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Abstract—Today, many people spend a lot of time online.
Their social interactions captured in online social networks are an
important part of the overall personal social profile, in addition to
interactions taking place offline. This paper investigates whether
relations captured by online social networks can be used as a
proxy for the relations in offline social networks, such as networks
of human face-to-face (F2F) proximity and coauthorship net-
works. Particularly, the paper focuses on interactions of computer
scientists in online settings (homepages, social networks profiles
and connections) and offline settings (scientific collaboration, face-
to-face communications during the conferences). We focus on
quantitative studies and investigate the structural similarities and
correlations of the induced networks; in addition, we analyze
implications between networks. Finally, we provide a qualitative
user analysis to find characteristics of good and bad proxies.

I. INTRODUCTION

With the success of the Web and the rise of social media,
many people spend a significant fraction of their time online.
This is particularly the case in academia, as online activi-
ties can both correspond to work-related and private social
networking. Online social relationship can then represent a
significant share of an individual’s social profile, in addition
to the interactions that take place offline, e. g., when meeting
friends, during a face-to-face conversation, etc. So far, the
analysis of online social networks has received significant
attention in the research community, while studies on offline
interactions at large scale, e. g., focusing on networks of face-
to-face proximity, has only been taken up recently. Study-
ing human behavior using social media comes with some
caveats [29]: e. g., the responses of social media users differ
from public opinion measured by surveys [26]. Therefore,
detailed investigations of the connection between individuals’
offline and online interactions are needed. However, to the
best of the authors’ knowledge, a combined analysis focusing
on inter-relations and implications between these different
information sources has not been addressed before.

This paper aims to start filling this gap by analyzing online
and offline social networks and published content of computer
scientists who visited particular conferences. In particular, we
investigate whether information from various online sources

can be used as a proxy for the offline world. In order to
answer this question, we proceed in three steps focusing on
structural similarity, correlation, and implications of offline
and online data. Basically, we investigate data structures and
central parameters that are important for many applications, for
example, for finding central actors, opportunistic forwarding,
and for generating recommendations.
For conducting our analysis and experiments, we investigate
different online and offline datasets concerning computer sci-
entists: we collected face-to-face interactions that took place
during several computer science conferences, i. e., at LWA
2010 [3], LWA 2011 [33], LWA 2012 [8] – organized by the
german computer science society – and during ACM Hypertext
2011 [10]. Specifically, by providing the CONFERATOR sys-
tem [2] at these conferences we obtained offline interactions
given by networks of human face-to-face proximity using
RFID-technology developed by the SocioPatterns consortium.
We also utilized a number of online resources and collected
further data about the participants of these conferences: the
content (full texts, abstracts, and titles) of their papers, the
coauthorship networks based on DBLP information, their Re-
search Gate profiles, and finally content from their homepages.
The presented online and offline data and networks are not
completely aligned by nature which makes the presented
problem even more challenging and interesting.

For determining if (and when) online content is a good
proxy for the offline world, we focus on different aspects and
aim to answer the following research questions:

1) Are there strong structural similarities and correlations
between the considered online and offline social networks
w.r.t. link structure? (Q1)

2) Can we identify implications between online and offline
networks and content? (i. e., concerning link structure and
link importance, rankings, and (textual) content) (Q2)

3) Can we characterize classes of actors for which their
online connections act as good proxies for their offline
interactions, i. e., derive specific conditions using network
parameters and properties of these actors? (Q3)

Our results indicate that online and offline datasets show some
proxy relations but there are also specific structural differences.
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Specifically, strong ties seem to correlate more than weak ones
and “important persons” tend to keep their high rank from the
online to the offline worlds. However, these correlations are
often not strong enough for conclusions on the offline world
using online data in all cases.

The rest of the paper is structured as follows. Section II
discusses related work. Then, we introduce basic definitions
and concepts in Section III. After that, we describe our
datasets in Section IV. Section V discusses the results of our
experiments. Finally, Section VI concludes the paper with a
summary and promising options for future work.

