
Query Routing with Ants?

Elke Michlmayr1, Sabine Graf1, Wolf Siberski2, and Wolfgang Nejdl2

1 Women’s Postgraduate College for Internet Technologies (WIT),
Institute for Software Technology and Interactive Systems

Vienna University of Technology, Austria
{lastname}@wit.tuwien.ac.at

2 Learning Lab Lower Saxony (L3S), Hannover, Germany
{lastname}@l3s.de

Abstract. In this paper we propose SemAnt, a novel ant-based algo-
rithm designed for query routing in taxonomy-based peer-to-peer envi-
ronments. We introduce the reader to the pheronome trail-laying-and-
following behaviour observed from natural ants and show how it can be
applied to query routing in peer-to-peer networks. Our proposed algo-
rithm accounts for network parameters such as bandwidth and latency
and optimizes the pheromone trails to results for a given query depending
on the query’s popularity. If a query is common, its pheromone trails will
converge and lead to the nodes that offer the most results for the given
query. Pheromone trails that are used rarely will evaporate over time. In
addition, the proposed algorithm accounts for the inherent dynamics of
peer-to-peer networks by adjusting pheromone trails when peers join or
leave the network.

1 Introduction

Different approaches for query routing in peer-to-peer networks exist, ranging
from simple broadcasting techniques to sophisticated methods ([7],[3],[15]) that
store information about user-generated queries in the past for predicting which
peer is capable of answering it based on a given query’s keywords, and to route
the query accordingly. The aim is to maximize the number and the quality of
query results while minimizing the overhead necessary for management of routing
tables. Since no central authorities exist in peer-to-peer networks, these methods
must rely on each peer’s local knowledge only.

Ant-based trail-discovery and -following algorithms have successfully been
applied to diverse problems in distributed systems. The Ant Colony Optimiza-
tion (ACO, [8]) meta-heuristic proposed by Di Caro and Dorigo in 1999 ex-
ploits these techniques for solving graph-based optimization problems. A ded-
icated subset of ant-based algorithms – subsumed under the term Ant Colony
Routing (ACR, [4]) – was specifically designed for managing routing tables in

? This research has partly been funded by the Austrian Federal Ministry for Education,
Science, and Culture, and the European Social Fund (ESF) under grant 31.963/46-
VII/9/2002.

IP networks. We assume ant-based techniques to be suitable for query routing
in peer-to-peer networks for the following reasons:

Decentralization: Ants are autonomous agents that travel through a network
and spread pheromones on their paths. At each node, they examine the
pheromone amounts already spread on the available outgoing links in order
to decide which link to follow. Communication among ants is indirect and
exclusively based on modifications of pheronomon trails. Hence, ant-based
methods do not require any global knowledge. They need local knowledge
only, which makes them suitable for application in distributed environments.

Dynamic behavior: Since strategies for reacting to network changes exist,
ACO algorithms are suitable for peer-to-peer networks, which character-
istically allow peers to leave or join at any time and where the routing algo-
rithm has to cope with these dynamics. ACO includes methods that adapt
the pheromone trails in the network according to these changes.

However, the optimization problems previously solved with ACO differ in some
respects from the task of query routing in peer-to-peer networks, which can be
seen as a special kind of optimization problem. Moreover, ACR has proven to
perform well [5] when routing data packets in packet-switched networks but has
not yet been applied to the task of query routing. One basic difference between
traditional routing and query routing is that the former does not account for the
contents of data packets. Neither ACO nor ACR are applicable as-is in peer-
to-peer networks, but must be adapted according to the environment and the
application scenario.

The paper is organized as follows. In Section 2 we describe Ant Colony Opti-
mization and Ant Colony Routing. We discuss the main building blocks of both
ACO and ACR and identify those that can be transferred to the realm of peer-
to-peer networks as well as those that can not. In Section 3 we discuss previous
research on employing these techniques in peer-to-peer networks. After this dis-
cussion which provides its design rationale, in Section 4 we describe SemAnt,
our adapted ant-based algorithm. Finally, in Section 5, we sum up our findings.

2 Ant-based algorithms

In this section, we provide an introduction to Ant Colony Optimization and Ant
Colony Routing.

