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Abstract
Community mining or community detection
methods are usually applied in order to identify
groups of users which share, e.g., common in-
terests or expertise. This paper presents an ap-
proach for mining descriptive patterns in order to
characterize communities in terms of their dis-
tinctive features. The method discovers commu-
nities and their descriptions directly, based on
adapted subgroup discovery techniques. We de-
scribe the adaptation in detail and propose opti-
mistic estimates of standard community evalua-
tion metrics. We present first results of the pro-
posed approach using data from the real-world
social bookmarking system BibSonomy.

1 Introduction
In social and ubiquitous applications a wealth of informa-
tion can be utilized for improving the user experience of
the system, e.g., by providing recommendations for spe-
cific resources or contacts. In this context, a peer group, or
community of users similar to the targeted user is often a
helpful resource. In order to identify communities, commu-
nity mining and community detection methods are applied.
A community is intuitively defined as a set of nodes that has
more and/or better links between its members compared to
the rest of the network. Formally, communities can be de-
fined using certain criteria, for example, edge counts within
a community compared to the edge counts to nodes located
outside the community, cf. [Leskovec et al., 2010].

There are a lot of prominent methods for community de-
tection, e.g., [Newman and Girvan, 2004; Newman, 2004;
Fortunato and Castellano, 2007], that identify a collection
of (overlapping) groups corresponding to communities. In
order to obtain such communities, e.g., groups of users
characterized by the interest in web mining, computer and
java, appropriate description techniques need to be applied.
We can, for example, consider the most frequent features
of the respective communities, or mine sets of subgroups
characterizing certain communities, cf., [Atzmueller et al.,
2009]. In contrast to such indirect approaches, this pa-
per proposes an approach for mining descriptive commu-
nity patterns directly: We present techniques for obtain-
ing the local patterns describing the k-best (overlapping)
communities according to standard community evaluation
measures. Furthermore, compared to standard community
mining approaches in the field of social network analysis,
cf. [de Nooy et al., 2005], we aim to discover interesting
groups in the "community space" by efficient exhaustive
search for patterns in the "description space".

The proposed method is based on an adapted subgroup
discovery approach, since descriptive community mining
and subgroup discovery share the property of optimizing
for groups that are interesting with respect to a certain prop-
erty of interest: For subgroup discovery, the property of
interest is usually given by a (dependent) target variable.
With respect to the target, appropriate quality measures are
then applied, e.g., for obtaining the set of subgroups that
are "as large as possible and have the most unusual sta-
tistical characteristic with respect to the property of inter-
est" [Wrobel, 1997]. For community mining, a commu-
nity is considered interesting based on the links between
its members, e.g., comparing the intra community-links to
the inter-community links. The proposed method applies
subgroup discovery techniques for obtaining subgroups de-
scribed by a set of features, e.g., considering combinations
of tags or topics for social bookmarking systems. The de-
scription are rated in the community space using standard
community evaluation measures directly, e.g., by consider-
ing users of social bookmarking systems.

We propose an algorithm for mining descriptive commu-
nity patterns based on the SD-Map* algorithm and describe
the adaptation to the community mining task in detail. Fur-
thermore, we discuss the application of standard commu-
nity evaluation measures, and propose suitable optimistic
estimates for pruning the search space.

Our application context is given by social and ubiqui-
tous applications such as social networking applications,
social bookmarking systems, and sensor-networks. Con-
sidering our own system BibSonomy1[Benz et al., 2010]
as an example, the friend graph indicates explicit friend-
ship relations between users. Then, these graphs directly
indicate communities (of users) according to the link struc-
ture. Similar interaction networks accrue in the context
of ubiquitous applications (e. g., users which are using a
given service at the same place and time). Communities of
users can then be characterized in terms of their descriptive
features, e. g., for generating explanations [Atzmueller and
Roth-Berghofer, 2010]. In the context of social bookmark-
ing systems, e. g., we can consider the set of tags, topics, or
resources that the respective subset of users applied.

The rest of the paper is structured as follows: Section 2
summarizes basics of community detection and subgroup
discovery. Next, Section 3 discusses related work. We in-
troduce the proposed approach for mining descriptive com-
munity patterns in Section 4. After that, we provide eval-
uation results in the context of the real-world BibSonomy
system in Section 5. Finally, Section 6 concludes the paper
with a summary and directions for future research.

1http://www.bibsonomy.org



2 Preliminaries
In the following, we briefly introduce basic notions with
respect to graphs and networks, community quality mea-
sures, and finally subgroup discovery.

2.1 Graphs
A graph G = (V,E) is an ordered pair, consisting of a
finite set V which consists of the vertices or nodes, and a
set E of edges, which are two element subsets of V . A
directed graph is defined accordingly: E denotes a subset
of V × V . For simplicity, we write (u, v) ∈ E in both
cases for an edge belonging to E and freely use the term
network as a synonym for a graph. The degree of a node
in a network measures the number of connections it has
to other nodes. For the adjacency matrix A ∈ Rn×n of
a set of nodes S with n = |S| contained in a graph G =
(V,E) holds Aij = 1 iff (i, j) ∈ E for any nodes i, j in S
(assuming some bijective mapping from 1, . . . , n to S). We
identify a graph with its according adjacency matrix where
appropriate.

