
Predicting Tag Spam Examining Cooccurrences,
Network Structures and URL Components

Nicolas Neubauer and Klaus Obermayer

Neural Information Processing Group, Technische Universität Berlin,
neubauer|oby@cs.tu-berlin.de

Abstract. The task of the ECML/PKDD Discovery Challenge 2008 is
to identify spammers in a social bookmarking system. We classify users
using three different types of features, based on cooccurences, network
properties and url parts. Cooccurrence features are based on the assump-
tion that users associated with similar documents and tags as spammers
are likely to be spammers themselves. Network-based features work on
a collective scale, assuming common behavioural patterns which can be
identified in the graph structures created by tagging activities. Finally,
a text classification on the URLs’ components identifies frequent terms
in spam URLs. With these features, we train an SVM for classification.
Our submission run, combining all three classes of features, performed
worse than expected from previous tests. With the wisdom of hindsight,
we find an optimal choice of features is to leave out network features
entirely but to strengthen URL classification. This is, however, a side
effect of wrong assumptions about the test set; network features, used
alone, still yield positive results. As network features do not depend on
the presence of labeled users, they should be further explored to identify
structural properties of tag spam even when no ground truth exists.

1 Introduction

Social bookmarking systems have come of age. One of the less pleasant
indicators of this development is the arrival of the spammers. This year’s
ECML/PKDD Discovery Challenge has provided researchers with data
from users of a social bookmarking site (www.bibsonomy.org), marked as
spammers or non-spammers, along with the documents they bookmarked
and the tags they used. The goal was to learn a model to distinguish
spammers from regular users in an unknown test dataset. We present
our approach and the results on the dataset.

So far, not much research has been conducted on spam in social book-
marking sites. [4, 7] have, e.g., simulated the impact of certain spamming
practices on the overall properties of a social bookmarking dataset in de-
pendence of a number of key parameters. In [2], spam is mentioned briefly
as it causes a deviation from an otherwise smooth strength distribution
of a tag network. Most related to our current task is however [8], in which
the organizers of this workshop performed experiments on an earlier ver-
sion of the current dataset. Our work is similar in that we create user

Fig. 1. Distribution of spam in the different sets

features on which we train a classifier. However, we explore other fea-
tures: We vary the exploitation of cooccurrence patterns already used in
[8], but also introduce features based on network analysis, and perform
a text classification on the url components of the bookmarks.

2 Dataset

2.1 Basic Properties

The training dataset provides 14,074,956 triples E = (d, u, t) ∈ D×U×T ,
where D is the set of 1,425,108 documents, U is the set of 31,715 users,
and T is the set of 310,234 tags. If we interpret D, U and T as nodes
and E as edges, this defines a 3-partite 3-hypergraph. Documents can
either be bibliographic references or WWW bookmarks and come with
associated metadata like URL, title etc. Users are simply presented as
IDs and labeled as spammers or non-spammers. Tags are strings. The
merged training and test dataset consists of 16,818,699 triples, 1,574,963
documents, 38,920 users and 396,474 tags. Of the additional 7,205 users,
only 171, i.e. 2.37% are regular users.
Figure 1 shows the distribution of spam and non-spam elements in the
training dataset. The most striking fact is that 29,248 of 31,715 users
are spammers, i.e., only 7.78% are legitimate users. Most tags and docu-
ments are used by spammers or non-spammers exclusively and can thus
be regarded as spam or non-spam as well. Overlap between use by spam-
mers and non-spammers is very rare in documents, but more frequent
among tags. This indicates two different incentives for spammers: They
may post spam bookmarks under frequently used tags, such that other
users browsing the repository are led to their pages. Posting bookmarks
under other, sometimes randomly created tags, probably serves the pur-
pose of creating links from reputated sites (the bookmarking site) to
the spammed page, trying to trick search engines into improving the
spammed page’s rank.
Figure 2 shows the distribution of connections (in the training set) be-
tween elements of the different types as the accumulative probability
distribution of elements of one type having x connections to elements of
any other type. We can see that