II. RELATED WORK

The analysis of online and offline information, e. g., on-
line social networks, co-authorship networks, co-location and
networks of human face-to-face proximity is an interesting
and challenging task in social network analysis and mining.
Concerning human face-to-face contacts, the SocioPatterns
collaboration developed an infrastructure that detects close-
range and face-to-face proximity of individuals wearing RFID
tags. This infrastructure has been deployed in various en-
vironments for studying the dynamics of human contacts,
e. g., at conferences [4], [13], [23], in schools [27], [34],
museums [18] and workplaces [11], [30]. [4] analyzes the
interactions and dynamics of the behavior of participants at
conferences; the connection between research interests, roles
and academic jobs of conference attendees is further analyzed
in [23]. We extend these analysis focusing on offline and online
information. Link relations and their prediction using different
datasets (particularly, face-to-face contacts and DBLP data) is
further analyzed in [31]. Also, [11], [30], [32] analyze survey
data and networks of face-to-face proximity. A first analysis
of online and offline networks has been performed in [7],
however, focusing on the direction from offline to online data.
In contrast, we focus on the reverse – investigating the use of
online data as a proxy for offline interactions. Moreover, we
extend the previous research made using face-to-face proximity
data and discuss new insights about similarity of offline and
online networks.

Further research has been done to identify the interde-
pendence of offline and online information and its possi-
ble applications. [37] investigates different methods for the
identification of finding real-life contacts based on Twitter
data. [35] investigates social networking of emerging adults’
and the relation between online and offline social networks
(collected using self-report surveys). [12], [19], [25] explore
how the Facebook communications refer to real-life relations,
their strength and their changes. Further works consider the
task of predicting friendship links in online social networks,
e. g., given locations of users from social networks [15], or
using time-/geo-tagged photos of the users [14]. [17] infers
friendship network structure (collected using surveys) by us-
ing mobile phone data. In contrast to these approaches, this
paper focuses on the analysis of structural similarity, inter-
relations, dependencies and implications between online and
offline social networks. Specifically, we investigate whether
the information captured by online social networks can be
considered as a valid proxy for offline interactions, i. e., face-
to-face proximity networks and scientific collaboration.

III. BACKGROUND

We use graphs for representation, analysis and comparison
of social networks. To analyze the content (or text) data we use
the bag-of-words model (cf. Section V-B3). We use subgroup
discovery to identify and characterize different classes of actors
(cf. Section V-C). Below, we summarize the main concepts.

A. Graphs

We represent a network as a graph G = (V,E). A weighted
graph is a graph G = (V,E) together with a function w :
E → R

+ that assigns a positive weight to each edge. For
the adjacency matrix A ∈ R

n×n with n = |V | holds Aij = 1
(Aij = w(i, j)) iff (i, j) ∈ E for i, j ∈ V , assuming a bijection
from 1, . . . , n to V .
The density dens(G) of a graph G is the ratio of the number of
edges and the number of possible edges, cf. [16]: dens(G) =

|E|
n(n−1)/2 . The degree deg(i) of a node i in a network is the
number of connections it has to other nodes, i. e., deg(i) :=
|{j |Aij = 1}| . In weighted networks, we complement the
degree of a node i by its strength s(i) =

∑
j Aij , i. e., the

sum of the weights of the attached edges. The Eigenvector
centrality (EV-centrality) [9] of a node is an important measure
of its influence. The EV-centrality of node depends on the
eigenvectors of its neighbors: a node is central, if it has many
central neighbors. EV-centrality eig(i) of a node i is defined
as follows: eig(i) = λ

∑
j Aijeig(j), where λ is a constant.

Besides standard statistical measures of correlation and
ranking, we apply measures and tests commonly used in social
network analysis for comparing graph structures:

• Jaccard Coefficient: For two Graphs G1 = (V1, E1) and
G2 = (V2, E2) with V1 = V2, the Jaccard coeffient J
of the set of edges E1 and E2 is computed as follows:
J(E1, E2) =

|E1∩E2|
|E1∪E2| .• QAP test: The quadradic assignment procedure (QAP)

test is a standard approach for comparing two graphs G1

and G2; it is based on estimating the correlation of the re-
spective adjacency matrices [21]. QAP tests a given graph
level statistic, for example the graph covariance, against a
QAP null hypothesis. QAP compares the observed graph
correlation of (G1, G2) to the distribution of the respective
resulting correlation scores obtained on repeated random
row/column permutations (corresponding to reshuffling of
nodes) of the adjacency matrix of G2.

B. Bag-of-Words Model

For measuring the semantic similarity of pairs of docu-
ments (e. g.,, web pages or scientific papers) – and thus of
their authors – in Section V-B3, we make use of the vector
space model (bag-of-words-model) of Information Retrieval
[24]. Each term of the corpus gives rise to one dimension
of a high-dimensional vector space. After applied stemming
each document d is represented by a vector �v, which at the
dimension assigned to term t carries the value tf-idf(d, t) :=
tf(d, t) · log N

d(t) with tf(d, t) = f(d,t)
maxt′f(d,t′)

, f(d, t) being
the number of occurrences of t in d, N being the total
number of documents, and d(t) being the number of documents
containing t at least once. The semantic similarity of two
documents d1 and d2 is then measured by the cosine similarity
cosim(d1, d2) := cos∠(�v1, �v2) := �v1· �v2

|| �v1||2·|| �v2||2 .

