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Abstract
Manual knowledge acquisition is usually a costly
and time-consuming process. Automatic knowl-
edge acquisition methods can then significantly
support the knowledge engineer, by providing an
initial sketch of a knowledge base that can be re-
fined and fine-tuned in subsequent steps. In this
paper, we propose an approach for rapid knowl-
edge capture for rule prototyping in the context
of ARD+ models. ARD+ is a conceptual pro-
totyping method for decision rules. Its primary
objective is to capture the functional dependen-
cies between attributes used in rules. ARD+
introduces a gradual design and refinement de-
sign process for rules. The knowledge capture
methodology is based on textual subgroup min-
ing for discovering the important concepts and
their dependencies. The important concepts and
their relations can then be mapped to ARD+
models in order to enable the rule prototyping
step. We describe the approach in detail and pro-
vide motivating application examples.

1 Introduction
In recent years, there is a trend towards rule-based tech-
niques, e.g., for business rules applied in various intelligent
systems [Giarratano and Riley, 2005; Morgan, 2002]. The
growing popularity of rule technologies creates a need for
developing efficient design support tools suitable not just
for knowledge engineers, but also software engineers and
the business-oriented community. With this emergence in
the technological mainstream, applied AI methods [Rus-
sell and Norvig, 2003] play a growing role in supporting
software engineering (SE). However, as for other AI ap-
proaches, rule formalization requires knowledge acquisi-
tion. This is usually costly and time-consuming relying on
a domain specialist or knowledge engineer (knowledge ac-
quisition bottleneck [Hayes-Roth et al., 1983]).

In this context, knowledge discovery [Klösgen and
Zytkow, 2002], including data mining [Han and Kamber,
2000] methods can play a crucial role for supporting the
knowledge engineer and for making the knowledge acqui-
sition process more feasible. Then, knowledge discovery
(KD) methods can be applied for the acquisition of an ini-
tial sketch of the knowledge base that can be refined later.

In this paper, we present an approach applying tex-
tual subgroup mining techniques for the rapid knowledge
capture of dependencies between decision rule attributes,
e.g., [Atzmueller et al., 2007]. ARD+ (Attribute Relation-
ship Diagrams) is a rule prototyping method in the HeKatE

project (hekate.ia.agh.edu.pl). It supports the
logical rule design with the XTT 2 method (eXtended Tab-
ular Trees). The textual subgroup mining techniques for
discovering attribute dependencies are implemented using
the VIKAMINE [Atzmueller and Puppe, 2005; 2007] sys-
tem (www.vikamine.org).

In a semi-automatic process the discovered attribute re-
lations are inspected, validated, and finally mapped to an
ARD+ model. After that, the prototypical instantiation can
be utilized for setting up the corresponding decision rules.
The focus of this paper is thus on developing a practical KD
method for supporting rule design based on knowledge dis-
covery techniques. From the SE point of view the method
would support engineers working on application require-
ments. It directly corresponds to the knowledge acquisi-
tion phase of the knowledge engineering (KE) process for
obtaining initial rule prototypes that are being refined later.

The rest of the paper is organized as follows: The next
section describes the context of ARD+ rule prototyping be-
fore we motivate the application of knowledge discovery
techniques for this purpose: We shortly introduce subgroup
mining as the basic knowledge discovery method. After
that, we describe the knowledge discovery methodology for
rapid ARD+ rule capture: We introduce the process model
for the proposed approach, and discuss the respective steps
in detail. Finally, we conclude the paper with a summary
and point out interesting directions for future work.

2 Preliminaries
In the following section we first introduce ARD+ models,
sketch the proposed prototyping process, and finally in-
troduce subgroup mining – the basic knowledge discovery
technique applied for the presented approach.

2.1 ARD+ Conceptual Design
The Attribute Relationship Diagrams (ARD+)
method [Nalepa and Wojnicki, 2008c], an extension
of the original ARD approach [Nalepa and Ligęza, 2005a;
Ligęza, 2006] supports the conceptual design of rule
systems. The primary assumption is, that the state of the
intelligent system is described by the attribute values,
which correspond to certain system properties. The
dynamics of the system is described with rules. In order
to build the model of the dynamics, the attributes (in
this approach state variables) need to be identified first.
The identification process is a knowledge engineering
procedure, where the designer (knowledge engineer) uses
ARD to represent the identified attributes, together with
their functional dependencies captured. Using them, rules
can be built in the next logical design phase.
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Figure 1: Simple ARD dependency diagram
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Figure 2: ARD diagram transformation

ARD is a general method, that tries to capture to features
of the design: The attributes, with functional relations be-
tween them, and the hierarchical aspect of the process. The
second feature is related to the fact, that in practice, the
knowledge engineering process is a gradual refinement of
concepts and relations.

