
Using Semantic Features to Detect Spamming in

Social Bookmarking Systems

Amgad Madkour1 , Tarek Hefni2, Ahmed Hefny1 , Khaled S. Refaat1

Human Language Technologies Group
IBM Cairo Technology Development Center1

P.O.Box 166 El-Ahram, Giza, Egypt
{amadkour,ahefny,ksaeed}@eg.ibm.com1 , t hefny@aucegypt.edu2

Abstract. Collaborative software is gaining pace as a vital means of
information sharing between users. This paper discusses one of the key
challenges that affect such systems which is identifying spammers. We
discuss potential features that describe the system’s users and illustrate
how we can use those features in order to determine potential spamming
users through various machine learning models.

1 Introduction

Spamming is a crucial challenge that affects both users and services providers.
Users are faced with spamming obstacles during activities such as web-based
searching. This often occurs when spammers use techniques or keywords to in-
crease the rank of their websites. This in turn overshadows more relevant pages
that users might be actually interested in. A famous form of spamming is that
a spammer might create a website with keywords most relevant to a common
accessory that a user maybe interested in. Other victims of spamming are email
service providers. Email providers use a lot of spam detection techniques in order
to minimize spam emails sent to their users.

Spam detection is faced with great challenges and thus various techniques
have been deployed. Some techniques are based on detecting the most common
keywords or key phrases that are frequently used in most spamming emails.
Other techniques are based on learning general patterns that spammers tend
to use to advertise their material. Some of them rely mostly on manually con-
structed pattern matching rules that need to be tuned to each user. A greater
challenge is that the characteristics of spam change over time which makes main-
taining the rules a daunting task. Other systems employ machine learning tech-
niques which allow the system to automatically learn to separate spam from
other messages. Classification techniques, based on different features that de-
scribe a user and posts, are used in order to differentiate between spamming and
non-spamming users.

2 Tarek Hefni is an undergraduate student at the American University in Cairo. At
the time of this work, he was an intern with IBM Cairo Technology Development
Center R&D Team.



In this work we target a specific type of collaborative social software systems
that suffers from spamming which is social bookmarking[12]. Its main focus is
collecting the user online bookmarks which the user generates. Other similar
systems are used to store user-generated scientific bibliographies. The main ele-
ment in such systems is a post. It’s composed of a user, a resource and a number
of tags annotating it. Systems such as social bookmarking allow users to upload
their resources, and label them with tags. The systems differ depending on the
type of resource being shared[7]. On most systems, users are described by their
user ID and tags may be arbitrary strings. Users are allowed to copy the re-
sources tagged by other users. They are also allowed to view information such
as who tagged what resource and so forth. The power of such a system is that
users are able to share or browse other users’ shared data.

The set of tag-resource relations is referred to as folksonomy[1]. It stands for
conceptual structures created by people. The collection of all user assignments is
called a user personomy. A collection of all personomies in turn constitutes the
folksonomy. There is widespread use of these systems due to the presence of shar-
ing mechanisms between users which enable breaking the knowledge acquisition
problem users face.

In this paper, we discuss various features that can be used to identify spam-
mers that target such systems. The main motivation of our work is to capture the
necessary features that discriminate spammers from non-spammers. Our second
motivation is to determine what an efficient classification model would be like.

2 Related Work

Li and Hsieh [11] proposed a group-based anti-spam framework investigating
the clustering structures of spammers based on spam traffic collected at a do-
main mail server. Their study showed that the relationship among spammers
demonstrates highly clustering structures based on URL grouping.

Krause and Schmitz [9] proposed a social bookmarking setting to identify
spammers using features based on the topological, semantic and profile-based
information. They used different classification techniques to evaluate their pro-
posed features. Their best results were achieved using SVM scoring a roc area
of 0.936.

Koutrica et al [8] introduced a framework for modeling tagging systems and
user tagging behavior. They proposed a tagging system where malicious tags and
malicious user behaviors are well-defined, and described and studied a variety of
query schemes and moderator strategies for tag spam detection.