2



C. Subgroup Discovery

Subgroup discovery, e. g., [1], [6], [36], aims at identifying
subgroups of individuals (in our case actors in a social network,
cf. Section V-C) that are interesting with respect to a certain
target concept. For a binary target concept, for example, we are
interested in large subgroups with a high share of individuals
for which the target concept is true, e. g., indicating online
linking behavior of certain actors (individuals).

A database D = (I, A) is given by a set of individuals I
and a set of attributes A. For nominal attributes, a basic pattern
(ai = vj ) is a Boolean function I → {0, 1} that is true if the
value of attribute ai ∈ A is equal to vj for the respective
individual. The set of all basic patterns is denoted by Σ. A
subgroup description or (complex) pattern P is given by a
set of basic patterns P = {p1, . . . , pl}, pi ∈ Σ, i = 1, . . . , l,
interpreted as a conjunction p1 ∧ . . .∧ pl, with length(P) = l.
A pattern can thus also be interpreted as the body of a rule.
The rule head then depends on the property of interest, e. g.,
for a binary target concept T on a basic pattern selT = true.
A subgroup SP := ext(P) := {i ∈ I|P(i) = true}, is the set
of all individuals that are covered by the subgroup description
P . In a top-k setting, a subgroup discovery algorithm returns
the top-k subgroups according to a selectable interestingness
measure q : 2Σ → R , cf. [1]. For a binary target concept, e. g.,
the size n := ext(P) of a subgroup described by the pattern
P , i. e., its support, and the share tP of the target concept
in the subgroup, i. e., its confidence, are combined by the
interestingess measures qS as follows: qS(P) = n · (tP − t0),
where t0 denotes the (default) share of the target concept in
the database D , or by the Lift quality function qL(P) = tP

t0
.

IV. DATASETS

We distinguish the data on two dimensions: First, we
consider online and offline networks, as well as online and
offline content data: We define online data as the data that
were not available before the existence of the world wide
web (WWW). In this paper, we use two online datasets: the
ResearchGate network and homepages of computer scientists.
In contrast, offline data represents connections and content
whose existence do not specifically depend on the WWW, even
if they can be enhanced by WWW-mediated communication
now: for that, we consider face-to-face (F2F) interactions
during academic conferences and scientific publications. The
presented online data was collected from November 2014
till January 2015. The DBLP data was collected in January
2015. Second, we distinguish between network data (face-
to-face interactions, follower relations in ResearchGate and
scientific publications coauthorship) and content data (content
of scientific publications, content of homepages and different
attributes in ResearchGate system).

A. Offline: Face-to-Face Proximity

At the LWA 2010, LWA 2011, LWA 2012 conferences (or-
ganized by the German Computer Science Society) as well as
the ACM Hypertext 2011 conference, we invited participants
to wear active RFID devices (proximity tags) that can detect
the close-range (about 1.5 meters) face-to-face proximity of
the individuals wearing them. This allows us to map out
time-resolved networks of face-to-face contacts among the
conference attendees.

As in [13], we record a face-to-face contact when the
length of a contact is at least 20 seconds. A contact ends
when the proximity tags do not detect each other for more
than 60 seconds. For more information about the proximity
sensing technology, we refer the reader to the web site of
SocioPatterns1 . Table I shows high-level statistics of the
collected datasets. The duration of each LWA conference was
three days, while the Hypertext conference took four days.

TABLE I: High level statistics for the F2F networks:
Number of nodes |V | and edges |E|, average degree
and strength (weighted degree; an edge e = (u, v) ∈ E
is weighted by the aggregated duration of all contacts
between u, v ∈ V ), diameter d, and density.

Network |V | |E| ∅Deg. ∅Str. d Density
LWA 10 77 1004 26.08 20797.22 3 0.34
LWA 11 42 300 14.29 11655.24 3 0.35
LWA 12 44 354 16.09 14673.32 3 0.37
HT 11 69 550 15.94 8224.75 4 0.23

B. Offline: Scientific Publications

We collected all data from the DBLP co-authorship net-
work2 in order to determine subgraphs for conference partic-
ipants. Furthermore, we also retrieved some additional data,
e. g., the number of coauthors.