2.2 Community Quality Measures
The concept of a community can be intuitively defined as
a group C of individuals out of a population U such that
members of C are densely “related” one to each other but
sparsely “related” to individuals in U \ C. This concept
transfers to vertex setsC ⊆ V in graphsG = (V,E) where
nodes inC are densely connected but sparsely connected to
nodes in V \ C. Though defined in terms of graph theory,
the community concept remains vague. For a given graph
G = (V,E) and a community C ⊆ V we set n := |V |,
m := |E|, nC := |C|, mC := |{(u, v) ∈ E | u, v ∈ C}|,
mC := |{(u, v) ∈ E | u ∈ C, v 6∈ C}| and for a node
u ∈ V its degree is denoted by d(u). Different evalu-
ation functions (also called cluster indices) f : P(V ) →
R for modelling the intuitive community concept exist,
e. g., [Leskovec et al., 2008].
• Conductance: f(C) = mC

2mC+mC

• Expansion: f(C) = mC

nC

• Average-ODF: 1
nC

∑
u∈C

|{(u,v)∈E : v 6∈C}|
d(u)

• Volume:
∑

u∈C d(u)
• Edges cut: mC

Another popular quality function is given by the modu-
larity [Newman and Girvan, 2004] which is based on com-
paring the number of edges within a community with the
expected such number given a null-model (i.e., a random-
ized model). Thus, the modularity of a community cluster-
ing is defined to be the fraction of the edges that fall within
the given clusters minus the expected such fraction if edges
were distributed at random. This can be formalized as fol-
lows: The modularity MOD(S) of a set of nodes S and its
assigned adjacency matrix A ∈ Nn×n is given by

MOD(S) =
1

2m

∑
i,j

(
Ai,j −

d(i)d(j)

2m

)
δ(Ci, Cj) ,

where Ci is the cluster to which node i belongs and Cj is
the cluster to which node j belongs; d(i) and d(j) denote
i and j’s degrees respectively; δ(Ci, Cj) is the Kronecker
delta symbol that equals 1 iff Ci = Cj , and 0 otherwise.
The modularity for a single communityC can then be com-
puted as:

MOD(C) =
1

2m

∑
i∈C,j∈C

(
Ai,j −

d(i)d(j)

2m

)
.

In the context of this paper, we focus on the conduc-
tance and the modularity quality functions. These consider
the evaluation from two different perspectives. Modular-
ity mainly focuses on the links within communities, while
the conductance also takes the links between communities
into account. In Section 4.1 we present a technique for
transforming and merging networks and descriptive data,
e.g., tags or topic from social bookmarking systems, into a
single data source representing a special undirected anno-
tated graph of the respective network. Concerning the pro-
posed method for descriptive community mining we focus
on functions for undirected graphs, that are used for dis-
covering local communities. However, for their evaluation
we need to consider overlapping communities. Therefore,
we summarize a generalization of the modularity for over-
lapping communities introduced by [Nicosia et al., 2009]
in Section 5.

2.3 Networks in Social Bookmarking Systems

Social bookmarking systems do not explicitly contain re-
lations on users in their underlying data structure, which
only captures who assigned which tags to which resource.
But most bookmarking systems incorporate additional re-
lations on users such as “my network” in del.icio.us2 and
“friends” in BibSonomy3 and flickr4. Each such network
is connected with a given functionality, e. g., for restrict-
ing access to certain resources or for allowing messages to
be sent. Nevertheless, those networks also bear a “social
meaning”.

Besides those explicit relations among users, different
relations are established implicitly by user interactions with
the systems. These are given by, e. g., clicklogs or page
visit information. In some systems, it is also possible to
copy content from other users. Then, the logging informa-
tion can be transformed into a user-graph structure, for ex-
ample, into a click-graph, into a visit-graph, or into a copy-
graph of users, as described below in detail. All of these are
implemented in the social resource sharing system BibSon-
omy, but are typically also found in other resource sharing
and social applications. Even more user interactions occur
in the context of ubiquitous web applications. Examples
are users which are using a given service at the same place
and time, or communication relationships based on prox-
imity sensors [Szomszor et al., 2010], among many oth-
ers. In the following, we summarize three of the evidence
networks that are provided by the BibSonomy system, and
refer to [Mitzlaff et al., 2010b] for more details.
• The Friend-Graph GF = (VF , EF ) is a directed

graph with (u, v) ∈ EF iff user u has added user v
as a friend.
• The Click-Graph GC = (VC , EC) is a directed graph

with (u, v) ∈ EC iff user u has clicked on a link on
the user page of user v.
• The Visit-Graph GV = (VV , EV ) is a directed graph

with (u, v) ∈ EV iff user u navigated to the user page
of user v.

For more details, we refer to [Mitzlaff et al., 2010a], in
which we have also shown that the discussed evidence net-
works are a suitable data source for community mining and
community detection algorithms.

2http://delicious.com/network/<username>
3http://www.bibsonomy.org/friends
4http://www.flickr.com/photos/friends/



2.4 Subgroup Discovery
Subgroup discovery [Klösgen, 1996; Wrobel, 1997; Atz-
mueller, 2007] aims at uncovering properties of a selected
target population of individuals: The interesting subgroups
should have the most unusual characteristics with respect
to a given target property of interest. For some basic no-
tation, let ΩA denote the set of all attributes. For each at-
tribute a ∈ ΩA a range dom(a) of values is defined. Let
DB be the database containing all available data records.
A data record r ∈ DB is given by the n-tuple r =
((a1 = v1), . . . , (an = vn)) of n = |ΩA| attribute values,
vi ∈ dom(ai) for each ai. A subgroup s is defined as a sub-
set of the whole database DB , i.e., s ⊆ DB . The subgroup
description language specifies the individuals belonging to
the subgroup. For a commonly applied single-relational
propositional language a subgroup description can be de-
fined as follows:

Subgroup Description A subgroup description sd(s) of
the subgroup s, sd(s) = {e1, . . . , el}, l ≥ 0, is defined
by the conjunction of a set of selection expressions (selec-
tors). The individual selectors ei = (ai, Vi) are selections
on domains of attributes, ai ∈ ΩA, Vi ⊆ dom(ai). We de-
fine ΩE as the set of all selection expressions and Ωsd as
the set of all possible subgroup descriptions.