2.1 Ant Colony Optimization

Ant Colony Optimization (ACO) algorithms [8] are inspired by the collective
foraging behavior of specific ant species. When these species of ants are searching
for food sources they follow a trail-laying trail-following behavior. Trail-laying
means that each ant drops a chemical substance called pheromone on its chosen
path. Trail-following means that each ant senses its environment for existing
pheronome trails and their strength. This information builds the basis for their

decision which path to follow. If there is a high amount of pheromone on a
path the probability that the ant will choose it is also high. If there is a low
amount of pheromone, the probability is low. The more often a path is chosen,
the more pheromones are laid on it which increases the probability that it will be
chosen again. Since the decision is based on probabilities, an ant does not always
follow the way that has the highest pheromone concentration. Paths which are
marked as poor are also chosen, but with lower probability. One of the features
of pheromones is that they evaporate over time, leading to the effect that rarely
used trails will vanish. These strategies enable ants to build a map of pheromone
trails which indicates the best paths to a food source.

Summarized by a meta-heuristic called Ant Colony Optimization [8], sev-
eral algorithms exist that model and exploit this behavior for solving graph-
based NP-hard combinatorial optimization problems, e.g., the travelling sales-
man problem. In these algorithms, after initializing each edge of the problem
graph with a very small amount of pheromone and defining each ant’s starting
node, a small number of ants (e.g., 10) runs for a large number of iterations (e.g.,
10.000). For every iteration, each ant determines a path through the graph from
its starting to the destination node. It does this by applying a so-called random
proportional transition rule at each decision point. This rule derives which of
all possible next nodes to choose, based on (1) the specific edge’s amount of
pheromone and (2) its costs. When the ant arrives at the destination node, the
total costs of the newly found solution are calculated. In case the newly found
solution outperforms the existing solutions, it is saved to memory as the cur-
rently best one. After all ants have found a solution, the pheromone trail update
rule is applied for each edge which is part of the solution. The amount of newly
dropped pheromones depends mostly on the quality of the solution. In each
iteration, some pheromone evaporates according to a evaporation factor. The
different instances of ACO – i.e, Ant system [6], Ant colony system [9], or MAX-
MIN ant system [14] – vary mostly in their transition rules and their pheromone
trail update rules, but also some other additional constraints or small add-ons.

One specific strength of ACO algorithms is their adaptability to different
kinds of problems. For our purposes, we focus on their application to dynamic
and to distributed problems. A problem is called dynamic when the problem
graph changes during the solution finding process. Guntsch and Middendorf [10]
elaborated three strategies for handling dynamic problems with ACO. The main
research on distributed problems was performed in the area of routing in telecom-
munication networks, as presented in the next section.

2.2 Ant Colony Routing

The two most prominent variants of ant-based algorithms for routing are ant
based control (ABC) [12] by Schoonderwoerd et al. and AntNet [5] by Di Caro
and Dorigo. ABC is designed for circuit-switched networks and its pheromone
updating approach is appropriate for symmetric networks only, whereas AntNet
is designed for packet-switched networks and its pheromone updating approach

is appropriate for both symmetric and asymmetric networks. Since we deal with
a packet-switched network in our application scenario, we focus on AntNet.

In AntNet, ants collaborate in building routing tables that adapt to current
traffic in the network with the aim of optimizing the performance of the entire
network. The network is mapped on a directed weighted graph with N nodes.
Each node manages a routing table. The edges of the graph are the links between
nodes and are viewed as bit pipes having a certain cost (bandwidth and trans-
mission delay) that depends on the current load of this link. The routing tables
are matrices of size N× l, where l is the number of outgoing links. At startup, all
routing tables are initialized with a uniform distribution of all reachable nodes.
At regular intervals, each node generates a so-called forward ant that builds
a path to a randomly selected destination node. Similar to ACO, the decision
about which node to choose next is based on (1) link cost and on (2) the amount
of pheromones already dropped on this link by ants in the previous iterations.
When a forward ant Fsd launched at a source node Ns has reached its randomly
selected destination node Nd and is now able to calculate the total costs of the
solution, it cannot update the pheromone trails directly like in ACO. Since the
problem is distributed, it has to generate a backward ant Bds that will return to
Ns through the same path that was used by Fsd. The backward ant is responsible
for updating the pheronome trail according to the information gathered by Fsd

by altering the routing table of each visited node. The backward ants update all
entries corresponding to destination node d.