Moreover, we created a corpus of published papers for
all 102 persons, who had at least one observed face-to-face
(F2F) contact and a ResearchGate profile. We consider all
publications listed on a person’s DBLP page. For that, we
stored paper titles and, when available, also abstracts and full-
texts. In total, we retrieved 4 466 titles, 2 420 abstracts and
2 604 full-texts of 95 of the 102 persons.

In our subsequent analysis using the publication data, we
focus on the set of 66 persons, for whom we were able to
extract at least one full-text, at least one abstract and at least
one title. For these 66 persons, the dataset contains 1 997 full-
texts, 1 858 abstracts and 3 461 titles in total.

C. Online: Homepages

We searched for the homepages of researchers using the
Google search engine, using first names and surnames (and the
name of the institution if it was necessary) as search terms.
The institution name was usually available from the conference
proceedings. If researchers had changed their place of work
since the conference, we tried to identify both the previous
and the current homepages (if available). We considered two
languages for the homepages, English and German, since the
LWA workshops are visited mainly by German scientists. The
Google PageRank was collected for the identified homepages
using the Google API. We also used the API of Readability
service 3 to extract the page content. This services parses the
webpages and uses the modified arc90 algorithm4 to identify
the main content of the page.

1http://www.sociopatterns.org
2http://dblp.uni-trier.de
3https://readability.com/developers/api
4https://code.google.com/p/arc90labs-readability/
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TABLE II: Count of items (nodes) in different networks and datasets overall and for particular conferences conferences:
F2F – Face-to-face networks; RG – ResearchGate account (RG* – at least one discipline); DBLP – DBLP entry, P –
persons with full-text papers, abstracts, and titles; HP – persons whose homepages were identified (and total number of
homepages – some persons have websites in different languages or from different institutions).

F2F RG RG* DBLP HP RG∩HP RG∩DBLP DBLP∩HP RG∩DBLP∩HP RG*∩HP∩P
LWA 2010 77 50 39 58 56 (79) 42 44 53 41 36
LWA 2011 42 26 21 37 38 (49) 25 26 35 25 20
LWA 2012 44 25 23 36 39 (47) 25 24 35 24 22
HT 2011 69 31 19 55 52 (71) 26 29 45 25 15
Overall 189 102 74 146 145 (199) 88 93 128 85 66

D. Online: ResearchGate

Similarly to DBLP, we searched for ResearchGate-profiles
of the scientists and used the native built-in ResearchGate
search engine for this purpose. We collected the publicly avail-
able profile information of the found users (e. g., institution,
department), including information that can be considered as
user ranking information (e. g., RG-Score, number of profile
views etc.), information about their research (disciplines, topics
and skills of users) and lists of their followers and followees.

E. Data intersection

Overall more than half of the considered conference partic-
ipants have a ResearchGate account (102 out of 189) and over
two-thirds of them have DBLP entries (146 out of 189) and
identified homepages (145 out of 190), cf. Table II. The total
number of identified pages is 199 as some researchers have
pages in different languages or from different institutions. Al-
most 40% of all researchers have all three items (ResearchGate
account, homepage and DBLP entry).

In order to conduct the experiments for inter-network
comparisons, we filtered the data, obtaining a core network
representation. Given two networks and their graph respre-
sentations G1 = (V1, E1) and G2 = (V2, E2), the core
network for the G1 network is represented by the graph G∗

1 =
(V ∗

1 , E
∗
1 ), where V ∗

1 = {v ∈ V1|(v, u) ∈ E2, u ∈ V1} and
E∗

1 = {(v, u)|(v, u) ∈ E1, v, u ∈ V ∗
1 }. Therefore, we removed

all nodes that are not active in one of the networks, e. g., some
conference participants who have ResearchGate accounts but
do not have any connections with other conference participants
in this online network are not included in the core network of
the conference considering the ResearchGate network.

V. ANALYSIS

In our analysis below, we focus on the three research ques-
tions introduced above, i. e., concerning structural similarities
and correlation, implications between online and offline, and
the characterization of good proxies.

A. Structure and Correlation (Q1)

For answering the first question Q1, we investigate struc-
tural similarities of the online and offline data, comparing
global network and edge properties. As expected, face-to-face
networks are much denser than the other network sources,
cf. Tables I). So, we used different contact thresholds (i. e.,
we kept only links if the duration of at least one face-to-face
contact was longer than the considered threshold) to decrease

TABLE III: Networks size and density dependent on
conversation threshold for different conferences.