Androutsopoulos et al [3] explored the idea that a Naive Bayesian classifier
could be used to filter spam mail. They also investigated the effect of some
parameters on the performance of the filter such as attribute-set size, training-
corpus size, lemmatization, and stop-lists. They discovered that the filter has a
stable significant positive contribution with additional safety nets like resending
private messages but is not viable when blocked messages are deleted.



Beil et al [5] introduced an approach which uses frequent item (term) sets
for text clustering. They used algorithms for association rule mining to discover
such frequent sets. They presented two algorithms for frequent term-based text
clustering: FTC and HFTC where the first creates flat clustering and the second
allows hierarchical clustering respectively.

Wetzker et al [12] analyzed 150 million bookmarks. They showed how book-
marks are vulnerable to spamming and how to limit such vulnerability to avoid
affecting the analysis process.

Hotho et al [2] specified a formal model for folksonomies and described their
system: BibSonomy, used for sharing both bookmarks and publication references
in a personal library. They showed that BibSonomy is valuable for researchers
because of the fact that it combines both bookmarks and publication entries.

Gomes and Cazita [10] provided a characterization of spam traffic using work-
load variation, density, inter-arrival time distribution, email size distribution,
temporal locality, etc., compared with non-spam emails. They showed that non-
spam email transmissions are typically driven by bilateral social relationship
while spam transmissions are usually unilateral actions based on the spammers’
will to reach a large number of recipients.

3 Semantic Features

Semantic features refer to annotations that are derived from the content of the
resources. We are motivated to show the value of using semantic features as a
means of detecting spammers.

For the first set of features, we used those mentioned by Krause et al. [9]. They
proposed a set of features that were extracted from a dataset with comparable
characteristics to the one under investigation. Our contribution is the usage and
creation of semantic features that could contribute to the classification accuracy.

The first feature [9] deals with counting the number of tags of the user which
contain ’group=public’. This feature measures the amount of tags that are pub-
licly shared with the social bookmarking community. This is used by spammers
in order to increase the exposure of spammed material to the public.

For the second and third features [9], we counted the number of resources
that are common between the current user and non-spammers in the training set
and the number of resources that are common between the user and spammers in
the training set, respectively. Common resources could be shared bookmarks or
shared BibSonomy items. Those two features allow measuring a ratio between
resources that the current user shares with the spammers and non-spammers
community.

Following the same concept for the fourth and fifth features [9], we counted
the number of tags that are common between the users and non-spammers in the
training set as well as the number of tags that are common between the users
and spammers in the training set. It is important to note that the difference
between those two features and the previous two is that a resource could be
assigned to more than one tag.



Similarly for the sixth and seventh features [9], we counted the number of
resource-tag couples that are common between the user and non-spammers in the
training set and the number of resource-tag couples that are common between
the user and spammers in the training set. This gives an indication about the
ratio of resources-tags for spammers and non spammers.

For the eighth, ninth and tenth features [9], we calculated the co-occurrences
of some of the previously mentioned features. The eighth feature is a calculation
of the co-occurrence generated when we compute the ratio between the second
and third features. The ninth feature is a calculation of the ratio between the
fourth and fifth features. The tenth feature is a calculation of the ratio between
the sixth and seventh features. All the co-occurrences features are based on the
assumption that spammers share the same vocabulary as non-spammers [9].

We are motivated to capture the keywords that always co-occur with spammed
material [9]. Those keywords are referred to as black-listed words. The black-
listed words are a list of words that generally occur in spammed material, such
as emails or websites, with high frequency. We developed a weighted version of
that list in order to use it for our proposed features. Using the training set, we
gave each word a score which represents the frequency between word repetitions
by spammers divided by frequency between word repetition by non-spammer.
We used the same technique for both tags and descriptions.

For the eleventh feature, we calculated the total score of each word in the
description of every bookmark for each user divided by the number of bookmarks
for the user. For the twelfth feature, we calculated the total score of each word in
the tags of every bookmark for each user. Those two features allow us to capture
the frequency of black-listed keywords within resources such as bookmarks and
tag names.