In Fig. 1 a simple ARD dependency diagram can be ob-
served. It is in fact one of the phases of the benchmark
thermostat case study [Negnevitsky, 2002] studied in de-
tail in the HEKatE project. The diagram models a simple
dependency read as “thermostat Temperature depends
on Time specification”. This is a general statement – cur-
rently ARD does model what the specific dependency is,
only a simple fact that some dependency exists.

In the next design stage this model can be refined,
by specifying Time as a compound attribute, and later
on discovering that the set of newly introduced attributes
(Date, Hour, season, and operation) can be
decomposed into two subsets that depend on each other.

The nodes of the ARD diagram correspond to so-called
properties that are described by one or more attributes.
Attributes can be conceptual (general), and physical (spe-
cific). The specification transformation (between Time
and Date, Hour, season, and operation) is
called finalization, whereas the other one is called the split.
These are captured in the Transformation Process History
diagram (TPH). Together with the ARD dependency dia-
gram they form the ARD Model. The two subsequent de-
sign phases together with the corresponding TPH are pre-
sented in Fig. 2 (TPH diagrams are shown below ARD di-
agrams). The complete ARD model at this design stage is
shown in Fig. 3. In the model the black edges correspond
to finalization and split transformations, and the blue edges
(in the upper right part of the diagram) show the functional
dependencies; these are in fact the exact two dependencies
that can be observed in the lower half of the Fig. 2 One can
observe, that two properties observed in Fig. 1 where cre-
ated by finalizing Time to Time, Temperature, and
then splitting the latter.
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Figure 3: Simple ARD model

2.2 ARD+ Model Prototyping
ARD+ is aimed at supporting rule design, in general it
could be used for both forward and backward chaining
rules; so far it has been mainly used for forward chaining.
The basic ideas is, that having the most detailed, specific
ARD dependency diagram, rule prototypes can be automat-
ically built (for the prototyping algorithm see [Nalepa and
Wojnicki, 2008a]. A rule prototype consists of a set of at-
tributes present in the rule premise, and a set of decision
attributes. The prototype is described by an attributive rule
language [Ligęza, 2006], such as XTT [Nalepa and Ligęza,
2005b]. The ARD+ design process requires the knowledge
engineer to identify attributes, properties and relations in
both the ARD and TPH diagrams. As such it has certain
limitations. First of all, the identification is a straightfor-
ward task only in the case of simple, small systems with
10-30 rules. However, it could turn out a very tedious and
time consuming tasks in case of complex systems having
tens of attributes and hundreds of rules. Second of all,
it only captures general functional dependencies, without
classifying them in any way.

In this paper we aim at addressing the second prob-
lem. From the example ARD+ designs conducted so far, it
seems that the attribute and dependency identification pro-
cess could be partially automated. This is the motivation
for introducing the use of knowledge discovery methods.

The principal idea is to use knowledge discovery meth-
ods to identify possible ARD+ attributes and properties,
and then to propose possible relationships. The applied
knowledge discovery approach is based on subgroup min-
ing techniques introduced in the next section. The knowl-
edge discovery process uses a natural language descrip-
tions of system requirements, given by users or domain
experts. It is assumed, that this description is based on a
somehow restricted (semi-formalized in a sense) language;
an example of such a language is the SBVR [OMG, 2006]

controlled language. Using documents containing such de-
scriptions we first apply text mining preprocessing tech-
niques for obtaining a set of structured data records in
a word-vector representation. These data records are as-
sumed to contain the important features and concepts of the
domain. After that, we apply knowledge discovery tech-
niques for discovering associations between given target
concepts represented by subgroup patterns. Using these,
we can then generate prototypical ARD+ models.

2.3 Subgroup Mining
In the following, we introduce subgroup mining,
e.g., [Wrobel, 1997; Klösgen, 1996; Atzmueller et al.,
2005a], for discovering interesting patterns.