F2F-Threshold (in sec):
20: 180: 300:

LWA 2010 |V | 77 74 72
dens(G) 0.34 0.15 0.11

LWA 2011 |V | 42 39 39
dens(G) 0.35 0.15 0.10

LWA 2012 |V | 44 42 38
dens(G) 0.37 0.17 0.14

HT 2011 |V | 69 61 58
dens(G) 0.23 0.09 0.08

TABLE IV: Network correlation analysis: Jaccard co-
efficient and results of QAP test for pairs of offline
(Face-to-face proximity and DBLP-coauthorship) and on-
line networks (ResearchGate) of participants of different
conferences. Three thresholds for face-to-face proximity
networks were considered: 20, 180 and 300 seconds. Values
marked with “**” and “*” are significant at p ≤ 0.001 and
p ≤ 0.05, respectively.

F2F – RG
F2F-Threshold (in sec): DBLP – RG

20: 180: 300:
LWA Jac 0.14 0.22 0.20 0.79
2010 QAP 0.29** 0.24** 0.24** 0.75**
LWA Jac 0.23 0.31 0.32 0.79
2011 QAP 0.45** 0.33** 0.29* 0.74**
LWA Jac 0.15 0.20 0.26 0.65
2012 QAP 0.24** 0.21* 0.26** 0.68**
HT Jac 0.08 0.16 0.15 0.91
2011 QAP 0.22** 0.12 0.15 0.64**

the density, as described in [20], cf. Table III. The number of
active nodes was not reduced significantly in each case.

We compared the Jaccard coefficients of the offline and
the online network’s cores regarding the edges, cf. Table
IV. Moreover, we considered three different minimal contact
thresholds for the face-to-face networks. We observe the trend,
that the Jaccard similarity is higher for larger minimal contact
thresholds, which may point to the fact that stronger ties
in offline networks are better mapped in online networks.
However, the values of the respective Jaccard coefficients range
from 0.15 to 0.32, which does not seem sufficient to state that
the two types of networks are very strongly correlated. This
is also confirmed by the QAP-test analysis: while almost all
correlations are significant, the correlation values themselves
are only in a medium range, best for LWA 2010, worst for
HT 2011. Furthermore, the Jaccard coefficient between the
DBLP coauthorship network and the RG network is in all
cases much higher than between the face-to-face proximity
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and RG networks. This confirms the previous observation that
the stronger the connection between two persons, the more
likely the presence of the corresponding online connection;
obviously, a coauthorship link represents a stronger connection
than a conversation during a conference.

The answer to question Q1 can thus be summarized as
follows: there exist structural similarities and correlations
between offline and online networks. These similarities are
much stronger if we consider DBLP instead of the face-
to-face networks. Nevertheless, online data tends to act as
a better proxy for stronger ties in the face-to-face network
compared to all face-to-face interactions. This indicates that
strong offline connections are more likely to be represented
in online networks than weaker ones. Also, in the offline
world, paper coauthorship, for example, is obviously a stronger
connection than a conversation during a conference.

B. Implications – Online vs. Offline (Q2)

We investigate implications between the networks, focusing
on the recurrance of edges of one network in another network,
rankings, and the predictability of offline links given online
content.

1) Implication between Sets of Edges: The implication
of edges between different networks helps in further under-
standing the networks’ nature, cf. Table V. The probability
that two persons who are linked in ResearchGate also talk
to each other during the LWA conference was pretty high –
above 80% (69% for the Hypertext 2011 conference). The
probability of two persons who are linked in ResearchGate
being coauthors is very high as well – over 44%. In contrast,
having a short conversation during the conference does not
increase the chance for a link in the online world – the
probability is below 24%. However, the longer the conversation
is, the higher is the probability of the online link – up to 44%
(for LWA 2011). The probability of a RG link between two
persons in case they coauthored at least one paper is extremely
high – 86% in average, up to 100% (for LWA 2011).

TABLE V: Implications: the probability of a link between
two nodes in one network if it exists in another for
offline (F2F and DBLP coauthorship) and online networks
(ResearchGate) of participants of different conferences.
We considered three contact thresholds (20, 180 and 300
seconds) for the F2F networks.