For our last feature, we counted how many times a tag was repeated with
other tags for the same resource by non-spammers. We created what we call a
tag-pair which consists of the two tokens inside the tag. The total score of the
feature is calculated as follows: for each tag-pair of each resource, if the user
used a defined tag-pair, we add one divided by the tag-pair score, otherwise, we
add three.

4 Dataset

We use the dataset provided for the ECML PKDD Discovery Challenge 2008.
The dataset consists of users and their posts. The information includes all public
information such as the URL, the description and all tags of the post. The
training data was composed of 22,200 patterns and the testing set was composed
of 9,959 which included 741 non-spamming users. In this paper, we report the
results obtained by using the testing set provided at training time.



5 Evaluation

The problem will be evaluated using AUC (Area Under ROC Curve). AUC es-
timates the probability that a randomly chosen positive instance will be ranked
higher than a randomly chosen negative instance [7]. It shows the relative trade-
offs between benefits (true positives rates) and costs (false positives rates)[13].

6 Experimental Setup

We experimented with five models: K-Nearest Neighbor Regression, Gaussian
Processes [6], Support Vector Machine (SVM), Neural Networks and Ensemble
Learning using both SVM and Neural Networks. We used Rapid Miner1 as our
machine learning toolkit.

6.1 K-Nearest Neighbor Regression

The following table shows the AUC values obtained using different values of k. A
low value of k results in an input-sensitive model while a high value of k results
in a smoothing model.

Length Scale AUC

3 0.863233176

5 0.87998662

7 0.886212826

13 0.901224341

15 0.900489829

17 0.902808017

19 0.904737342

30 0.908758165

35 0.90963878

40 0.909391328

50 0.909341884

Table 1. K-Nearest Neighbor Results

The best AUC value (0. 90963878) is achieved at k = 35. It is worth noting
that both Gaussian Processes and KNN regression performed best at a point of
notably high smoothing (low variance).

1 http://rapid-i.com



6.2 Gaussian Processes

We used Gaussian Processes[6] with Radial Basis Function (RBF) kernel while
restricting the maximum number of basis functions to 100. This restriction sig-
nificantly reduced training time without any notable change to the AUC value
(compared to 1000 basis functions). The following table shows the obtained AUC
values on the validation set for different values of the Length-Scale of the RBF
kernel. A low value of L results in an input-sensitive (high variance) model while
a high value of L results in a smoothing model.

Length Scale AUC

3 0.770784148624904

10 0.781429115194297

20 0.84661283935238

40 0.921302082732583

80 0.932317150535772

81 0.929417857595996

82 0.929390174977221

83 0.929390174977221

85 0.926760095505033

90 0.923650491558724

100 0.915941266710499

150 0.886343702780949

Table 2. Gaussian Processes Results

The best AUC value (0.932317150535772) is achieved at length scale of 80,
a relatively high value.

6.3 Support Vector Machines

As for the SVM, we used cost-based learning [14][15][4]. Assigning a cost of 7
for labeling a user as non-spammer produced highest results. Accordingly, we
reached the following figures:

Kernel Gamma/Pol.Degree AUC

RBF 1 0.9501623

RBF 1.2 0.9521352

RBF 2 0.9509834

RBF 7 0.9487790

Polynomial 9 0.9519381

Table 3. Support Vector Machine Results



To improve results, we employed a cascading scheme in which an SVM model
(of configuration 2) is used to classify data patterns and another SVM model is
used to reclassify difficult patterns. A difficult pattern is a pattern that produced
an output in the range between -1 and 1 in the first SVM model, meaning that
there is too little confidence to classify it. The second model is trained using
the difficult points in the training set; we classified our training set using the
first model and extracted the difficult points which we used to train the second
model. Adding the second model with parameters different than the first model
would assure that the difficult points that are misclassified by the first model are
classified correctly by the second model. The table below shows the parameter
configurations we tried for the second model (cost value is the same) and the
AUC achieved by each.