Subgroup patterns, often provided by conjunctive rules,
describe ’interesting’ subgroups of cases/instances, e.g.,
"the subgroup of documents containing the term "thermo-
stat" and "regulate"" shows a significantly increased co-
occurrence count with the term "temperature" compared
to all the documents (with respect to the term "tempera-
ture"). In general, the main application areas of subgroup



mining are exploration and descriptive induction, to obtain
an overview of the relations between a target variable and
a set of explaining variables.

The exemplary subgroup above is then described by
the relation between the independent (explaining) variable
(temperature = true, regulation = true) and the dependent
(binary) target variable (thermostat = true). The indepen-
dent variables are modeled by selection expressions on sets
of attribute values. In our case, these are all represented by
binary attributes corresponding to certain words or terms
that occur or do not occur in a certain document, according
to the applied bag-of-words document representation.

Let ΩA denote the set of all attributes. For each attribute
a ∈ ΩA a range dom(a) of values is defined. An attribute–
value assignment a = v, where a ∈ ΩA, v ∈ dom(a), is
called a feature. We define the feature space VA to be the
(universal) set of all features. A single-relational proposi-
tional subgroup description is defined as a conjunction

sd = e1 ∧ e2 ∧ · · · ∧ en

of (extended) features ei ⊆ VA , which are then called se-
lection expressions, where each ei selects a subset of the
range dom(a) of an attribute a ∈ ΩA. We define Ωsd as the
set of all possible subgroup descriptions. The subgroup size
n(s) for a subgroup s is determined by the number of in-
stances/cases (or documents represented by a word-vector
instance) covered by the subgroup description sd . For a bi-
nary target variable, we define the true positives tp(sd) as
those instances containing the target variables and the false
positives fp(sd) as those instances not containing the target
variable, respectively.

A quality function measures the interestingness of the
subgroups and is used to rank these. Typical quality cri-
teria include the difference in the distribution of the target
variable concerning the subgroup and the general popula-
tion, and the subgroup size.

Definition 1 (Quality Function) Given a particular tar-
get variable t ∈ VA, a quality function q : Ωsd × VA → R
is used in order to evaluate a subgroup description
sd ∈ Ωsd, and to rank the discovered subgroups.
Several quality functions were proposed (cf. [Wrobel,
1997; Klösgen, 2002; Lavrac et al., 2004; Atzmueller and
Puppe, 2006]), for example, the functions qBT and qRG:

qBT =
(p − p0) ·

√
n√

p0 · (1 − p0)
·
√

N

N − n
,

qRG =
p − p0

p0 · (1 − p0)
, n ≥ TSupp .

p denotes is the relative frequency of the target variable in
the subgroup, p0 is the relative frequency of the target vari-
able in the total population, N is the size of the total popu-
lation, and n denotes the size of the subgroup. In contrast
to the quality function qBT (the classic binomial test), the
quality function qRG only compares the target shares of the
subgroup and the total population measuring the relative
gain. Therefore, a support threshold TSupp is necessary to
discover significant subgroups.

The quality function is usually selected according to the
application requirements. We have found that the relative
gain quality function is easily interpretable and understand-
able by users. Therefore, in the presented approach we
apply this quality function with a minimal support thresh-
old TSupp = 5 in order to guarantee statistically relevant
results. Additionally, the discovered patterns can also be

sorted and browsed according to the various parameters,
for example, the quality, the subgroup size and by the im-
plied support, such that the application requirements can
always be kept in focus while performing the mining step.

3 Methodology
The following section first considers the process model for
semi-automatic discovery of ARD+ models. After that, we
describe the key steps of the process in detail. First, we
describe the preprocessing of the textual documents using
standard text mining techniques. After that, we discuss the
subgroup mining methods for discovering subgroup pat-
terns for the important associations between concepts and
the semi-automatic discovery step of the ARD+ models.

3.1 Process Model
In the following we discuss the process model for build-
ing ARD+ models using textual subgroup mining methods.
It is shown in Figure 4 and described in more detail be-
low. As mentioned above, the input of the process is a set
of text documents containing natural language descriptions
of system requirements, given by users or domain experts.
These are based on a somehow restricted (semi-formalized
in a sense) language, for example, the SBVR [OMG, 2006]

controlled language.
Since the applied text-mining approach is based on sta-

tistical techniques we need to ensure that there is a suffi-
cient number of documents for each targeted ARD+ model.
Usually about 5-10 documents per model is a good starting
point for the knowledge capture process.