F2F – RG
F2F-Threshold (in sec): DBLP – RG
20: 180: 300:

LWA
2010

← 0.84 0.63 0.49 0.46
→ 0.14 0.25 0.26 0.94

LWA
2011

← 0.81 0.65 0.52 0.54
→ 0.24 0.37 0.44 1.00

LWA
2012

← 0.83 0.55 0.55 0.44
→ 0.16 0.24 0.32 0.79

HT 2011 ← 0.69 0.53 0.38 0.44
→ 0.09 0.19 0.2 0.73

2) Matching of Rankings: We aim to determine if the
hierarchies of different online and offline worlds match each
other. To answer this question we identify different features
which reflect the “importance” or “influence” of persons in
different worlds and compare the resulting ranks afterwards.

As different datasets represent different type of activities and
have different nature, we identified different ranking strategies
depending on networks properties:

• Face-to-face networks: the participants were ranked ac-
cording to their eigenvector-centrality (cf. III-A) in each
conference (graph); in case the person took part in more
than one conference, the maximal EV-centrality was used.

• DBLP: the persons with DBLP entries were ranked
according to the number of their coauthors; the number
of coauthors correlates with the number of publications
and is a good sign of collaboration and visibility of a
scientist.

• ResearchGate: ResearchGate profiles were ranked ac-
cording to their RG-Score5 – a metric created by the
ResearchGate network to compute scientific reputation,
based on three parameters: contribution, interaction and
reputation.

• Homepages: The homepages of scientists were ranked
according to their homepages’ Google PageRank; if re-
searchers have different homepages, then the one with the
highest PageRank value was chosen.

First, we computed the node rank correlation for all net-
work pairs. The DBLP, ResearchGate and Homepage ranks
correlate pairwise and the correlation is significant at p ≤
0.001, cf. Table VI. The largest of all correlations is the
correlation between the ResearchGate RG-Score and the DBLP
number of coauthors, with a value of 0.68. However, the num-
ber of papers and coauthors, respectively, are most probably
used in the computation of the RG Score, so these metrics are
not independent.

Surprisingly, the eigenvector centrality in the face-to-face
proximity networks does not correlate with any of these
metrics. We considered different centrality measures in the
F2F-networks (such as number and lengths of contacts), with
similar results (small negative non-significant correlation).

TABLE VI: Correlation of node ranks and intersection of
the most important persons (for core (and whole) networks)
based on different measures: F2F – based on eigenvector
centrality, DBLP coauthorship – based on number of
coauthors, ReserchGate network (RG) – based on RG-
Score, network of webpages – based on global Google
PageRank value.

DBLP RG HP

F2F Correl. 0 -0.07 -0.01
Intersec. 0.05 (0.05) 0.15 (0.05) 0.22 (0.22)

DBLP Correl. 0.68 0.49
Intersec. 0.65 (0.6) 0.4 (0.4)

RG Correl. 0.42
Intersec. 0.48 (0.32)

Furthermore, we identified the set of the top-ranked persons
for each conference using each of the suggested rankings. We
considered the top 5 persons obtained from different networks
except for the homepage dataset. For that, we adjusted for ties
when collecting the top persons according to their homepages’
pagerank. Then, we compared the top ranked nodes with each
other. Particularly, we computed intersections for each pair

5https://www.researchgate.net/publicprofile.RGScoreFAQ.html
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Fig. 1: Precision-recall curves for retrieving existing F2F links from paper, homepage, or RG data. Graph (a) is evaluated
on all pairs of conference attendees for which all data is available. Graph (b) further disregards pairs of known coauthors.

of conferences, cf. Table VI. These intersections show how
accurately it is possible to predict “important persons” in one
network based on data from another network. We computed
rankings for the both core and the complete networks. The
results are similar to the rank correlation: the intersections
between ResearchGate, DBLP and homepages rankings are
higher than the intersections of the Face-to-Face proximity
networks with each of these networks. However, the top-ranked
persons from face-to-face networks are better predictable than
we could suggest based on correlations between the rankings,
cf. Table VI. Another interesting observation is that comparing
the whole networks did not have a crucial influence on the
results in most cases. This can be explained by the fact that
“important persons” tend to be active in different networks,
e. g., having different online and offline manifestations repre-
senting their research profiles, interests and publications.

3) Online and Offline Content for Estimating F2F: We
analyze the qualities of online and offline data for indicating
the existence of face-to-face contacts. This task corresponds to
the cold start link prediction problem [22] for social networks.
Given online and offline data, our goal is to retrieve those pairs
of conference co-attendees for which a face-to-face contact has
been observed at a conference.