Kernel Gamma/Pol.Degree AUC

RBF 1.22 0.9526184

RBF 1 0.9525310

RBF 0.9 0.9487790

Polynomial 9 0.9518192

Table 4. Support Vector Machine Results with Cascading Schema

It was observed that using one classifier misclassified 350 users of the 9950
users of the test set.

6.4 Neural Networks

We used a Neural Network Model with learning rate 0.6 and momentum 0.3
for 9000 epoch. The network contained one hidden layer of thirty neurons with
a sigmoid activation function. The model resulted in an AUC of 0.9394533.
Decreasing the learning rate to 0.4 decreased the AUC to 0.9238232.

6.5 Combined NN and SVM

Finally, we attempted an ensemble learning scheme where we averaged the out-
puts of the best two SVM models and the best Neural Network model. This
produced an AUC of 0.9425323421.

Using the proposed features of [9] to train our models with the first ten
features, we achieved an AUC of 0.941243347. Adding the eleventh feature alone
(weighted black list feature) resulted in an AUC of 0.950537472. By adding the
final feature, we reach our best model giving an AUC value of 0.9526184.

7 Conclusion

In this paper we discussed the semantic features that can be used to detect
spammers in a social bookmarking system. Our proposed features demonstrate



improved results compared to the ones proposed by [9] on the competition test
set taking into consideration the comparable dataset. The paper also discussed
the results obtained by training various classifiers. In addition, this paper demon-
strated how the cascading scheme model provided better results and partially
tackled the border-line of classification that [9] mentioned. We used the Area
Under ROC Curve method to evaluate our results and the best result obtained
was 0.9526.

References

1. A Capocci, G Caldarelli. Folksonomies and clustering in the collaborative system
CiteULike.

2. A Hotho, R Jaschke, C Schmitz, G Stumme. BibSonomy: A Social Bookmark and
Publication Sharing System.

3. Androutsopoulos. An Evaluation of Naive Bayesian Anti-Spam Filtering. Proceed-
ings of the workshop on Machine Learning in the New Information Age, G. Potamias,
V. Moustakis and M. van Someren (eds.), 11th European Conference on Machine
Learning, Barcelona, Spain, pp. 9-17, 2000.

4. B. Scholkopf, A. J. Smola. Learning with Kernels. The MIT Press Cambridge, Mas-
sachusetts London, England 2002.

5. Beil et al. Frequent Term-Based Text Clustering. SIGKDD 02 Edmonton, Alberta,
Canada

6. Carl Edward Rasmussen, Chris Williams. Gaussian Processes for Machine Learning.
the MIT Press, 2006

7. E Santos-Neto, M Ripeanu, A Iamnitchi. Tracking Usage in Collaborative Tagging
Communities.

8. G. Koutrika, F. A. Effendi, Z. Gyongyi, P. Heymann, and H. Garcia-Molina.: Com-
bating spam in tagging systems. In Proc. AIRWeb , pages 57 New York, NY, USA,
2007 ACM.

9. Krause, Beate. Schmitz, Christoph. Hotho, Andreas. Stumme, Gerd. The Anti-
Social Tagger - Detecting Spam in Social Bookmarking Systems. AIRWeb ’08, April
22, 2008 Beijing, China.

10. L. H. Gomes, C. Cazita. Characterizing a Spam Traffic. In the proceeding of IMC
04, Oct. 2004.

11. Li, Hsieh. An Empirical Study of Clustering Behavior of Spammers and Group-
based Anti-Spam Strategies. CEAS 2006 Third Conference on Email and Anti-
Spam, July 27-28, 2006, Mountain View, California USA.

12. R Wetzker, C Zimmermann, C Bauckhage3. Analyzing Social Bookmarking Sys-
tems: del.icio.us Cookbook. July 10th, 2008.

13. T. Fawcett. An Introduction to ROC Analysis. Pattern Recogn. Lett., 27(8)861
2006.

14. Yoav Freund, Robert E. Schapire. Experiments with a new boosting algorithm. In
Machine Learning: Proceedings of the Thirteenth International Conference, pages
148156, 1996.

15. Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sciences,
55(1):119139, 1997.