1. Extract Dataset: For the textual subgroup mining ap-
proach we first need to preprocess the unstructured
text data in order to obtain a structured representation,
that is, a dataset of data records. We create a common
word-vector representation: In this representation, the
data records are represented by vectors containing bi-
nary features that correspond to the occurrence of a
word in the respective document.

2. Define Target Concepts: Before applying the sub-
group mining techniques we need to identify a list of
target concepts. This set is either obtained by selecting
a subset of the important concepts from the dataset ex-
traction step. Additionally, the important concepts are
simply defined using background knowledge. For ex-
ample, in the thermostat case we know that time and
temperature are important. The background knowl-
edge is provided by the user, for example, the hint
that "the thermostat is about setting the temperature".
Then, "temperature" becomes the target concept.

3. Apply Subgroup Mining: In this step, we apply sub-
group mining for each target concept and consider all
other concepts contained in the dataset as independent
variables. Doing this we obtain concepts and/or com-
binations of concepts that are closely related to the
target concept. These concept combinations are then
represented by subgroup patterns that indicate associ-
ations with the respective target concept.

4. Inspect Subgroup Network: After the subgroup pat-
terns have been discovered, we visualize the relations
between them in multiple subgroup networks: Each
subgroup pattern is linked to its target pattern (repre-
sented by a node for the respective target concept).
The network also contains links between the indi-
vidual subgroup patterns, if one pattern contains a
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Figure 4: Process model for the semi-automatic acquisition/prototyping of ARD+ models.

(target) concept of the second pattern. Additionally
we can also visualize associations between concepts,
cf., [Atzmueller and Puppe, 2007], for a more com-
prehensive overview.

5. Prototype ARD+ Model: Since the ARD+ method
aims at capturing relations between attributes, we
can simply map fragments of the subgroup pat-
tern networks to dependencies between the contained
attributes/concepts. Then, these dependencies di-
rectly correspond to the ARD+ functional depen-
dencies between system properties given by the at-
tributes/concepts. After that, the ARD+ model is usu-
ally refined by the user in order to provide a good start-
ing point for prototyping decision rules.

The process is incremental and can be iterated by the
user as needed. For the dataset extraction step, the
user can incrementally refine the set of extracted con-
cepts. As discussed below we apply a TF-IDF (term-
frequency/inverted document frequency) [Baeza-Yates and
Ribeiro-Neto, 1999] threshold-based method, so the ap-
plied threshold can also be tuned as needed. The target
concepts can also be extended/reduced as needed especially
considering the output of the subgroup mining step: After a
network of subgroup patterns has been constructed we can
identify and add further target concepts. These are given
by attributes contained in the interesting patterns linked to
the given target concepts that are refined for a further layer
of the ARD+ model.

The process is implemented using the VIKAMINE [Atz-
mueller and Puppe, 2005; 2007] system for knowledge-
intensive subgroup mining. VIKAMINE provides all the re-
quired visualizations. The relation/rule instantiation phase
is then implemented using a special plugin of VIKAMINE.

3.2 Preprocessing
Before the subgroup mining approach can be applied we
need to construct a structured data representation (set of
data records) from the given textual documents. In order to
obtain this representation that aims to cover the set of im-
portant concepts (words) represented in the vector, we need
to perform a feature selection step: For this step, we ap-
ply standard methods implemented, e.g., in the ASV Tool-
box [Biemann et al., 2008] and in the KNIME textprocess-
ing plug-in [KNIME, 2009] for the term and terminology
extraction, e.g., [Wermter and Hahn, 2005].

Additionally, we apply a classic TF-IDF (term-
frequency/inverted document frequency) [Baeza-Yates and

Ribeiro-Neto, 1999] threshold-based metric for finally con-
verting the documents with the extracted terms to a word-
vector representation containing the important terms. The
TF-IDF metric is based on the idea that the descriptive
terms of a document should appear often in the respective
document but should not appear in many other documents.