Subgroup A subgroup s described by the subgroup de-
scription sd(s) is given by all records r ∈ DB covered by
the subgroup description sd(s). We denote the subgroup
s described by sd(s) with ext(sd(s)). A subgroup s′ is
called a refinement of s, if sd(s) ⊂ sd(s′).

Due to multi-correlations between the independent vari-
ables, the discovered subgroups can overlap significantly.
Adapting the idea of condensed representations, for exam-
ple, closed itemsets, cf., [Pasquier et al., 1999], we can de-
fine closed subgroup descriptions using the subgroup size
n. If only the closed subgroup descriptions are considered,
then for equivalent and equally-sized subgroups, the sub-
group with the longest subgroup description is selected.

Closed Subgroup Description A subgroup description
sd ∈ S is called closed with respect to a set S if there
exists no subgroup description sd ′ ∈ S, sd ′ ⊃ sd , with
|ext(sd)| = |ext(sd ′)|.

Quality Function A quality function q : 2DB → R as-
signs a numeric interestingness value to the subgroup s.

A quality function measures the interestingness of a sub-
group: Typical quality criteria include the characteristics of
the target concept comparing the subgroup and the whole
database, and the subgroup size. Often, a threshold Tn im-
poses a minimal size constraint on the subgroup.

For many quality functions an optimistic estimate of a
subgroup s can be specified. This approximation describes
an upper bound for the quality, that any refinement of s
can have. The basic principle of optimistic estimates is to
prune parts of the search space during exhaustive search for
the top k subgroups. The idea relies on the intuition that if
the k best subgroups so far have already been obtained, and
the optimistic estimate of the current subgroup is below the
quality of the worst subgroup contained in the k best, then
the current branch of the search tree can be safely pruned.

More formally, an optimistic estimate oe of a quality
function q is a function such that s′ ⊆ s→ oe(s) ≥ q(s′),
i.e., that no refinement of subgroup s can exceed the quality
oe(s).

3 Related Work
Fortunato [Fortunato and Castellano, 2007] discusses vari-
ous aspects connected to the concept of community struc-
ture in graphs. Basic definitions as well as existing and new
methods for community detection are presented. This work
is a good entry point for the topic of community mining.

An LDA [Blei et al., 2003] based community detection
method for a folksonomy is presented in [Kashoob et al.,
2010] which is evaluated indirectly by measuring the im-
provement of search results achieved by incorporating the
mined community information. Using a metric which is
purely based on the structure of graphs, Newman presents
algorithms for finding communities and assessing com-
munity structure in graphs [Newman, 2004]. A thorough
empirical analysis of the impact of different community
mining algorithms and their corresponding objective func-
tion on the resulting community structures is presented by
Leskovec [Leskovec et al., 2010], which is based on the
size resolved analysis of community structure in graphs as
presented in [Leskovec et al., 2008].

In [Lancichinetti and Fortunato, 2009], Lancichinetti
presents a thorough comparison of many different state of
the art graph community detection algorithms. The perfor-
mance of algorithms are compared relative to a class of ad-
equately generated artificial benchmark graphs. The work
is extended in [Lancichinetti and Fortunato, 2009] for di-
rected graphs and overlapping communities. Additionally,
[Lancichinetti et al., 2009] discusses an approach for de-
tecting overlapping communities based on the local opti-
mization of a fitness criterion. Gregory [Gregory, 2009] de-
scribes several algorithms for overlapping community de-
tection that consider non-overlapping (hierarchical) clus-
ters first, and subsequently merge these into an overlapping
structure. Finally, [Chen et al., 2010] describe a game-
theoretic approach for detecting overlapping communities
that models community assignments as a strategic game of
agents corresponding to the nodes. It optimizes community
assignments until an equilibrium state of the utility func-
tions of the agents is reached.

In contrast to the approaches mentioned above, the pro-
posed method integrates the information from both the net-
work and other descriptive information, e.g., tags or topics
describing the nodes contained in the network. The pre-
sented method focuses on the characterization and descrip-
tion of communities while directly searching for the top
k descriptive communities according to their quality. The
proposed method guarantees that the top k communities are
discovered, that can be represented using the given descrip-
tion space. It ensures this by efficient exhaustive search in
description space using appropriate pruning techniques.

A first approach for the characterization and descrip-
tion of communities was introduced in [Atzmueller et
al., 2009], focussing on the description of spammers in
the social bookmarking system BibSonomy. This tech-
nique shares similarities with the iterative approach in [van
Leeuwen, 2010], that also discovers subgroups first and
then describes these using a (set of) subgroup descrip-
tion(s). Also, interactive approaches for subgroup charac-
terization are presented in [Atzmueller and Puppe, 2008].
In contrast to these approaches, the method proposed in this
paper does not start with a given subgroup allocation, but
discovers and optimizes subgroups/communities directly.
This can provide more compact conjunctive descriptions,
i.e., not including disjunctions of several subgroup descrip-
tions for the characterization of a community.



4 Mining Descriptive Community Patterns
In an intuitive sense, community mining is concerned
with the identification of subgroups of users that are more
densely connected within each other, than to other groups.
In social bookmarking systems, we can consider subgroups
of users for which their connections are defined, for exam-
ple, in terms of a friend or a click-network. Therefore, in
this context, subgroups and communities are rather simi-
lar; from now on, we will use the terms interchangeably
whenever we are referring to communities (or subgroups)
of users, either represented by a set of edges or nodes con-
tained in a graph or dataset, respectively.

For the characterization of the communities, we can ap-
ply descriptive data of the users, for example, considering
their applied set of tags, their set of topics, or their set of
resources, see Table 1 for some examples. Given a com-
munity, subgroup discovery can be applied for obtaining
characteristic descriptions, e.g., [Atzmueller et al., 2009]
for characterizing the community of spammers in the so-
cial bookmarking system BibSonomy. In this way, differ-
ent patterns for certain community subsets are provided.