(a) users per document (b) documents per user (c) documents per tag

(d) tags per document (e) tags per user (f) users per tag

Fig. 2. Accumulative distribution of number of connected elements for spam(red), non-
spam(green) and mixed(blue) elements

– Around 90% of all documents are only bookmarked by one person
– The numbers of tags per document, tags per user and users per tag

differ visibly for spam and non-spam elements.
– Documents and tags used by both spammers and non-spammers

(blue in the graphs) tend to have strongly different characteristics.

2.2 Creating a probe dataset

Many features we will present in the following use cooccurrence infor-
mation. With such features, it is important to exclude the cooccurrence
information for the users we want to test them on. We therefore split
the training dataset into five subsets, each containing the nth fifth of
spam and the nth fifth of non-spam users (see Figure 7(a)). Most of our
analysis used cooccurrence information from the first four datasets, and
evaluated on the fifth (“probe”) one. We thereby simulate predicting
future users knowing roughly four times as many users from the past.

3 Features

3.1 Cooccurence Features

Distributing Spaminess Let a tag’s or a document’s spaminess be the
frequentist probability that a user using/tagging that element is a spam-
mer. We formalize these notions for documents; they are equivalently
definied for tags. Let U+(d), U−(d) and U?(d) be the set of spam, non-
spam and unknown users who tagged a document. Then we can define a

(a) simple distribution (b) iterated distribution

Fig. 3. Accumulative document spaminess after spaminess distribution for spam(red),
non-spam(green) and mixed(blue) documents

document’s spaminess s(d) as well as a certainty c(d) for that measure,
based on the fraction of known users, as

s(d) =
|U+(d)|

|U+(d)|+ |U−(d)| , c(d) =
|U+(d)|+ |U−(d)|

|U+(d)|+ |U−(d)|+ |U?(d)| .

If there are no known users for a given element, the certainty is set to 0,
and spaminess to the average of all documents. Now, an unknown user’s
spaminess can be computed as

s(u) =

∑
d∈D(u)

s(d)c(d)∑
d∈D(u)

c(d)
, D(u) = {d ∈ D : ∃t ∈ T : (d, u, t) ∈ E}

This can be interpreted as a graph traversal: Starting from the unknown
user u, we choose a document randomly, weighted by its certainty. Then
we choose a random known user associated with that document. s(u) is
the probability that this user is a spammer.
See Figure 3(a) for the distribution of the resulting values. Non-spam
documents have either a value of 0 or, if unknown, the average (around
.8), whereas spam documents have a value of either the average or 1.
We see that a significant part of both spam and non-spam documents
receive the default average value and can thus not be used to classify
users. This is due to the high fraction of documents with very few uses
(see Figure 2(a)).

Iterated Spaminess Distribution Even if we cannot tell a document’s
spaminess by the users that have tagged it, we might learn something
from the tags it was tagged with. In the same manner, we can estimate
a tag’s spaminess by the documents it was used for. In order to use this
information we compute a second feature for each element, its iterated
spaminess si and the according certainty ci. We initialize si and ci with
the original values s and c, and then compute

ci(d) =

∑
t∈T (d)

ci(t)

|T (d)| , T (d) = {t ∈ T : ∃u ∈ U : (d, u, t) ∈ E}

si(d) =

∑
t∈T (d)

: si(t)ci(t)

ci(d)

www.programmableweb.com www.ingenieurkarriere.de

Fig. 4. Induced bipartite graph ED for two documents. Dots are spammers (red) and
non-spammers (green)

This process is repeated iteratively for all tags and documents with cer-
tainty 0 until no such elements remain or no further information can be
spread. Figure 3(b) shows the smoothing effect of this transformation.

