community detection and subgroup discovery resulting
in a description-oriented approach for community analytics.

1 Introduction

Subgroup discovery [5,23,49] and community detection [15,37,51] are especially help-
ful in order to provide for analytical and explorative data mining approaches.

Subgroup discovery aims at identifying interesting descriptive subgroups contained
in a dataset - from a compositional network analysis view, aimining at a description
given, e. g., by a set of attribute values. The subgroups are identified in such a way that
they are interesting with respect to a certain target property. In the context of ubiquitous
data and social media [4], interesting target concepts are given, e. g., by binary variables
for obtaining characteristic descriptions of certain phenomena [10], densely connected
graph structures (communities) [7] or exceptional spatio-semantic distributions [12].
This directly bridges the gap to community detection methods that focus on structural
aspects of a network/graph, for finding densely connected subgroups of nodes.

This paper presents an organized picture of recent research in subgroup discovery
and community detection specifically focusing on attributed graphs. We start with the
introduction of necessary background concepts in Section 2. After that, Section 3 pro-
vides a compact overview on prominent methods for community detection, also includ-
ing recent work on mining attributed graphs. In addition, we specifically summarize the
COMODO algorithm combining both community detection and subgroup discovery in
a description-oriented approach [7,11]. Finally, we conclude with a summary and point
out interesting future directions in Section 5.
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2 Subgroup Discovery and Analytics

Below, we first introduce some basic notation. After that, we provide a brief summary
of fundamental concepts with respect to subgroup discovery. We discuss basic interest-
ingness measures and also show extensions to more complicated target concepts using
exceptional model mining.

2.1 Basic Notation

Formally, a database D = (I, A) is given by a set of individuals I and a set of attributes
A. A selector or basic pattern selai=vj is a Boolean function I → {0, 1} that is true if
the value of attribute ai ∈ A is equal to vj for the respective individual. The set of all
basic patterns is denoted by S.

For a numeric attribute anum selectors selanum∈[minj ;maxj ] can be defined analo-
gously for each interval [minj ;maxj ] in the domain of anum. The Boolean function
is then set to true if the value of attribute anum is within the respective range.

2.2 Patterns and Subgroups

Basic elements used in subgroup discovery [3, 5, 23, 49] are patterns and subgroups.
Intuitively, a pattern describes a subgroup, i. e., the subgroup consists of instances that
are covered by the respective pattern. It is easy to see, that a pattern describes a fixed set
of instances (subgroup), while a subgroup can also be described by different patterns,
if there are different options for covering the subgroup’ instances. In the following, we
define these concepts more formally.

Definition 1. A subgroup description or (complex) pattern sd is given by a set of basic
patterns sd = {sel1, . . . , sell} , where sel i ∈ S, which is interpreted as a conjunction,
i.e., sd(I) = sel1 ∧ . . . ∧ sel l, with length(sd) = l.

Without loss of generality, we focus on a conjunctive pattern language using nom-
inal attribute–value pairs as defined above in this paper; internal disjunctions can also
be generated by appropriate attribute–value construction methods, if necessary. We call
a pattern p a superpattern (or refinement) of a subpattern ps, iff ps ⊂ p.

Definition 2. A subgroup (extension)

sgsd := ext(sd) := {i ∈ I|sd(i) = true}
is the set of all individuals which are covered by the pattern sd .

As search space for subgroup discovery the set of all possible patterns 2S is used,
that is, all combinations of the basic patterns contained in S. Then, appropriate efficient
algorithms, e. g., [8, 13, 30] can be applied.



2.3 Interestingness of a Pattern

A large number of quality functions has been proposed in literature, cf.. [18] for esti-
mating the interestingness of a pattern – selected according to the analysis task.

Definition 3. A quality function q : 2S → R maps every pattern in the search space
to a real number that reflects the interestingness of a pattern (or the extension of the
pattern, respectively).