In contrast, this paper provides a method for discovering
communities and their descriptions directly. Specifically,
we will show how we can adapt an efficient subgroup dis-
covery method for community detection, and apply typical
community evaluation functions. The output of the mining
method is the set of the top k communities according to the
given community evaluation function. The method can pro-
duce overlapping communities, which do not restrict one
user to a single community, but allows for a description of
users participating in a set of communities, i.e., a charac-
terization from different points of view.

4.1 Transformation and Mining: Subgroup
Discovery for Community Description

In the following, we consider two data sources for obtain-
ing descriptive community patterns. A database DB con-
taining data records that describes a set U of users in terms
of certain attributes ΩA, e.g., containing binary features
corresponding to topics or tags applied by that user. Ad-
ditionally, we consider links between the users correspond-
ing to the data records of DB modeled in a graph G, e.g.,
friendship links, follower links, or according page visits.

Our goal is then to discover the k best communities as
subgroups of the whole database described by a descrip-
tion considering the attributes of database DB , that maxi-
mize a suitable community evaluation function on the link
structure G. For applying subgroup discovery efficiently
we need to merge both data sources.

Therefore, we apply a data transformation approach
for merging both data sets. Considering the descriptive
database and the user network, it is easy to see that these
only consider individual nodes, i.e., users of the graph, and
the database, respectively. However, the applicable com-
munity evaluation measures mostly consider the edges, i.e.,
the connections between the nodes in order to assess the
community qualities. If we consider the edges of the com-
munity, for which each edge connects two nodes, and if
we can also access the degree information between these
nodes, then we can reconstruct and calculate the appropri-
ate quality measures directly, as we will outline below.

When merging the data sets, we obtain a data set con-
taining the connecting edges between the contained nodes
that are constructed in a special way for enabling direct de-
scriptive community mining: Each data record represents

a connecting edge between two nodes of the network. The
attribute values of each such data record are then given by
the intersection of the (non-default) attribute values of each
node that is connected by the corresponding edge. For ex-
ample, considering tags corresponding to binary attributes
we only consider the true values of each attribute, e.g., in-
dicating that a tag or a topic was applied by both users
represented by the given nodes. The rationale behind us-
ing the intersection is based on the observation, that an
edge (and its two nodes) can only contribute to a commu-
nity described by a certain attribute value, if this respective
attribute value is contained in the data records of the two
nodes.

In addition to the attribute values contained in the inter-
section of the two source nodes, the edge data record also
stores the contributing nodes and their respective degrees.
In this way, typical quality functions such as modularity
and the conductance can be calculated considering a set of
edges given only this information.

Thus, only using the number of edges contained in the
community mC , the total number of edges, and the respec-
tive node degrees d(i) of the nodes i ∈ C of the com-
munity, the modularity for a community C can be directly
computed as follows:

MOD(C) =
1

2m

∑
i∈C,j∈C

(
Ai,j −

d(i)d(j)

2m

)
=

=
1

2m

∑
i∈C,j∈C

Ai,j −
∑

i∈C,j∈C

d(i)d(j)

4m2
=

=
1

2m
2mC −

∑
i∈C,j∈C

d(i)d(j)

4m2
=

=
mC

m
−

∑
i∈C,j∈C

d(i)d(j)

4m2

Conductance can similarly be calculated using only the
parameters mentioned above:

CON (C) =
mC

2mC +mC
=

=
mC∑

u∈C d(u)
=

=

∑
u∈C d(u)− 2mC∑

u∈C d(u)
=

= 1− 2mC∑
u∈C d(u)

For subgroup discovery, we are interested in maximiz-
ing the given quality function, which works well for the
modularity while conductance is closer to zero for commu-
nities with higher quality. Therefore, from now on we will
consider the inverse conductance (ICON ) instead of the
conductance, for maximizing the quality values.

ICON (C) = 1− CON (C) =

=
2mC∑
u∈C d(u)

4.2 Optimistic Estimates for Community
Quality Functions

In the following we introduce optimistic estimates for typi-
cal community evaluation functions, i.e., for the introduced
inverse conductance and for the modularity.



Conductance Modularity
Community1 Community2 Community3 Community1 Community2 Community3
work business work work business php
flickr production flickr flickr computer web
delicious sales delicious delicious production internet

university innovation
bib business
surabaya forschung
php
web
internet
library
all
emulation

Table 1: Example for descriptive community patterns: Three of the top 10 ranked subgroups/communities according
to conductance and modularity together with their respective topic description, using the friend-graph data described in
Section 5. The columns show the different communities, consisting of several topics as sets of tags in the rows of the table.

Modularity
An optimistic estimate for the modularity can be derived
based on the number of edges mC within the community:

oe(MOD(C)) =

{
0.25, if mC ≥ m

2 ,
mC

m − m2
C

m2 , otherwise.

Proof We start with a reformulation of the modularity.
An optimistic estimate can then be derived considering the
number of edgesmC within the community. Also, note that∑

i∈C d(i) = 2mC +mC , considering the degrees d(i) of
the nodes i contained in a community C.

MOD(C) =
mC

m
−

∑
i∈C,j∈C

d(i)d(j)

4m2
=

=
mC

m
− 1

4m2

∑
i∈C

d(i)
∑
j∈C

d(j) =

=
mC

m
− 1

4m2

∑
i∈C

d(i)(2mC +mC) =

=
mC

m
− 1

4m2
(2mC +mC)2 ≤

≤ mC

m
− 1

4m2
(2mC)2 =

mC

m
− m2

C

m2
=

= ôe(MOD(C)).