The TF-IDF computes a weight denoting the importance
of a term/concept with respect to a collection of documents.
The term frequency

tf i,j = freq i,j/ max
l

freq l,j

is computed for each term i depending on document j.
The denominator specifies the maximum frequency of all
terms contained in the document. The inverted document
frequency idfi = log N

ni
trades of N , the number of doc-

uments of the document collection, and ni the number of
documents containing the term i. The weight of a term i is
then computed as

wi,j = tf i,j · idf i

Using a suitable threshold we can then identify the impor-
tant terms of the document. For a more in-depth discussion
we refer to, e.g., [Baeza-Yates and Ribeiro-Neto, 1999].

The approach is semi-automatic such that the user can
already inspect the word list to be used at this step, and
refine the results if needed, e.g., by tweaking the applied
threshold.

3.3 Semi-Automatic Subgroup Mining
Consider the previously discussed thermostat system. The
general idea is to describe a system that controls the tem-
perature in an office depending on time specification. The
user description could be as follows: "In our office temper-
ature changes over time. In fact, it is different on different
days of the week. In general the temperature is different
during business hours. Of course it also depends on the
season, so it is different in different months."

At the ARD stage, we assume a preliminary, general de-
scription with no actual specification of attribute values.
In this phase we are interested at identifying possible im-
portant concepts, that would form the rule vocabulary (at-
tributes). As outlined above, we apply the subgroup mining
method for each target concept and collect the obtained de-
pendencies in multiple subgroup pattern networks. These
networks then need to be inspected, assessed and validated
by the user [Atzmueller and Puppe, 2008].



Figure 5: Exemplary dependency network (subgroup pat-
terns) between the attributes time, hour, date, temperature

Figure 6: Exemplary dependency network (subgroup pat-
terns) between the attributes time, hour, date, season

Figure 5 and Figure 6 show such fragments for subgroup
networks referring to the thermostat example. These are
simple networks for illustrating the presented approach us-
ing an example data set for the thermostat example. In
practice such networks will be quite large motivating the
techniques discussed below. Figure 5 shows the depen-
dency between time, hour and date, and the attribute tem-
perature, while Figure 6 shows the dependencies between
the attributes season, hour, date and the attribute time. For
the latter, hour and date are causally connected to time,
while season is mediated through the attribute hour in this
diagram. By composing these diagrams we can then build
ARD+ models as discussed above.

For the interactive inspection of the constructed sub-
group network suitable browsing, filtering and zooming
methods are essential in order to support the user. The
user can then select a subset of the relations that are being
used for rule template instantiation, i.e., for setting up tem-
plates for relations that can then be refined to rules. The
VIKAMINE environment provides a wide range of visual-
ization methods that enable an easy-to-apply validation and
assessment step of the discovered patterns.

Using both automatic and interactive techniques, the
discovered relations can be post-processed in an effective
manner, as shown in several projects in medical and tech-
nical domains [Atzmueller et al., 2005a; 2005b; 2007]. Ad-
ditionally, VIKAMINE allows for an integrated user experi-
ence with stream-lined discovery and analysis capabilities
by the ability to include background knowledge specific for
the problem at hand. We can optionally apply causal meth-
ods for refining the discovered subgroup net [Atzmueller
and Puppe, 2007; Atzmueller et al., 2009], such that only
the causal relations are retained. After the discovered sub-
group patterns representing associations between the con-
cepts have been inspected and validated they are then used
for the construction of prototypical ARD+ models.

3.4 Creating ARD+ Models and Rule Prototypes
Using the dependencies discovered using the subgroup
mining techniques, we construct subgroup networks as
shown above. After the relations have been inspected and
validated by the user [Atzmueller and Puppe, 2008], we can
map fragments of these networks to ARD+ models.

For example, using the pairs, temperature/time, temper-
ature/hour, date, and time/hour, date, season we can cre-
ate a possible ARD+ structure similar to the one discussed
above for the ARD+ models shown in Figure 1 to Figure 3.
However, in the general case different ARD dependency di-
agrams, corresponding to different design phases could be
proposed. Then, the engineer can refine them manually, se-
lect correct ones, and utilize the tool to automatically built
the TPH diagram.

A practical algorithm providing a transition from
the ARD+ design to rule design has been introduced
by [Nalepa and Wojnicki, 2008a]. The goal of the algo-
rithm is to automatically build prototypes for rules from
the ARD+ design. The input of the algorithm is the most
detailed ARD+ diagram, that has all of the physical at-
tributes identified (in fact, the algorithm can also be ap-
plied to higher level diagrams, generating rules for some
parts of the system being designed). The output is a set of
rule prototypes in a very general format (atts stands for
attributes):

rule: condition atts | decision atts

The algorithm is reversible, that is having a set of rules in
the above format, it is possible to recreate the most detailed
level of the ARD+ diagram. The rule prototyping algorithm
has been successfully implemented in Prolog as a part of
the VARDA tool [Nalepa and Wojnicki, 2008d].