Cosine Similarity As introduced in [8], a simple way to exploit cooc-
curence information is to create a similarity function between users based
on their used tags, and predict a user’s spaminess as the sum of the known
users’ spaminess weighted by that similarity. We followed that approach
by creating tag (and document) vectors for each user such that each
component corresponds to a given tag, and the value of that component
would be 1 if the user used that tag. Then, the cosine between the two
tag vectors serves as a similarity function.

3.2 URL Classification

A central aspect in deciding whether a given bookmark is spam or not
should be its content. While we cannot download all bookmarked URLs,
we estimate their content by analyzing the terms used in the URLs them-
selves. We split each URL by the dashes, remove dots, colons, and fre-
quent elements like “http”, “www” or “html”, and create a feature vector
containing a tfidf representation of its terms. We then use the feature vec-
tors of all URLs with spaminess 0 (as computed using the first four fifths
of the training set during testing, and using the whole training set for
the final prediction) as negative samples, and an equal number of URLs
with spaminess 1 as positive samples. After training a linear SVM[3], we
classify all URLs with a spaminess between 0 or 1 (urlspam(d)), skipping
those URLs which do not contain any known URL part. This yields us
with a new user features

url(u) =

∑
d∈Durl(u)

urlspam(d)

|Durl(u)| ,

Durl(u) = {d ∈ D : (∃t : (d, u, t) ∈ E) ∧ urlspam(d) is defined}
In what turned out to be a major wrong design decision, we smoothened
this feature by blending it with a user’s document spaminess s(u):

urlsmooth(u) =
curl(u)url(u) + cspaminess(u)s(u)

curl(u) + cspaminess(u)
,

where curl(u) is the fraction of u’s documents that have a url predic-
tion and cspaminess(u) is the average spaminess certainty c(d) for all u’s
documents.

3.3 Induced Graphs

Last, we aimed to translate network features into useful user features. To
examine only relevant portions of the overall graph structure, we define
“induced graphs” as the bipartite graphs gained by fixing an element
from one of the three sets, and connecting those elements from the other
two sets that are connected via the fixed element. For example, we might
fix a document and then examine all users and tags associated with it,
with edges connecting users with the tags they used for the document.
More formally, we define the induced graphs by its edges ED, EU and
ET obtained by fixing a particular document, user, or tag as
– ED(d′) = {(u, t) ∈ U × T | ∃(d′, u, t) ∈ E}

– EU (u′) = {(d, t) ∈ D × T | ∃(d, u′, t) ∈ E}

– ET (t′) = {(d, u) ∈ D × U | ∃(d, u, t′) ∈ E}

Refer to Figure 4 for two examples of bipartite graphs induced by a
(mostly) non-spam- and spam document, respectively, rendered using
the GraphViz package1. We hope these examples convey the intuition
that graphs created by spamming should have different properties than
those created by legitimate activity. We used the NetworkX package2 to
obtain various properties of the induced graphs and created user features
either by using the resulting values directly (for EU), or by averaging over
the values of all associated elements (for ED and ET).

Connected components A connected component of a graph G is a set
of nodes such that any node can be reached from any other node in
that component by travelling along the edges in G. If a graph is disjoint,
the number of connected components describes the number of discon-
nected subgraphs (both examples in Figure 4 show networks with two
connected components). See Figure 5 for the distributions of connnected
components across tag-induced graphs and the resulting user features.
We also obtained the number of strongly connected components in each
graph (except in those cases where one of the sets of elements was bigger
than 1000, due to time reasons). Strongly connected components are
components of the graph in which all nodes are connected to each other.

1 www.graphviz.org
2 networkx.lanl.org

(a) Distribution in tag-induced
graphs

(b) Distribution of resulting user
features

Fig. 5. Connected components

Characteristic Path Length The characteristic path length is the av-
erage shortest path distance between two arbitrary nodes in the graph.
Again, we computed this number for all graphs in which no element set
exceeded 1000 elements.