Note that the optimistic estimate is only dependent on
mC , i.e., the number of edges covered by the community
s. Therefore, every subgroup s∗ ⊆ s that is a refinement of
s will cover at most mC edges.

The function ôe(MOD(C)) is a concave function since
its derivative function

ôe(MOD(C))′ =
1

m
− 2mC

m2

is monotonically decreasing. Therefore, the function has
one maximum, at point m

2 , for m 6= 0.
We consider two cases: If mC ≥ m

2 , then the maxi-
mal modularity can be obtained at point m

2 . Otherwise,
for all mC < m

2 , ôe(MOD(C)) is decreasing in mC , and
thus ôe(MOD(C)) is an optimistic estimate for MOD(C).
This concludes the proof. �

Inverse Conductance
For the inverse conductance, we need to consider the min-
imal support threshold Tn w.r.t. the community size (num-
ber of nodes) when computing the optimistic estimate:

oe(ICON (C)) = 1−
∑Tn

i=1 d(i)∑
u∈C d(u)

where d(i) are the outgoing degrees of the nodes contained
in the community C, sorted in ascending order, such that
d(i), i = 1 . . . Tn denotes the minimal Tn outgoing degrees
of connected nodes contained in the community C.

Proof

ICON (C) =
2mC∑
u∈C d(u)

=

=

∑
u∈C d(u)−mC∑

u∈C d(u)
=

= 1− mC∑
u∈C d(u)

≤

≤ 1−
∑Tn

i=1 d(i)∑
u∈C d(u)

= oe(ICON (C)).

As shown above, for a fixed mC it follows that
oe(ICON (C)) ≥ ICON (C). Since every subset C ′ ⊆ C
will cover at most mC edges and the numerator of the last
term (

∑Tn
i=1 d(i)) is the minimum considering the outgo-

ing edges for a minimal size of Tn , oe(ICON (C)) is an
optimistic estimate of ICON (C). �

The optimistic estimate can be efficiently computed by
traversing the set of nodes and collecting the outgoing node
count for each node considering the endpoints of the edges.

4.3 Algorithmic Issues
In the following, we describe the SD-MAC algorithm
for mining descriptive community patterns adapted from
the state-of-the-art SD-Map* [Atzmueller and Lemmerich,
2009] algorithm for subgroup discovery. Specifically, we
will show how the SD-Map* algorithm and its basic data
structure, the FP-Tree, can be applied for the community
mining scenario.



As SD-Map*, SD-MAC is based on the efficient FP-
growth [Han et al., 2000] algorithm for mining frequent
patterns, first applied in [Atzmueller and Puppe, 2006] for
subgroup discovery. As a special data structure, the fre-
quent pattern tree or FP-tree is used which is implemented
as an extended prefix-tree-structure that stores count infor-
mation about the frequent patterns. SD-Map* applies a di-
vide and conquer method, first mining subgroup described
by one selector and then recursively mining larger descrip-
tions. SD-Map* utilizes a frequent pattern tree (FP-tree),
i.e., an extended prefix-tree-structure that stores the rele-
vant parameters for estimating subgroup qualities.

The FP-tree contains the frequent FP-nodes in a header
table, and links to all occurrences of the frequent selectors
in the FP-tree structure. This data structure itself can be
regarded as a compressed data representation for the set of
instances. According to the prefix-tree principle, the tree
stores aggregated counts for each shared path correspond-
ing to the attribute–value pairs of a set of instances.

For the recursive step, a conditional FP-tree is con-
structed, given the conditional pattern base of a frequent
selector (FP-node). The conditional pattern base consists
of all the prefix paths of such a FP-node. Due to the lim-
ited space we refer to Han et al. [Han et al., 2000] for more
details.

SD-Map* utilizes the FP-tree structure (built in two
scans of the database) to efficiently compute quality func-
tions for all subgroups relying on the fact that all the neces-
sary information is locally available in the FP-tree struc-
ture. Therefore, for the SD-MAC algorithm for min-
ing descriptive community patterns, we essentially need
to store the appropriate information within the FP-nodes
of the FP-Tree enabling the calculation of the commu-
nity evaluation measures. Additionally, the SD-MAC al-
gorithm can (optionally) output closed subgroup descrip-
tions as an alternative to providing all community descrip-
tions according to the analysis goals of the user. This fea-
ture can be implemented using the techniques described
in [Wang et al., 2005; Lemmerich and Atzmueller, 2009;
Lemmerich et al., 2010].

The SD-MAC algorithm utilizes the FP-tree structure
for computing the qualities of subgroup patterns efficiently.
All parameters that are needed for the quality evaluation
are stored and obtained, respectively, from the individual
FP-nodes of the tree. SD-MAC includes (optional) prun-
ing strategies adapted from SD-Map* and utilizes quality
functions with optimistic estimates for this purpose

For embedding optimistic estimate pruning, we basically
only need to consider three options for pruning and re-
ordering/sorting according to the current optimistic esti-
mates: (1) Pruning: In the recursive step when building
a conditional FP-tree, we omit a (conditioned) branch, if
the optimistic estimate for the conditioning selector is be-
low the threshold given by the k best subgroup qualities.
(2) Pruning: When building a (conditional) frequent pat-
tern tree, we can omit all the FP-nodes with an optimistic
estimate below the mentioned quality threshold. (3) Re-
ordering/Sorting: During the iteration on the currently
active selector queue when processing a (conditional) FP-
tree, we can dynamically reorder the selectors that have not
been evaluated so far by their optimistic estimate value. In
this way, we evaluate the more promising selectors first.
This heuristic can help to obtain and to propagate higher
values for the pruning threshold early in the process, thus
helping to prune larger portions of the search space.