We rank all pairs of persons that co-attended a con-
ference by the persons’ descending cosine-similarity in five
different vectorspaces. We hypothesize, that we find many
truly observed F2F contacts early in these rankings. For the
first vectorspace, we represent persons by boolean vectors
of their selected ResearchGate disciplines. For the second
vectorspace, persons are represented by the sums of bag-of-
words vectors built from all their homepages. The other three
vectorspaces are based on the data of the persons’ publications.
We tried bag-of-words vectorspaces from paper full-texts,
only abstracts, and only titles. Each vector which represents
a person is constructed by summing over the bag-of-words
vectors of all the person’s publications or homepages. We
applied stemming [28] and stopword removal to publication
and homepage data.

We compare the predictive qualities of the rankings from
each of these vectorspaces with respect to all four conferences.
In particular, we apply microaveraging to the rankings of
each vectorspace, i.e., we construct a single multi-conference
cosine-ordered ranking for each vectorspace and use this
ranking for evaluation. Each triple consists of a conference
and two attendees of that conference and is mapped to either
“observed” or “not observed” by the respective conference
F2F-dataset. We concentrate on those 66 persons, for whom
we have data in all of the five vectorspaces, i.e. we know at
least one full-text, at least one abstract, at least one title, at
least one RG discipline and at least one homepage. For these
66 persons, the dataset contains 1997 full-texts, 1858 abstracts
and 3 461 titles in total.

Figure 1a shows the precision and recall curves for retriev-
ing truly observed F2F contacts. The graph indicates that none
of the content networks is a good proxy for the face-to-face
contact network. Intuitively, this can be explained by many
other thinkable reasons to talk to each other aside from sim-
ilar homepages, publications, or disciplines. Nevertheless, the
comparison to the random baseline reveals that utilizing this
information is clearly better than not knowing anything. Figure
1a further indicates that retrieving the observed F2F contacts
among all pairs of conference co-attenders works comparably
well using information from homepages, publication titles or
abstracts. At low recall levels, title data yields slightly more
precise results. Conversely, ResearchGate disciplines seem to
be too broad concepts for achieving high-precision at low
recall, but such information works relatively well at higher
recall levels.

Because coauthors share publications, their publication
based bag-of-words models naturally become more similar.
This may also hold for homepages, which frequently contain
publication lists. In a second evalutation setup, we examine to
what extent the small amount of recall achieved with high
precision in Figure 1a can be explained by highly ranked
pairs of coauthors. Figure 1b is the result of an evaluation
that disregards all coauthor pairs. The graph shows that the
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TABLE VII: Examples of descriptions of subgroups of users that connect in Research Gate (RG) online, after at least
one offline face-to-face (F2F) contact at a conference, and subgroups of users that do not connect.

# Target Subgroup Description Support Confidence Lift
1 Connection in RG Eigenvector centrality (F2F) > 0.28 (high) 0.21 1.00 1.42
2 Connection in RG At least one RG CS discipline and contact fraction > 46% 0.17 1.00 1.42
3 Connection in RG Number of DBLP coauthors > 67 (high) 0.22 0.96 1.36
4 Connection in RG Only RG CS disciplines and Google Pagerank > 3 0.32 0.86 1.22
5 Connection in RG At least one RG CS discipline 0.80 0.80 1.14
6 No RG Connection No RG CS disciplines and Eigenvector centrality (F2F) < 0.1 (low) 0.14 0.80 2.70
7 No RG Connection No RG CS disciplines 0.20 0.68 2.30
8 No RG Connection Number of RG views < 547 (low) 0.19 0.62 2.08
9 No RG Connection Number of RG publications < 10 (low) 0.22 0.54 1.82

10 No RG Connection Eigenvector centrality (F2F) < 0.1 (low) 0.50 0.46 1.56

accuracy of all models drops when coauthor pairs are not
evaluated. Yet, the accuracies of the two models from online
data drop less than those of paper based models. Homepage
data works best for identifying F2F-contacts of non-coauthors.
Even ResearchGate disciplines work slightly better than paper
data on this subtask. An explanation could be that homepages
and ResearchGate disciplines more concisely describe rough
topics of research interests and that such interests are important
features for guessing F2F contacts between non-coauthors.
Furthermore, homepages are likely to be similar if they belong
to the same institution and people from the same institution
may be expected to talk to each other with increased proba-
bility.