AntNet includes a strategy for preventing cycles. Fsd manages a stack of
peers already visited. Each time it has to decide which peer to visit next, it
excludes all already visited peers. If Fsd detects a cycle because it is forced to go
to an already visited peer Pv since all possible next peers were already visited,
it calculates the time span t it spent inside the circle. If t is greater than 50% of
the ant’s total lifetime, Fsd is terminated. If it is less, Fsd removes all peers that
are part of the cycle from its stack and continues travelling at Pv .

ACO’s evaporation feature, as described in the last section, is not incorpo-
rated into AntNet. One shortcoming of the algorithm is that it does not provide
support for link failures, node failures, or new nodes that join the network. The
evaluation presented in [5] shows that AntNet outperforms all state-of-the-art
routing algorithms existing at the time the paper was published. The two main
reasons that make it impossible to apply AntNet to peer-to-peer environments
without any modifications are:

– AntNet needs information about all nodes that exist in the network in order
to choose destination nodes. This information is not available in peer-to-peer
environments.

– When routing data packets, the destination IP address of the packets is
known beforehand. Query routing, on the contrary, is the task of finding one
or more appropriate destinations for a given query.

In the following we discuss related work on ant-based algorithms in peer-to-peer
environments that was evaluated as a starting point for the design of SemAnt.

3 Related work

Anthill [2] is a Java-based open source framework for the design, implementation,
and evaluation of ant algorithms in peer-to-peer networks. An Anthill system
is an overlay network of interconnected nests (peers). Nests provide services
like document storage, routing table management, topology management, and
generation of ants upon user requests. In addition, the Anthill API provides
a basic set of actions for ants that enables them to travel from nest to nest,
and to interact with the services provided by nests. The ant-based algorithm
is not specified by Anthill, but must be designed by the user of the framework
according to the application scenario. Hence, the main difference between Anthill
and SemAnt is that Anthill aims to deliver a test bed for ant algorithms in peer-
to-peer networks, but does not focus on the design of the algorithms themselves.

One part of the Anthill project that is similar to SemAnt is Gnutant [2],
a peer-to-peer file-sharing application that was built by the Anthill developers
for demonstration and evaluation purposes. In this application, each file is iden-
tified by an unique file identifier and associated with meta-data comprised of
textual keywords. Three different types of ants are responsible (1) for construct-
ing a distributed index that contains URLs pointing to shared files and (2) for
managing routing tables. If a user adds a new file to a nest, one InsertAnt is
generated for each keyword of the file. InsertAnts propagate the presence of new
files to the network by updating the distributed index. Gnutant utilizes hashed
keyword routing based on the Secure Hash Algorithm (SHA). Each index entry
contains the hash value of a keyword together with a set of nests that are likely
to store files associated with the given keyword. SearchAnts are generated upon
user queries and exploit the information stored in the routing tables in order
to find files that match the queries’ keywords. If no index entry that exactly
matches the query’s hash value exists, the SearchAnt selects the hash value that
most closely matches the hash value of the query. If a SearchAnt localizes an
appropriate file, it generates a ReplyAnt that immediately returns to the source
nest and informs the user about the result of his or her query. The SearchAnt
itself continues travelling until it reaches a defined time-to-live parameter TTL,
that is, the maximum number of hops the ant is allowed to move. Once the TTL
is reached, it returns to its source nest via the same path it travelled before and
updates both routing tables and distributed index. This behaviour is derived
from AntNet.

Schelthout et al. [11] evaluate whether the principle of synthetic pheromones
can be employed for coordination in distributed agent-oriented environments.
Their framework is different from ours since it is based on the idea of objectspaces
known from concurrent computing, but for its evaluation a simple peer-to-peer
filesharing application was created. Similar to Anthill, Schelthout et al. create
pheronome trails for each query and allow agents to follow trails that represent
only one out of the multiple keywords in the query. In addition, they use an
evaporation factor of 0.1. The test environment is too small (200 peers, one kind
of resource) to be useful, but the experimental results show that the hit rate
increases with the number of queries sent to the network (32% hit rate after 400

queries, 53% hit rate after 700 queries). This fact proves that pheromone trails
enhance the performance of the network.