To efficiently compute the community evaluation func-
tions together with their optimistic estimates for the com-
munity mining context SD-MAC stores additional infor-
mation in the FP-nodes of the FP-Tree, depending on the
used quality function. Each FP-node of the FP-Tree cap-
tures information about aggregated edge information con-
cerning the data base DB and the respective network. For
each node, we store the following information:
• The selector corresponding to the attribute value of the

FP-node. This selector describes the subgroup (given
by a set of edges) covering the FP-node.
• The edge count mC of the (partial) community repre-

sented by the FP-node, i.e., the aggregated count of all
edges EC = {(u, v) ∈ E : u ∈ C, v ∈ C} that are
accounted for by the FP-node and its selector, respec-
tively.
• The set of nodes VC = {u : (u, v) ∈ EC , u ∈ C, v ∈
C} that are connected by the set of edges EC of the
FP-node.

The result of the SD-MAC algorithm for mining de-
scriptive community patterns is the set of the top k patterns
according to the applied community evaluation function.
In order to reduce the redundancy with respect to includ-
ing irrelevant descriptions, SD-MAC can optionally filter
the patterns, using the techniques described in [Wang et
al., 2005; Lemmerich and Atzmueller, 2009]. This adapts
the idea of closed labeled data [Garriga et al., 2008] to
closed subgroup descriptions (with respect to the set of
edges/nodes contained in the community). Specifically, the
largest description (in terms of the selectors included in the
description) for the same set of edges will then be returned.

The top k patterns discovered by SD-MAC directly cor-
respond to different communities described by the respec-
tive patterns. Since the patterns can describe a set of
overlapping community participants, i.e., nodes in the net-
work, the set of community descriptions provides poten-
tially overlapping community allocations. Then, each node
v that participates in multiple communities ci ∈ Cv needs
to be assigned a belonging factor βci

v . For the presented
approach, we apply a uniform belonging factor

βci
v =

1

|Cv|
,

for the evaluation. Otherwise each node v is assigned a
belonging factor βv = 1 .However, also other assignments,
for example, based on the size of the community or the
strength of the connections of the node can be applied. All
belonging factors of a node need to sum to 1, i.e.,∑

ci∈Cv

βci
v = 1 .

5 Evaluation
In the following, we first describe the data used for the eval-
uation of the evidence networks. We used publicly avail-
able data from the social bookmark and resource sharing
system BibSonomy. After that, we describe the charac-
teristics of the applied evidence networks, and present the
conducted experiments. We conclude with a detailed dis-
cussion of the experimental results.

5.1 Evaluation Data and Setting
Our primary resource is an anonymized dump of all pub-
lic bookmark and publication posts until January 27, 2010,
from which we extracted explicit and implicit relations, cf.
Table 2 for an overview.



The dump consists of 175,521 tags, 5,579 users, 467,291
resources and 2,120,322 tag assignments. The BibSonomy
dump also contains friendship relations modeled in Bib-
Sonomy concerning 700 users. Furthermore, we utilized
the “click log” of BibSonomy, consisting of entries which
are generated whenever a logged-in user clicked on a link in
BibSonomy. A log entry contains the URL of the currently
visited page together with the corresponding link target, the
date and the user name5. For our experiments we consid-
ered all click log entries until January 25, 2010. Starting
in October 9, 2008, this dataset consists of 1,788,867 click
events.

We finally considered all available apache web server log
files, ranging from October 14, 2007 to January 25, 2010.
The file consists of around 16 GB compressed log entries.
We used all log entries available, ignoring the different time
periods, as this is a typical scenario for real-world applica-
tions.

5.2 Applied Evaluation Measures
For the experiments we basically applied the evaluation
measures conductance and modularity as introduced in
Section 2.

For directed networks [Leicht and Newman, 2008] with
in- and out- degree d(i)in and d(j)out for nodes i and j re-
spectively the modularity becomes

MOD(S) =
1

m

∑
i,j

(
Ai,j −

d(i)ind(j)out

m

)
δ(Ci, Cj) .

Since we consider methods for detecting both disjoint
and overlapping communities, we need an extension of the
modularity for overlapping communities. For overlapping
communities a generalization of the modularity was pro-
posed in [Nicosia et al., 2009] that also includes the case
of directed networks. For a set of nodes S, the modularity
MODo(S) for overlapping communities becomes:

MODo(S) =
1

m

∑
c∈C

∑
i,j∈V

(
βl(i,j),cAi,j

βout
l(i,j),ck

out
i βin

l(i,j),ck
in
j

m

)
,

where kin
i and kout

j are the in and out degrees for nodes
i, j; βl(i,j),c is the belonging coefficient of l(i, j) for com-
munity c; βin

l(i,j),c is the expected belonging coefficient of
any edge l(i, j) pointing to a node going into community
c, and βout

l(i,j),c is the expected belonging coefficient of any
possible edge l(i, j) starting from a node going into com-
munity c. The belonging coefficient of an edge is derived
by combining the belonging coefficients of two nodes, each
being part of a set of communities.

In our experiments, we multiplied the belonging factors
of the respective nodes for obtaining the belonging factor
of an edge, however also other combining functions, e.g.,
the maximum or the minimum of both factors are possible.
For more details, we refer to [Nicosia et al., 2009].

5Note: For privacy reasons a user may deactivate this feature!

GV (Visit) GC (Click) GF (Friend)
|Vi| 3381 1151 700
|Ei| 8214 1718 1012
|Vi|/|U | 0.58 0.20 0.12

Table 2: High level statistics for all relations where U de-
notes the set of all users in BibSonomy.