Many quality functions for a single target concept (e. g., binary [5, 23] or numeri-
cal [5, 28]), trade-off the size n = |ext(sd)| of a subgroup and the deviation tsd − t0,
where tsd is the average value of a given target concept in the subgroup identified by
the pattern sd and t0 the average value of the target concept in the general population.
In the binary case, the averages relate to the share of the target concept. Thus, typical
quality functions are of the form

qa(sd) = na · (tsd − t0), a ∈ [0; 1] . (1)

For binary target concepts, this includes, for example, the weighted relative accuracy
for the size parameter a = 1 or a simplified binomial function, for a = 0.5. Multi-
target concepts, e. g., [5, 12, 24, 50] that define a target concept captured by a set of
variables can be defined similarly, e. g., by extending an univariate statistical test to
the multivariate case, e. g., [12]: Then, the multivariate distributions of a subgroup and
the general population are compared in order to identify interesting (and exceptional)
patterns.

While a quality function provides a ranking of the discovered subgroup patterns,
often also a statistical assessment of the patterns is useful in data exploration. Qual-
ity functions that directly apply a statistical test, for example, the Chi-Square quality
function, e. g., [5] provide a p-Value for simple interpretation. However, the Chi-Square
quality function estimates deviations in two directions. An alternative, which can also
be directly mapped to a p-Value is given by the adjusted residual quality function qr,
since the values of qr follow a large standard normal distribution, cf. [2]:

qr = n(tsd − t0) · 1√
nt0(1− t0)(1− n

N )
(2)

The result of top-k subgroup discovery is the set of the k patterns sd1, . . . , sdk ,
where sd i ∈ 2S , with the highest interestingness according to the applied quality func-
tion. A subgroup discovery task can now be specified by the 5-tuple: (D , c, S, q, k) ,
where c indicates the target concept; the search space 2S is defined by set of basic
patterns S.

For several quality functions optimistic estimates [5, 8, 21, 28] can be applied for
determining upper quality bounds: Consider the search for the k best subgroups: If
it can be proven, that no subset of the currently investigated hypothesis is interesting
enough to be included in the result set of k subgroups, then we can skip the evaluation
of any subsets of this hypothesis, but can still guarantee the optimality of the result.
More formally, an optimistic estimate oe(q) of a quality function q is a function such
that p ⊆ p′ → oe(q(p)) ≥ q(p′), i. e., such that no refinement p′ of the pattern p can
exceed the quality obtained by oe(q(p)).



2.4 Exceptional Model Mining

A general framework for multi-target quality functions in subgroup discovery is given
by exceptional model mining [5,27]: It tries to identify interesting patterns with respect
to a local model derived from a set of attributes. The interestingness can be defined,
e.g., by a significant deviation from a model that is derived from the total population or
the respective complement set of instances within the population. In general, a model
consists of a specific model class and model parameters which depend on the values of
the model attributes in the instances of the respective pattern cover. The quality measure
q then determines the interestingness of a pattern according to its model parameters.
Following [29], we outline some examples below.

– A simple example for an exceptionality measure considers the task of identifying
subgroups in which the correlation between two numeric attributes is especially
strong, e. g., as measured by the Pearson correlation coefficient. This correlation
model class has exactly one parameter, i.e., the correlation coefficient.

– Furthermore, using a simple linear regression model, we can compare the slopes
of the regression lines of the subgroup to the general population or the subgroups’
complement. This simple linear regression model shows the dependency between
two numeric variables x and y: It is built by fitting a straight line in the two dimen-
sional space by minimizing the squared residuals ej of the model:

yi = a+ b · xi + ej

The slope b = cov(x ,y)
var(x) computed given the coveriance cov(x, y) of x and y, and the

variance var(x) of x can then be used for identifying interesting patterns, cf. [27].
– The logistic regression model is used for the classification of a binary target at-

tribute y ∈ T from a set of independent binary attributes xj ∈ T\y, j = 1, . . . , |T |−
1. The model is given by:

y =
1

1 + e−z
, z = b0 +

∑

j

bjxj .

Interesting patterns are then those, for example, for which the model parameters bj
differ significantly from those derived from the total population.