4) Summary: Concluding the analyses of Section V-B, it
turned out that there is no definite answer as to whether
links and ranks in online networks are good indicator for the
existence of the corresponding links and ranks in the offline
networks (Q2). Similar to Q1, we observed strong implications
between the DBLP and the RG networks in Section V-B1. We
also identified highly ranked (important) persons. However, the
eigenvector centrality ranking of the face-to-face networks did
not show any significant correlation with rankings from the
other networks for generalizing these implications.

In Section V-B3, we considered cold start link prediction
for the face-to-face networks, an example of a practical appli-
cation of utilizing online information in order to infer offline
relations. We found that information from all the networks
can be used to find a small amount of the F2F contacts with
high precision and most of the contacts with a clearly better
precision than picking links randomly. Interestingly, we found
that online data on homepages and in ResearchGate disciplines
is better suited for discovering F2F links of non-coauthors than
offline paper data.

C. Characteristics of Good Proxies (Q3)

In the following, we analyze features of actors in order to
obtain descriptions of certain classes of actors which are good
or bad proxies w.r.t. indicating online to offline interactions.
We consider both the network and content data separately.

For the network data, we aim to characterize classes of
actors for which online connections act as good (or bad)
proxies for offline interactions. In particular, we perform the
following experiment. We divide all persons who had at
least one contact of face-to-face proximity during a given
conference and a ResearchGate account into two groups: The
first group are given by the persons who have at least one

connection in the RG network with another person who visited
the conference (the person is a member of core network,
cf. Section IV-E). The second group consists of the rest of
conference participants – those who do not have connections
with other participants in ResearchGate. Thus, we aim to
characterize persons whose offline interactions are not dis-
coverable online and vice versa. For that purpose, we applied
subgroup discovery [1], [5] for identifying subgroups of actors
that are characterized by certain descriptive features. We use
descriptive information from the presented datasets in order
to identify subgroups of users with properties as mentioned
earlier, e. g., network centrality measures in the face-to-face
contact networks, the Google PageRank of their homepages,
and descriptive parameters extracted from their RG profiles.
Exemplary results of our analysis are shown in Table VII.

In our analysis, we found interesting properties typical
for one or another group. Persons with online connections,
for example, have high eigenvector centrality in the face-to-
face networks (row 1 in the table), high contact fraction with
the participants of the conference (row 2), high number of
DBLP coauthors (row 3) and high homepage PageRank (row
4). Therefore, the features which associate with importance and
connectedness tend to characterize good proxies. This is in line
with our conclusions for Q1 and Q2. Another interesting obser-
vation is that computer scientists who visited the conferences
tend to socialize more online than non-computer scientists who
visited these conferences (rows 2, 5, 6, 7). Furthermore, online
networks seem to be “bad proxies” for persons with a low
eigenvector centrality (rows 6, 10). Also, a low number of RG
views as well as a low number of publications (rows 8-9) are
indicative.

We also analyzed the matching of the textual content of
the homepages of individual scientists with the textual content
of their papers. Therefore, we constructed binary variables (as
target concepts) indicating a high/low similarity according to
the cosine measure of the respective bag-of-word representa-
tions. Here, we observe similar important features for good
(and bad) proxies as discussed above, e. g., Google PageRank,
the number of publications, or the selected ResearchGate
disciplines.

Overall, the answer to question Q3 can be summarized
as follows: in our analysis, we obtained some interesting
properties that can explain the nature of proxies of different
quality. We used subgroup discovery to obtain these properties
in the form of characteristic descriptions. Alltogether, the
presented insights and findings also correspond to the results
of the previous experiments.
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VI. CONCLUSIONS

In this paper, we analyzed online and offline social net-
works and their content. We investigated whether information
from online sources can be used as a proxy for the offline
world, specifically for researchers in the area of computer
science. Our results indicate that in many cases online and
offline datasets still have structural differences at large. How-
ever, strong ties seem to correlate better than weak ones and
for “important persons” there are proxy relations between the
online and the offline world. We also observed examples of
a successful application of online data for offline scenarios,
specifically relating to the analysis of content and characteristic
subgroups. Our results show that the considered online data is
not an ideal proxy for offline information overall, but still pro-
vides some important indications about offline relationships.

In the future, we aim to analyze further relations between
the presented and additional online (e. g., LinkedIn) and offline
(e. g., Meetup.com) data. We also plan to consider time-
based phenomena of network development. More and more
ubiquitous systems and technologies are emerging, and this
makes datasets with more participating persons and their com-
munication in the physical world available. Furthermore, we
aim to generalize the presented results (using larger networks
and richer content data) for an extended modeling of the
correspondence between online and offline social networks.
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