5.3 Experiments
For an initial assessment of the community mining perfor-
mance we used standard approaches that can be broadly
parameterized. First experiments were conducted using
the well known k-means algorithm [MacQueen, 1967] for
comparison. For that, each user u is represented by a vec-
tor (u1, . . . , uT ) ∈ RT where T is the total number of tags
and ui is the total number of times user u assigned the tag
i to resources in BibSonomy (i = 1, . . . , T ). The result-
ing clusters had poor quality, assigning most users to a sin-
gle cluster. Due to the sparsity of the considered high di-
mensional vector space representation (there are more than
170, 000 tags), the underlying search for nearest neighbors
failed (cf., e. g., [Beyer et al., 1999] for a discussion).

In addition, using conjunctive community descriptions is
also very difficult using the whole set of tags since the re-
spective data is rather sparse. Furthermore, there are seve-
ral issues when utilizing the (raw) set of tags directly, e.g.,
relating to many synonyms, writing variations, and hier-
archical dependencies between tags that need to be han-
dled appropriately in order to get more meaningful results.
Therefore, to bypass these problem, we created topics cap-
turing a set of tags, thus both reducing the number of di-
mensions and increasing the quality of the topics by group-
ing similar tags. There are a variety of approaches for di-
mensionality reduction. We chose to cluster the tags for
building “topics”, consisting of associated sets of tags. A
user u is thus represented as a vector ~u ∈ RT ′

in the topic
vector space, where T ′ � T is the number of topics. For
our experiments, we used a latent dirichlet allocation [Blei
et al., 2003] method for building topics, which efficiently
builds interpretable tag clusters, i.e., for obtaining descrip-
tive topic sets: Each topic captures semantically similar
tags and thus helps to inhibit the problem of synonyms, se-
mantic hierarchies, etc. The method has been successfully
applied in similar contexts to tagging systems (cf. [Siers-
dorfer and Sizov, 2009]). We applied datasets containing
100 (LDA-100) and 500 (LDA-500) topics each for the user
– tag/topic relations.

Furthermore, since k-means only tackles disjoint clus-
ters, and the proposed descriptive community mining ap-
proach can discover overlapping communities, we selected
another method for comparison. The well-known EM algo-
rithm [Dempster et al., 1977] also works with categorical
data and assigns (overlapping) cluster assignments to the
individual data records due to its expectation maximization
strategy. As a baseline for the SD-MAC the EM algorithm
is thus applied as a complement to the k-means algorithm
thus handling both disjoint and overlapping communities.

In the following results, the k-means models are labeled
with “KM-Ln-Kk”, where n denotes the number of topics
and k the number of clusters; the communities detected us-
ing the EM algorithm are labeled accordingly by “EM-Ln-
Kk”, and the communities discovered using the SD-MAC
algorithm are denoted by “SD-Ln-Kk”, where k denotes
the number of subgroups, given by k closed subgroup de-
scriptions.

For inhibiting subgroups with a low support, a minimal
size threshold of Tn = 5 was applied, so each community
consists of at least 5 nodes. For the clustering methods
no such measures were applied. For the experiments, we
utilized the WEKA implementation 6 of the k-means and
the EM algorithm.

6http://www.cs.waikato.ac.nz/~ml/weka/



inverse conductance (mean +/- stddev)
method GF GC GV

KM-L100-K25 0.33 +/- 0.34 0.31 +/- 0.30 0.23 +/- 0.32
KM-L100-K50 0.28 +/- 0.36 0.27 +/- 0.33 0.18 +/- 0.30
KM-L100-K100 0.38 +/- 0.43 0.35 +/- 0.42 0.15 +/- 0.30
KM-L500-K25 0.41 +/- 0.40 0.35 +/- 0.40 0.23 +/- 0.35
KM-L500-K50 0.37 +/- 0.43 0.35 +/- 0.43 0.14 +/- 0.30
KM-L500-K100 0.45 +/- 0.46 0.35 +/- 0.43 0.17 +/- 0.34
EM-L100-K25 0.13 +/- 0.21 0.12 +/- 0.20 0.12 +/- 0.31
EM-L100-K50 0.09 +/- 0.21 0.08 +/- 0.20 0.05 +/- 0.15
EM-L100-K100 0.24 +/- 0.39 0.13 +/- 0.12 0.10 +/- 0.27
EM-L500-K25 0.33 +/- 0.40 0.32 +/- 0.40 0.17 +/- 0.32
EM-L500-K50 0.25 +/- 0.38 0.24 +/- 0.14 0.18 +/- 0.35
EM-L500-K100 0.29 +/- 0.42 0.23 +/- 0.39 0.13 +/- 0.31
SD-L100-K25 0.46 +/- 0.01 0.38 +/- 0.01 0.29 +/- 0.02
SD-L100-K50 0.45 +/- 0.02 0.37 +/- 0.01 0.27 +/- 0.02
SD-L100-K100 0.44 +/- 0.02 0.36 +/- 0.02 0.26 +/- 0.02
SD-L500-K25 0.49 +/- 0.01 0.40 +/- 0.02 0.20 +/- 0.01
SD-L500-K50 0.48 +/- 0.01 0.38 +/- 0.03 0.20 +/- 0.01
SD-L500-K100 0.47 +/- 0.02 0.37 +/- 0.02 0.20 +/- 0.01

Table 3: Results – Inverse Conductance: k-means vs. EM and SD-MAC.

5.4 Results and Discussion
The results of the experiments for the click, visit, and friend
graphs described in Section 2.3 are shown in Table 3 for the
inverse conductance quality function.

The results in the table indicate, that the SD-MAC al-
gorithm consistently discovers sets of communities with a
higher inverse conductance (and thus a lower conductance
value) than the k-means and the EM algorithms. For both,
the relative performance for the different data sets is simi-
lar. Please note, that the standard deviations differ signifi-
cantly from those of the SD-MAC results since the mini-
mum and maximum values for conductance also differ sig-
nificantly: Conductance favors smaller communities, and
since the applied k-Means and EM algorithms do not pro-
vide a minimum size threshold higher inverse conductance
values can be achieved, in comparison to the SD-MAC al-
gorithm that applied a minimal size threshold Tn = 5.