2.5 Subgroup Discovery in Social Network Analysis

In general, subgroup discovery can be applied for any standard dataset in tabular form
in a straight-forward manner using available efficient algorithms, e. g., [8, 13, 30], as
implemented in the VIKAMINE [9] system. Also, for compositional analysis of so-
cial networks, i. e., where nodes have attached attribute information, we can directly
apply subgroup discovery for identifying interesting subgroups of nodes according to
a given quality measure. The description space is then given by all the compositional
variables and their respective value domains. As we will see below, it is also possible to
combine a structural with a compositional analysis of a network, i. e., combining struc-
tural and compositional aspects into a quality function, resulting in description-oriented
community detection using subgroup discovery.



3 A Brief Overview on Community Detection

Communities and cohesive subgroups have been extensively studied in social sciences,
e. g., using social network analysis methods [48]. Community detection methods can
be classified according to several dimensions, e. g., disjoint vs. overlapping communi-
ties. Here, actors in a network can only belong to exactly one community, or to multi-
ple communities at the same time. Furthermore, we distinguish between methods that
work on extended (attributed) graphs, i. e., including descriptive information about the
nodes. Below, we provide an overview on representative methods, including several
basic methods working on simple graphs. After that, we elaborate on methods for de-
tecting overlapping communities, before we focus on descriptive methods.

3.1 Basics of Community Detection

Wasserman and Faust [48] discuss social network analysis in depth and provide an
overview on the analysis of subgroups/communities in graphs, including clique-based,
degree-based and matrix-perturbation-based methods. Furthermore, Newman et al. [37–
39] propose several algorithms for community detection, formalizing the notions of in-
teresting community structures, and introducing the modularity quality measure. For-
tunato [15] presents a thorough survey on the state of the art community detection
algorithms in graphs, focussing on detecting disjoint communities.

For assessing the quality of a community, usually not only the community’s den-
sity is assessed but the connection density of the community is compared to the density
of the rest of the network [37]. The core idea of the evaluation function is to apply
an objective evaluation criterion, for example, for the modularity measure the number
of connections within the community compared to the statistically “expected” number
based on all available connections in the network. Besides modularity, prominent ex-
amples of community quality measures include for example, the segregation index [16]
and the inverted average out-degree fraction [53].

3.2 Detecting Overlapping Communities

Overlapping communities allow an extended modeling of actor–actor relations in social
networks: Nodes of a corresponding graph can then participate in multiple communi-
ties. This is also typically observed in real-world networks regarding different com-
plementary facets of social interactions [34, 41]. A general overview on algorithms for
overlapping community detection is provided by Xie et al. [51]. For example, clique
percolation methods proposed by Palla et al. [41, 42] detect k-cliques and then merge
them into overlapping communities. Xie and Szymanski [52] present methods extend-
ing the idea of label propagation [44]. Lancichinetti et al. [26] describe an approach for
overlapping and hierarchical community structure using a local community metric. The
presented metric itself is computed locally but still assesses a global clustering. Fur-
ther statistical and local optimization algorithms include the COPRA [20] algorithm by
Gregory using label-propagation of neighboring nodes until a consensus is reached, and
the MOSES [33] algorithm by McDaid and Hurley using statistical model-based tech-
niques. Concerning quality measures, extensions of the modularity metric for handling
overlapping communities are described in [32, 36, 40].



3.3 Community Detection and Description

While the methods described above only focus on the graph structure for mining com-
munities, richer graph representations, i. e., attributed graphs, enable approaches that
specifically exploit the descriptive information of the labels assigned to nodes and/or
edges of the graph. Nodes of a network representing users, for example, can be labeled
with tags that the respective users utilized in social bookmarking systems. Then, explicit
descriptions for the characterization of a community can be provided. Concerning meth-
ods that focus on such descriptions in general, Adnan et al. [1] present an approach for
community detection using features identified by frequent pattern mining; closed fre-
quent patterns are derived and are then used for creating a social network model based
on an entropy analysis. However, the network structure itself is not exploited. Simi-
larly, Sese et al. [46] extract subgraphs with common itemsets. Given a labeled graph,
itemset-sharing subgraphs can then be enumerated. However, this approach also does
not consider the density of graphs, nor any community measures.