3.5 Design Tool Support
The ARD+ model obtained by the knowledge discovery
process may be partial and not optimal in a general case.
This is why a manual refinement may be needed. Cur-
rently the ARD+ design process is supported by two tools
VARDA and recently HJED.

VARDA (Visual ARD+ Rapid Develop-
ment Alloy) [Nalepa and Wojnicki, 2008b;
2008d] is a prototyping environment for ARD+; the
ImageMagick tool provides an instant displaying of the
prototype at any design stage.

VARDA is designed in a multi-layer architecture:

• knowledge base to represent the design: attributes,
properties, dependencies,

• low-level primitives: adding and removing attributes,
properties and dependencies,

• transformations: finalization and split including defin-
ing dependencies and automatic TPH creation,

• low-level visualization primitives: generating data for
the visualization tool-chain,

• high-level visualization primitives: displaying actual
dependency graph among properties and the TPH.

At the design stage, proper visualization of the current
design state, is a key element. It allows to browse the
design easily and identify gaps, misconceptions or mis-
takes more easily. ARD+ and TPH are directed graphs.
Proper graph visualization, node distribution, edge distri-
bution and labeling is a separate domain [Ross and Wright,
2002]. Therefore, instead of reinventing these concepts,



or implementing them from scratch, a tool-chain of well
proved tools to provide actual visualization is assembled:
For visualization, GraphViz readable code is generated
using the knowledge elements describing the ARD+ and
TPH. GraphViz (see graphviz.org) is a graph visual-
ization software enabling representing structural informa-
tion as diagrams of abstract graphs and networks. The
structural information needs to be expressed in a simple
text-based source file. GraphViz renders the source file
and generates a visual representation of the structural infor-
mation taking into account appropriate vertex distribution,
edge placement and labeling. The visual representation is
provided in many different formats, including but not lim-
ited to, bitmap formats such as: JPG, PNG, TIF, scalable
formats: SVG, PS, as well as editable ones: FIG, DIA,
VRML. As for the tool-chain, GraphViz generates a PNG
bitmap which subsequently is displayed by ImageMagick.
ImageMagick does not merely display the diagram, but it
also allows for panning, making annotations and saving it
as a file in many bitmap formats including PNG and JPG.

HJED1 is a newer ARD+ visual design tool implemented
in Java. It supports the full ARD design, including ARD
and TPH visualization. It also provides ability to manually
refactor the model. The model can be exported to HML and
the imported by the rule design tools provided in HeKatE.

3.6 ARD Design Markup
ARD+ is a conceptual design method in the HeKatE
project. Knowledge in the HeKatE design process is de-
scribed in HML, 2 a machine readable XML-based format.
HML consists of three logical parts: attribute specification
(ATTML), attribute and property relationship specification
(ARDML) and rule specification (XTTML).

The attribute specification regards describing attributes
present in the system. It includes attribute names and data
types used to store attribute values. The attribute and prop-
erty relationship specification describes what properties the
system consists of and which attribute identifies these prop-
erties. Furthermore, it also stores all stages of the de-
sign process. The rule specification stores actual structured
rules. As for the ARD-only description including ARD+
and TPH diagrams ARDML with ATTML is used.

Below the excerpt of the XML representation of the
Thermostat ARD+ design is given.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE hml SYSTEM "hml.dtd">
<hml>

<attributes>
<attr name="Thermostat" id="att_0"/>
<attr name="Time" id="att_1"/>
<attr name="Temperature" id="att_2"/>
<attr name="Date" id="att_3"/>
. . .

</attributes>
<properties>
<property id="prp_0">

<attref ref="att_0"/>
</property>
<property id="prp_1">

<attref ref="att_1"/>
<attref ref="att_2"/>

</property>

1https://ai.ia.agh.edu.pl/wiki/hekate:
hjed

2https://ai.ia.agh.edu.pl/wiki/hekate:
hekate_markup_language

<property id="prp_2">
<attref ref="att_1"/>

</property>
<property id="prp_3">

<attref ref="att_2"/>
</property>
. . .