4 SemAnt

In this section, we introduce our application scenario. After that, our proposed
ant-based algorithm SemAnt is described in detail.

4.1 Application scenario

Our application scenario is that of a distributed search engine where each peer
manages a repository of documents and offers the content of its repository to
other peers. All available documents are classified by content according to a
taxonomy or hierarchical classification scheme, such as the ACM Computing
Classification System (ACM CSS) [1]. Each document is associated with one
or more concepts of the taxonomy. Each peer owns a copy of the taxonomy. In
addition to offering documents, peers pose queries to the network. Each query
consists of one or more keywords. The set of allowed keywords is limited to the
concepts of the chosen taxonomy. Multiple keywords are connected using the
boolean operator AND. Hence, a document is an appropriate result for a given
query Q if it is classified to be an instance of all concepts that are keywords of
the query Q. Peers are identified by their IP addresses. Documents are identified
by their filenames. Since we do not focus on the problem of peer discovery, our
assumption is that peers already know which neighbouring peers they are able
to connect to. In addition, we make the assumption that the clocks of all peers
are synchronized and set to the same time.

4.2 The proposed algorithm

First of all, we must define which entity of the system should be represented by
ants. For each query, the shortest path through the network must be found that
leads from the querying peer to a destination peer offering documents matching
this query. The more often a query is requested, the stronger its paths should
be optimized. Thus, it is reasonable to represent queries as ants. This guaran-
tees that the degree of optimization for a certain query directly depends on its
popularity.

As described in Section 2.1, foraging ants find the shortest path to one kind
of food. In our scenario, all concepts of the taxonomy are allowed as keywords
in queries. Hence, there is more than one kind of ”food”. Consequently, the
network must be independently optimized for all possible keywords, that is, each
concept. This goal can only be reached by employing multiple pheromone types
as introduced in [13] and representing each concept by a corresponding type of
pheromone. At each peer Pi, pheronome trails are maintained in a table τ of
size C × n, where C is the number of concepts in the taxonomy and n is the
number of Pi’s outgoing links to neighbouring peers Pu where u ∈ {1, ..., n}.

1 t = CurrentTime ;
2 t end = EndTimeOfSimulation ;
3 foreach (Peer) { # Concurrent a c t i v i t y

4 i n i t i a l i z ePhe romoneTab l es () ;
5 i n i t i a l i z eL inkCos tsToNeighbourPeer s () ;
6 while (t <= t end) {
7 i n p a r a l l e l { # Concurrent a c t i v i t y at each peer

8 i f (Query Q) {
9 checkLocalDocumentRepository () ;

10 createForwardAnt (query parameter) ;
11 }
12 foreach (StartingForwardAnt) {
13 while (Timeout not reached) {
14 applyTrans i t ionRule () ;
15 t a = CurrentTime ;
16 foreach (ActiveForwardAnt , ClonedForwardAnt) {
17 GoToPeer(P j) ;
18 t b = CurrentTime ;
19 checkLocalDocumentRepository () ;
20 i f (DocumentsFound > 0) {
21 createBackwardAnt(stackData , P j) ;
22 }
23 addDataToStack (P j , t b−t a) ;
24 }
25 }
26 }
27 foreach (StartingBackwardAnt) {
28 do {
29 peer = popStackData Peer () ;
30 GoToPeer(peer) ;
31 applyPheromoneTrailUpdateRule () ;
32 updateLi s tCosts (popStackData Costs ()) ;
33 } while (peer <> s ou r c e pee r) ;
34 foreach (Pe r i od i ca lT ime In t e rva l t e) {
35 applyEvaporationRule () ;
36 }
37 }
38 }
39 }

Fig. 1. SemAnt

Each τcu stores the amount of pheronome type c dropped at the link from peer
Pi to peer Pu, for each concept c and each neighbouring peer Pu. At startup,
all table entries are initialized with the same small value τinit. In addition, each
peer manages a table η that stores link costs to neighbouring peers Pu. Each ηu

is the inverse value 1
lcu

of the cost lcu for sending an ant from Pi to Pu.