Focusing on methods for generating explicit descriptions connected with the graph
structure, we distinguish between two types of approaches: first, methods that mainly
work on the graph structure but apply descriptive information for restricting the possi-
ble sets of communities; second, methods that mine descriptive patterns for obtaining
community candidates evaluated using the graph structure. As a representative of the
first type, Moser et al. [35] combine the concepts of dense subgraphs and subspace
clusters for mining cohesive patterns. Starting with quasi-cliques, these are expanded
until constraints regarding the description or the graph structure are violated. Similarly,
Günnemann et al. [19] combine subspace clustering and dense subgraph mining, also
interleaving quasi-clique and subspace construction. As an example for the second type
outlined above, Galbrun et al. [17] propose an approach for the problem of finding
overlapping communities in graphs and social networks that aims to detect the top-k
communities such that the total edge density over all k communities is maximized. The
three algorithmic variants proposed by Galbrun et al. apply a greedy strategy for de-
tecting dense subgroups, and restrict the result set of communities, such that each edge
can belong to at most community. This partitioning involves a global approach on the
community quality. Silva et al. [47] study the correlation between attribute sets and the
occurrence of dense subgraphs in large attributed graphs. The proposed method consid-
ers frequent attribute sets using an adapted frequent item mining technique, and iden-
tifies the top-k dense subgraphs induced by a particular attribute set, called structural
correlation patterns. The DCM method presented by Pool et al. [43] includes a two-step
process of community detection and community description. A heuristic approach is
applied for discovering the top-k communities. Pool et al. utilize a special interesting-
ness function which is based on counting outgoing edges of a community similar to
the IAODF measure; for that, they also demonstrate the trend of a correlation with the
modularity function.

Furthermore, the COMODO algorithm [7] that we summarize in the next sec-
tion combines community detection and subgroup discovery resulting in a description-
oriented approach. It allows the specification of a standard quality function for estimat-
ing the quality of the communities to discover. This quality function can be selected (or
also be specifically modeled) according to the analysis task.



4 Combining Community Detection and Subgroup Discovery

The COMODO algorithm presented in [7] focuses on description-oriented community
detection using subgroup discovery. For providing both structurally valid and inter-
pretable communities we utilize the graph structure as well as additional descriptive
features of the graph’s nodes. Using additional descriptive features of the nodes con-
tained in the network, we approach the task of identifying communities as sets of nodes
together with a description, i. e., a logical formula on the values of the nodes’ descrip-
tive features. Such a community pattern then provides an intuitive description of the
community, e. g., by an easily interpretable conjunction of attribute-value pairs. Ba-
sically, we aim at identifying communities according to standard community quality
measures, while providing characteristic descriptions at the same time.

4.1 Algorithmic Overview

The COMODO algorithm for description-oriented community detection aims at dis-
covering the top-k communities (described by community patterns) with respect to
a number of standard community evaluation functions. The method is based on an
adapted subgroup discovery approach [11, 29], and also tackles typical problems that
are not addressed by standard approaches for community detection such as patholog-
ical cases like small community sizes. COMODO is a fast branch-and-bound algo-
rithm utilizing optimistic estimates [21,49] which are efficient to compute. This allows
COMODO to prune the search space significantly. As discussed above, COMODO
utilizes both the graph structure, as well as descriptive information of the attributed
graph, i. e., the label information of the nodes. This information is contained in two
data structures: The graph structure is encoded in graph G while the attribute informa-
tion is contained in database D describing the respective attribute values of each node.
In a preprocessing step, we merge these data sources. Since the communities considered
in our approach do not contain isolated nodes, we can describe them as sets of edges.
We transform the data (of the given graph G and the database D containing the nodes’
descriptive information) into a new data set focusing on the edges of the graph G: Each
data record in the new data set represents an edge between two nodes. The attribute
values of each such data record are the common attributes of the edge’s two nodes. For
a more detailed description, we refer to [7].