</properties>
<tph>
<trans src="prp_0" dst="prp_1"/>
<trans src="prp_1" dst="prp_2"/>
<trans src="prp_1" dst="prp_3"/>
<trans src="prp_2" dst="prp_4"/>
<trans src="prp_4" dst="prp_5"/>
<trans src="prp_4" dst="prp_6"/>
. . .

</tph>
<ard>
<dep independent="prp_12"

dependent="prp_7"/>
<dep independent="prp_14"

dependent="prp_15"/>
<dep independent="prp_15"

dependent="prp_8"/>
<dep independent="prp_16"

dependent="prp_8"/>
<dep independent="prp_7"

dependent="prp_17"/>
<dep independent="prp_8"

dependent="prp_17"/>
</ard>

</hml>

This representation is used by VARDA to store the
model.

3.7 Prolog Representation
The same model is internally represented by VARDA in
Prolog as in the excerpt presented below.

:- dynamic ard_att/1.
ard_att(’Thermostat’).
ard_att(’Time’).
ard_att(’Temperature’).
ard_att(’Date’).
ard_att(’Hour’).
ard_att(season).
ard_att(operation).
ard_att(day).
ard_att(month).
ard_att(today).
ard_att(hour).
ard_att(thermostat_settings).

:- dynamic ard_property/1.
ard_property([’Thermostat’]).
ard_property([’Time’, ’Temperature’]).
ard_property([’Time’]).
ard_property([’Temperature’]).
ard_property([’Date’,’Hour’,season,operation]).
ard_property([’Date’, ’Hour’]).
. . .

:- dynamic ard_depend/2.
ard_depend([month], [season]).
ard_depend([day], [today]).
ard_depend([today], [operation]).
ard_depend([hour], [operation]).
ard_depend([season],

[thermostat_settings]).
ard_depend([operation],

[thermostat_settings]).



Figure 7: Thermostat design in HJEd

:- dynamic ard_hist/2.
ard_hist([’Thermostat’],

[’Time’, ’Temperature’]).
ard_hist([’Time’, ’Temperature’],

[’Time’]).
ard_hist([’Time’, ’Temperature’],

[’Temperature’]).
ard_hist([’Time’],

[’Date’,’Hour’,season,operation]).
. . .

In VARDA this form is a suitable representation for sim-
ple manipulation and transformation, including and en-
abling knowledge refinement.

4 Conclusion

In this paper, we have presented a methodological approach
for rapid model capture and rule prototyping in the con-
text of ARD+ models. The methodology is based on a tex-
tual subgroup mining method that is applied for identifying
dependencies between concepts. The discovered and vali-
dated dependencies are then mapped to the functional de-
pendencies of ARD+ models. After that, decision rules can
be (semi-)automatically created by refining the proposed
rule instantiations.

So far, we have implemented a prototypical system of the
approach: First experiments and evaluations show promis-
ing results as shown by the presented examples. For fu-
ture work we plan to perform a comprehensive evaluation:
We aim to study many different ARD+ models, as well as
varying textual descriptions in order to improve the qual-
ity of the presented method. A further goal is the analysis
of the relationship between the quality of the textual de-
scriptions (size, term frequencies, etc.) compared to the
accuracy of the generated ARD+ model. Furthermore, we
want to improve the preprocessing method using sampling
techniques. Another promising direction for future work is
given by including more background knowledge for further
supporting the ontology and rule capture, prototyping, and
modeling process.

Acknowledgements
This paper is supported by the HeKatE Project funded from
2007–2009 resources for science as a research project, and
by the German Research Council (DFG) under grant Pu
129/8-2.

References
[Atzmueller and Puppe, 2005] Martin Atzmueller and

Frank Puppe. Semi-Automatic Visual Subgroup Mining
using VIKAMINE. Journal of Universal Computer
Science, 11(11):1752–1765, 2005.

[Atzmueller and Puppe, 2006] Martin Atzmueller and
Frank Puppe. SD-Map - A Fast Algorithm for Exhaus-
tive Subgroup Discovery. In Proc. 10th European Conf.
on Principles and Practice of Knowledge Discovery in
Databases (PKDD 2006), pages 6–17, Berlin, 2006.
Springer.