Degree Ratios Finally, we observed the ratio between the average de-
grees of each element set, normalized by the size of the other set. For a
user-induced graph, this would mean

dd,t(u) =
avg degree(D(u))

|T (u)| · avg degree(T (u))

|D(u)| ,

where avg degree(S) is the average degree of all components in S.

3.4 K-Cores

A k-core[9] is a subgraph of a graph G containing all elements that are
connected to at least k elements which are also in the core. k-Cores
have been used, for example, for the efficient decomposition of large net-
works[1]. In [5], a k-core of a tagging dataset is used for testing methods
requiring a highly connected graph. We extend the definition of a k-core
on non-partitioned graphs to a K-core, where K ∈ N(n,n) for n-partite
graphs such that K(x, x) = 0 ∀ x ∈ {1, . . . , n}. Each entry K(i, j) indi-
cates the minimum number of connections that elements from set i need
to have to elements from set j. For the given case of a 3-partite graph

with element types (documents, users, tags), we get a
(a b

c d
e f

)
-Core in-

dicating that each document needs to be connected to a users and b tags,
each user needs to be connected to c documents and d tags, and each tag
needs to be connected to e documents and f users. Six-dimensional con-
straints allow for a wide variety of K-cores to be examined. We examine
two different types of K − cores, regular K-Cores Kr(a) which raise all
constraints in parallel, and singular K-Cores Kn,m

s (a), raising the single
constraint at position (n, m):

Kr(a) =
(a a

a a
a a

)
, K1,2

s (a) =
(a 2

2 2
2 2

)
.

(a) relative size of cores and spami-
ness of their members

(b) avg. maximum core spaminess
over users’ tags

Fig. 6. Cores

We compute Kr(a) for a ∈ {2, 3, 4, 5, 10, 15, 20}, and all six Ks(a) for
a ∈ {3, 5, 10, 20, 50, 100, 500, 1000, 2000}.
Figure 6(a) shows the development of the different singular cores as we
increase a: The higher the constraint, the less elements in a core (plot-
ted on the y-axis as the fraction of the total set of tags). However, the
spaminess of the remaining elements, in general, increases. For example,
the core “documents per tag” (K3,1

s), for a certain value of a, contains
around 3% of all tags, and those tags are much more likely to be spammy
(̃.97) than average (̃.86). We determine, for each element, the maximum
average spaminess (again, computed by the previously available data)
of over all cores it is contained in. Figure 6(b) shows the distribution
of the corresponding user feature, averaging over users’ tags’ maximum
core spaminess.

3.5 Other Features

Connection Strength For each tag/document pair, we counted the num-
ber of users that used it together. We noticed that high values tend to
imply spaminess. Therefore, we produced two user features measuring
the averages of each document’s a) average and b) maximum connection
strength .

Counting Finally, we observed the average number of user per document
(again averaged to the single user), the average ratio of tags and users
per document, and simply the number of entries per user.

4 Experiments & Results

4.1 Single Features

A detailed list of the features generated from each group is presented in
Table 1. It documents the AUC values for each feature when used alone
as predictor, both on the probe and the test dataset.

Table 1. Features by group, and AUC value if used as single predictor

Used by
Feature name AUC(val.) AUC(test) S N O

Cooccurence Features
Avg. Spaminess

Documents 0.676 0.689 s o
Certainty 0.435 0.413 s o
Std.Dev 0.445 0.463 s o

Tags 0.839 0.926 s o
Certainty 0.552 0.529 s o
Std.Dev 0.321 0.276 s o

Avg. Spaminess (iterated)
Documents 0.813 0.900 s o

Std.Dev 0.401 0.382 s o
Tags 0.842 0.918 s o

Std.Dev 0.327 0.255 s o
User Cosine Similarity

Documents 0.554 0.533 s o
Tags 0.823 0.887 s o

Avg. Document * Avg. Tag Spaminess
Normal(tags) * Iterated(documents) 0.843 0.929