For comparing the modularity concerning k-means and
the SD-MAC algorithm we consider the means of the mod-
ularity values of the individual communities. The results
are shown in Table 4. The SD-MAC results consistently
show higher modularity means, implying that the quali-
ties of the individual local communities are consistently
higher than the communities discovered by the k-means
algorithm. Furthermore, for comparing the overlapping
communities discovered using the EM algorithm and the
SD-MAC algorithm we consider the evaluation results pre-
sented in Table 5. We observe, that the SD-MAC algo-
rithm provides results that are at least as good as the re-
sults of the EM algorithm indicating that the SD-MAC al-
gorithm provides meaningful communities concerning the
modularity measure for overlapping communities.

We are aware that comparing the different algorithms
concerning the modularity is rather difficult since we need
to consider disjoint and overlapping communities, for
which a global quality score is calculated based on the lo-
cal ones. Assessing overlapping communities in graphs re-
cently gained more attention, but the impact of allowing
overlapping communities still needs to be thoroughly ex-
amined. This is similar to the issue of redundancy man-
agement in subgroup mining, for which redundant (over-
lapping) subgroups are removed.

modularity
method GF GC GV

EM-L100-K25 0.22 0.18 0.14
EM-L100-K50 0.17 0.14 0.10
EM-L100-K100 0.21 0.10 0.08
EM-L500-K25 0.24 0.18 0.13
EM-L500-K50 0.22 0.13 0.09
EM-L500-K100 0.20 0.11 0.07
SD-L100-K25 0.23 0.04 0.04
SD-L100-K50 0.17 0.04 0.02
SD-L100-K100 0.17 0.12 0.06
SD-L500-K25 0.26 0.21 0.14
SD-L500-K50 0.20 0.25 0.11
SD-L500-K100 0.17 0.17 0.09

Table 5: Overlapping modularity: EM vs. SD-MAC

During our experiments, we could directly observe the
pruning potential provided by the proposed optimistic es-
timates. The drastic reduction of the search space is
shown in Table 6, exemplarily for the optimistic esti-
mate for the modularity. The table shows the considered
steps/hypotheses during the mining process, comparing the
optimistic estimate (with no depth restriction) to applying
search at maximum depths 3 and 5 with no pruning.

It is important to note, that the proposed method inte-
grates the information from both the network and other
descriptive information, e.g., tags or topics describing the
nodes contained in the network. The presented method thus
focuses on the characterization and description of com-
munities while directly searching for the top k descrip-
tive communities according to their quality. It is easy to
see, that common methods from the field of social network
analysis [de Nooy et al., 2005] that work directly on the
network structure can theoretically obtain higher quality
scores for specific communities, since they do not need to
consider the describing features: There can be high quality
communities that cannot be covered by any description us-
ing the given tags/topics. Then, these cannot be discovered
by any method that is restricted to the applied description
space. The proposed method guarantees that the top k com-



local disjoint modularity (mean +/- stddev)
method GF GC GV

KM-L100-K25 0.006 +/- 0.013 0.003 +/- 0.005 0.002 +/- 0.003
KM-L100-K50 0.003 +/- 0.009 0.001 +/- 0.003 0.001 +/- 0.002
KM-L100-K100 0.001 +/- 0.006 0.001 +/- 0.001 0.001 +/- 0.001
KM-L500-K25 0.006 +/- 0.015 0.003 +/- 0.010 0.001 +/- 0.004
KM-L500-K50 0.002 +/- 0.010 0.001 +/- 0.004 0.001 +/- 0.003
KM-L500-K100 0.002 +/- 0.007 0.001 +/- 0.003 0.001 +/- 0.001
SD-L100-K25 0.050 +/- 0.004 0.034 +/- 0.002 0.018 +/- 0.001
SD-L100-K50 0.047 +/- 0.004 0.032 +/- 0.003 0.017 +/- 0.002
SD-L100-K100 0.043 +/- 0.005 0.028 +/- 0.004 0.015 +/- 0.002
SD-L500-K25 0.026 +/- 0.002 0.015 +/- 0.001 0.008 +/- 0.001
SD-L500-K50 0.024 +/- 0.003 0.014 +/- 0.001 0.008 +/- 0.001
SD-L500-K100 0.022 +/- 0.003 0.013 +/- 0.001 0.007 +/- 0.001

Table 4: Results – Local Modularity (Mean): k-means vs. SD-MAC.

munities are discovered which can be represented using the
given describing features. As demonstrated by the results,
it ensures this by efficient exhaustive search using appro-
priate pruning techniques for standard evaluation metrics.

In summary, the presented results indicate, that the pro-
posed approach outperforms the benchmark algorithms
concerning the conductance. Furthermore, the comparison
using the modularity measure indicates, that the SD-MAC
algorithm consistently yields local communities with an in-
herent high quality, confirmed by the comparison with the
baseline given by standard clustering algorithms.

6 Conclusions
In this paper, we have presented an approach for mining
descriptive community patterns using subgroup discovery.
We have described how to adapt subgroup discovery to
the community mining setting, and we have proposed the
SD-MAC algorithm for the efficient mining of descriptive
community patterns based on the SD-Map* algorithm. Fur-
thermore, we have presented optimistic estimates for typ-
ical community evaluation functions in this context. The
presented approach was evaluated in an experimental set-
ting using data from the social bookmarking system Bib-
Sonomy for which we presented initial results.

For future work, we aim to apply the proposed method
on more (and more diverse) evidence networks, and to an-
alyze and compare further community quality functions.
Additionally, we plan to apply more refined methods for
dimensionality reduction on the tag data in order to further
improve the performance of the presented approach.
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