The FP-growth algorithm (cf. [22]) for mining association rules, and the SD-Map*
algorithm for fast exhaustive subgroup discovery [8] form the basis of COMODO.
COMODO utilizes an extended FP-tree structure, called the community pattern tree
(CP-tree) to efficiently traverse the solution space. The tree is built in two scans of the
graph data set and is then mined in a recursive divide-and-conquer manner, cf. [8, 29].
In the main algorithmic procedure of COMODO, first patterns containing only one
basic pattern are mined. Then recursively, patterns conditioned on the occurrence of a
(prefixed) complex pattern (as a set of basic patterns, chosen in the previous recursion
step) are considered. For more algorithmic details, we refer to [7].

As outlined in [7] we can compute standard quality functions efficiently, e. g., for the
Modularity [37–39] or the Segregation Index [16], using according optimistic estimates.



4.2 Exemplary Evaluation Results

The evaluation of COMODO considers two aspects: The efficiency of the applied opti-
mistic estimates, and the validity of the obtained community patterns. In order to evalu-
ate the efficiency, we count the number of search steps, i. e., community allocations that
are considered by the COMODO algorithm. We compared the total number of search
steps (no optimistic estimate pruning) to optimistic estimate pruning using different
commmunity quality measures. Additionally, we measured the impact of using differ-
ent minimal community size thresholds. Exemplary results are shown in Figure 1 for the
BibSonomy click graph for k = 10, 20, 50 and minimal size thresholds τn = 10, 20.
We consider a number of standard community quality functions: The segregation in-
dex [16], the inverse average ODF (out degree fraction) [31], and the modularity [37].
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Fig. 1. Runtime performance of COMODO on the BibSonomy click graph [7]: Search steps with
no optimistic estimate pruning (NOP) vs. community quality functions with optimistic estimate
pruning: MODL (Local Modularity), SIDX (Segregation Index) and IAODF (Inverse Average-
ODF), for minimal size thresholds τn = 10, 20.

The large, exponential search space can be exemplified, e. g., for the click graph with
a total of about 2 · 1010 search steps for a minimal community size threshold τn = 10.
The results demonstrate the effectiveness of the proposed descriptive mining approach
applying the presented optimistic estimates. The implemented pruning scheme makes
the approach scalable for larger data sets, especially when the local modularity quality
function is chosen to assess the communities’ quality. Concerning the validity of the pat-
terns, we focused on structural properties of the patterns and the subgraphs induced by
the respective comunity patterns. We applied the significance test described in [25] for
testing the statistical significance of the density of a discovered subgraph. Furthermore,
we compared COMODO to three baseline community detection algorithms [20,33,43],
where COMODO consistently shows a significantly better performance concerning va-
lidity and description length (for more details, we refer to [7]).



5 Conclusions and Outlook

In this paper, we have presented an organized view on subgroup and community ana-
lytics on attributed graphs. Specifically, we described subgroup discovery for composi-
tional network analysis concerning properties of the actors, with extensions to the analy-
sis of complex target concepts like correlations between a set of variables, or dense sub-
graphs. Then, this directly extends to community analytics on attributed graphs. Here,
we started with an introduction of basic methods for community detection, continuing
on methods for mining overlapping communities, to approaches that target descriptions
leveraging structural and compositional attribute information. In particular, we sum-
marized the COMODO algorithm that combines subgroup discovery and community
detection, resulting in a description-oriented approach for community analytics.

For future work, we aim to extend the analysis towards time-oriented represen-
tations, e. g., considering sequences of graphs. Also, we aim to integrate and exploit
methods for generating descriptions and the respective relations in link analytics, e. g.,
in link prediction [45] on multidimensional networks. Further interesting directions for
future work are given by methods support integrated visual exploration and analytics,
also including semi-automatic approaches for assessment of the results, e. g., [6, 14].
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