Features of Induced Graphs
Degree ratios

Avg (deg(user)/deg(document)) per tag 0.518 0.565 s n
Avg (deg(user)/deg(tag)) per document 0.669 0.660 s n
deg(docs)/deg(tag) 0.683 0.674 s n

Characteristic Path Length
User 0.607 0.579 s n
Avg. per tag 0.375 0.358 s n
Avg. per document 0.659 0.658 s n

Connected components
#connected components/#entries by user 0.328 0.350 s n
Avg. #connected components per tag 0.681 0.704 s n

Strongly connected components s n
Avg per tag 0.551 0.575 s n
Avg per document 0.389 0.398 s n
User 0.469 0.499 s n

Other Features
Connection strength

Avg (Avg. connection strength per document) 0.560 0.576 s n
Avg (Max. connection strength per document) 0.549 0.559 s n

Spaminess of highest containing core
User 0.500 0.500 s n
Avg. per document 0.500 0.532 s n
Avg. per tag 0.622 0.641 s n

URL classification
Smoothed avg. URL prediction per document 0.765 0.712 s
Avg. URL prediction per document 0.814 0.787 o

Counting features
Avg. #users per document 0.503 0.515 s n
Avg. #tags/#users per document 0.674 0.660 s n
entries 0.642 0.627 s n o

(a) Splitting training data into 5
probe datasets

(b) AUC value of tag * iter. doc.
spaminess on probe and test data

Fig. 7. Construction of probe datasets and performance of spaminess predictors

Cooccurrence Features We find that the average spaminess, particularly
of tags, is a strong predictor of a user’s spaminess. Iterating spaminess
distribution helps to increase the expressiveness of document spaminess.
The product of tag spaminess (see Figure 7(b) for performance on the
different probe datasets and on the test dataset) and iterated document
spaminess performs better than our final predictor on the test set.

URL prediction Apart from cooccurrence features, the url predictor is
the strongest single predictor of spaminess. In particular, smoothing does
not seem necessary.

Induced Graphs Many of the features describing the statistical proper-
ties of induced graphs seem to indicate a tendency towards spaminess or
non-spaminess, but no single feature is useful as a stand-alone predictor.
The degree ratio between documents and tags in user-induced graphs,
and the number of connected components in tag-induced graphs seem to
be the most relevant single predictors.

K-cores K-Cores only turned out useful for tags on the probe and the
test set, while using them on other portions of the training set (not shown
here) yielded better results; it seems that the “younger” members of the
graphs (which we predict here) are not connected strongly enough to
show up in expressive cores.

Other features The ratio of tags per user, for documents, turns out
to be a useful measure, as motivated by the graphs shown in Figure 4.
Also, the simple number of entries per user provides a tendency towards
spaminess.

4.2 Classifying Feature Vectors

Training a classifier With a given set of features for the probe dataset,
we trained a Support Vector Machine using SVMLight[6] using a five-
fold cross-validation. Across various situations, we found a polynomial
kernel of degree 6 with a balancing factor of 0.077 (the fraction of non-
spammers in the training dataset) to be best. We train our classifier on
the normalized features generated for the probe set and use it to predict
the corresponding feature vectors of the test set.

(a) ROC curves on test set (b) AUC values for cross-validation
on the probe set, prediction on the
test dataset, and cross-validation
on the test dataset

Fig. 8. Final performance values

Results See Figure 8 for the final results of our predictors. We obtained
an AUC of 0.913 on the test set with our submission run, using basically
all the features introduced earlier (see column “S” in Table 1). Unable to
resist the temptations of hindsight, we tried several other configurations
of features, finding that leaving out network features entirely and using
the unsmoothed URL prediction (see column “O”) yielded the best result
of 0.961. We also examined the performance of network-based features
alone (column “N”), yielding an AUC of 0.854. Finally, we added to
the overview the performance of using, without an additional classifier,
the product of the tag spaminess and the iterated document spaminess
(0.929).