[Atzmueller and Puppe, 2007] Martin Atzmueller and
Frank Puppe. A Knowledge-Intensive Approach for
Semi-Automatic Causal Subgroup Discovery. In Proc.
Workshop on Prior Conceptual Knowledge in Machine
Learning and Knowledge Discovery (PriCKL’07), at
the 18th ECML/PKDD 2007), pages 1–6. University of
Warsaw, Poland, 2007.

[Atzmueller and Puppe, 2008] Martin Atzmueller and
Frank Puppe. Semi-Automatic Refinement and Assess-
ment of Subgroup Patterns. In Proc. 21th International
Florida Artificial Intelligence Research Society Con-
ference (FLAIRS-2008), pages 518–523. AAAI Press,
2008.

[Atzmueller et al., 2005a] Martin Atzmueller, Frank
Puppe, and Hans-Peter Buscher. Exploiting Back-
ground Knowledge for Knowledge-Intensive Subgroup
Discovery. In Proc. 19th Intl. Joint Conference on
Artificial Intelligence (IJCAI-05), pages 647–652,
Edinburgh, Scotland, 2005.



[Atzmueller et al., 2005b] Martin Atzmueller, Frank
Puppe, and Hans-Peter Buscher. Profiling Examiners
using Intelligent Subgroup Mining. In Proc. 10th Intl.
Workshop on Intelligent Data Analysis in Medicine
and Pharmacology (IDAMAP-2005), pages 46–51,
Aberdeen, Scotland, 2005.

[Atzmueller et al., 2007] Martin Atzmueller, Joachim
Baumeister, Peter Kluegl, and Frank Puppe. Rapid
Knowledge Capture Using Subgroup Discovery with
Incremental Refinement. In Proc. 4th International
Conference on Knowledge Capture (K-CAP 2007),
pages 31–38. ACM Press, 2007.

[Atzmueller et al., 2009] Martin Atzmueller, Frank
Puppe, and Hans-Peter Buscher. A Semi-Automatic
Approach for Confounding-Aware Subgroup Discovery.
International Journal on Artificial Intelligence Tools
(IJAIT), 18(1):1 – 18, 2009.

[Baeza-Yates and Ribeiro-Neto, 1999] Ricardo Baeza-
Yates and Berthier Ribeiro-Neto. Modern Information
Retrieval. Addison Wesley, Harlow, 1st edition edition,
1999.

[Biemann et al., 2008] C. Biemann, U. Quasthoff,
G. Heyer, and F. Holz. ASV Toolbox – A Modular
Collection of Language Exploration Tools. In Proc.
6th Language Resources and Evaluation Conference
(LREC) 2008, 2008.

[Giarratano and Riley, 2005] Joseph C. Giarratano and
Gary D. Riley. Expert Systems. Thomson, 2005.

[Han and Kamber, 2000] Jiawei Han and Micheline Kam-
ber. Data Mining: Concepts and Techniques. Morgan
Kaufmann Publisher, 2000.

[Hayes-Roth et al., 1983] Frederick Hayes-Roth, Don-
ald A. Waterman, and Douglas B. Lenat. Building Ex-
pert Systems. Addison-Wesley, London, 1983.

[Klösgen and Zytkow, 2002] Willi Klösgen and Jan
Zytkow, editors. Handbook of Data Mining and
Knowledge Discovery. Oxford University Press, New
York, 2002.

[Klösgen, 1996] Willi Klösgen. Explora: A Multipat-
tern and Multistrategy Discovery Assistant. In Us-
ama M. Fayyad, Gregory Piatetsky-Shapiro, Padraic
Smyth, and Ramasamy Uthurusamy, editors, Advances
in Knowledge Discovery and Data Mining, pages 249–
271. AAAI Press, 1996.

[Klösgen, 2002] Willi Klösgen. Handbook of Data Min-
ing and Knowledge Discovery, chapter 16.3: Subgroup
Discovery. Oxford University Press, New York, 2002.

[KNIME, 2009] KNIME. Knime: Konstanz information
miner. www.knime.org, 2009.

[Lavrac et al., 2004] Nada Lavrac, Branko Kavsek, Peter
Flach, and Ljupco Todorovski. Subgroup Discovery
with CN2-SD. Journal of Machine Learning Research,
5:153–188, 2004.

[Ligęza, 2006] Antoni Ligęza. Logical Foundations for
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