5 Conclusions & Outlook

The most striking result of the presented experiments is that, at the end
of the day, our constructed classifier performs worse than a simple prod-
uct of two of the features used, tag and iterated document spaminess.
What happened? If we regard Figure 8(b), we may get an idea: The
spaminess features perform a lot worse (almost .1 AUC) on the probe
set than on the test set. The trained classifier weighs the features ac-
cordingly and is thus not able to benefit from the improved spaminess
features in the test set. The quality of the network measures remains
stable from probe to test set, and so does the submitted classifier. Leav-
ing out network properties during training (classifier “optimal”) forces
the classifier to weigh cooccurrence features more strongly, and thus the
increased quality of those features is used. Performing a cross-validation
on the test set (last block), both classifiers correctly identify the strength
of the of the spaminess and perform about equally; whatever difference
remains is due to the weakening smoothing used for the URL classifier.
A conclusion of these results is that our creation of a probe dataset was
faulty. As Figure 7(b) shows, cooccurrence feature performance deterio-
rates as we go from predicting the oldest (1) to the latest (5) users. We
chose the last fifth of the users as our probe dataset, assuming that pre-
dicting the test set would be most similar to predicting the latest users

in the training set. This is obviously not the case,– the question why it
isn’t remains open for now and should be further explored.
We do find the network features promising, as they produce insight into
the structural properties of spamming behaviours. In contrast to cooc-
currence or URL features, no labeled users are needed for their construc-
tion. This could prove valuable when examining new datasets for which
no labels have been created yet.

6 Acknowledgments

The first author is funded through a scholarship of the Integrated Gradu-
ate Program “Human-Centric Communication” and partially supported
via the EU NoE P2P Tagged Media (PeTaMedia). We thank Matei Lev-
enter, funded via DFG grant no. OB 102/10-2 (Learning Agents for Text
Classification) for implementing the URL-based predictor, and Frank
Schumann for invaluable feedback on earlier versions of this paper.

References

1. J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani.
k-core decomposition: a tool for the analysis of large scale internet
graphs, 2005.

2. C. Cattuto, C. Schmitz, A. Baldassarri, V. D. P. Servedio, V. Loreto,
A. Hotho, M. Grahl, and G. Stumme. Network properties of folk-
sonomies. AI Communications Journal, Special Issue on ”Network
Analysis in Natural Sciences and Engineering”, 20(4):245–262, 2007.

3. Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and
Chih-Jen Lin. LIBLINEAR: A library for large linear classification.
Journal of Machine Learning Research, 2008. To appear.

4. P. Heymann, G. Koutrika, and H. Garcia-Molina. Fighting spam on
social web sites: A survey of approaches and future challenges. IEEE
Internet Computing, 11(6):36–45, 2007.

5. A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme. Information re-
trieval in folksonomies: Search and ranking. In Proceedings of the 3rd
European Semantic Web Conference, volume 4011 of LNCS, pages
411–426, Budva, Montenegro, June 2006. Springer.

6. T. Joachims. Making large-scale support vector machine learning
practical. In Advances in Kernel Methods: Support Vector Machines.

7. G. Koutrika, F. Adjie Effendi, Z. Gyöngyi, P. Heymann, and
H. Garcia-Molina. Combating spam in tagging systems. In AIRWeb
’07: Proceedings of the 3rd international workshop on Adversarial in-
formation retrieval on the web, pages 57–64, New York, NY, USA,
2007. ACM.

8. B. Krause, A. Hotho, and G. Stumme. The anti-social tagger - de-
tecting spam in social bookmarking systems. In Proc. of the Fourth
International Workshop on Adversarial Information Retrieval on the
Web, 2008.

9. S. B. Seidman. Network structure and minimum degree. Social Net-
works, 5:269–287, 1983.