Figure 1 shows the proposed algorihm in pseudo-code. SemAnt adopts the
AntNet strategy for supporting distributed problems by forward ants F and
backward ants B as well as AntNet’s strategy for preventing cycles. In AntNet,
forward ants terminate their travel through the network when they reach their
well-defined destination node. This behaviour can not be transferred to SemAnt,
since in our scenario the forward ant’s task is to find an unknown destination
node that in the worst case does not even exist. To specify the point of time at
which a forward ant terminates its travel, we define a timeout parameter Tmax

that is the maximum lifetime of F .

The algorithm’s routing strategy is exclusively defined in the transition rule.
We cannot rely on AntNet’s transition rule since it aims to optimize the path
to one specific destination node only. Instead, we employ Ant Colony System’s
transition rule [9] that consists of two strategies. Based on probability we, each
ant decides whether it applies an exploiting or an exploring strategy:

– In the exploiting strategy, the ants determine the quality of the links depend-
ing on the amounts of pheromones and the link costs and then always select
the link with the highest quality.

– The exploring strategy encourages ants to discover new paths. This is
achieved by deriving a probabilistic value pu for each peer Pu in the set
of neighbouring peers U and not in the set of peers S(F) which were already
visited by F . The roulette wheel selection technique is applied for selecting
the peer. All pus are placed on the continuum between 0 and 1 and the sum
∑

u∈U∧u/∈S(F) pu is 1. In the next step, a random value q where q ∈ [0, 1] is
calculated in order to decide which peer Pu to select.

To facilitate searching in multiple directions, SemAnt utilizes an adapted ex-
ploring strategy. This adaptation accounts for the fact that there are multiple
possible destination peers in our application scenario. After computing pu for
each peer Pu, instead of using roulette wheel selection we separately place each
pu on the continuum between 0 and 1 and calculate q to decide whether Pu is
selected. This strategy allows more than one peer to be selected. To ensure that
at least one peer will be selected, we fall back to the exploiting strategy in the
rare cases that the exploring strategy decides not to select any peer.

A step-by-step description of our algorithm follows. Consider a query Q con-
taining a keyword c issued at a peer P Q. The following seven steps are necessary
for answering query Q:

Step 1 Check P Q’s local document repository. If any results are found, present
them to the user. If the number of documents found is less than Dmax,
go to step 2. Otherwise, enough documents are found and the algorithm
terminates.

Step 2 At P Q, create a forward ant F Q with starting time TFstart and timeout
Tmax responsible for retrieving results for query Q. Add P Q to F Q’s empty
stack of already visited peers S(F Q) and initialize the list LC(F Q) that
stores the link costs of all links used by F Q.

Step 3 Apply the transition rule in order to decide which outgoing link(s) F Q

should choose. As described above, F Q applies the exploiting strategy with
probability we or the exploring strategy with probability 1− we.
In case the exploiting strategy is used, F Q applies the following transition
rule to select the present best neighbouring peer Pj :

j = arg maxu∈U∧u/∈S(F Q)

(

[τcu] · [ηcu]
β
)

,

where β is a constant weighting the influence of link costs, U is the set of
neighbouring peers of Pi, and S(F Q) is the set of peers F Q already visited.

If F Q uses the exploring strategy, the following transition rule is applied for
each neighbouring peer Pj in order to decide whether F Q should be routed
to Pj :

pj =
[τcj]·[ηcj]

β

∑

u∈U∧u/∈S(F Q)
([τcu]·[ηu]β)

, GOj =

{

1 if q ≤ pj ∧ j ∈ U ∧ j /∈ S(F Q)
0 else

where q is a random value, q ∈ [0, 1], and
∑

j∈U∧j /∈S(F Q) pj = 1. If GOj = 1,

F Q creates a clone of itself and sends it to Pj .
Step 4 Upon arrival at Pj , check the local document repository for documents d

that are results for query Q. All matching documents are contained in the
set D.

Step 5 If there are any documents d, where d ∈ D and D 6= {}, generate a
backward ant BQ and pass it D and P D, which is the peer that stores D.
In addition, BQ is given a copy of F Q’s stack data which contains all visited
peers S(F Q) and all recorded link costs LC(F Q). In the first step, BQ calcu-
lates the sum of all entries in LC(F Q) to get the total link costs TD for the
path from P Q to P D. After that, BQ travels back hop-by-hop according to
the information stored in S(F Q) until it arrives at querying peer P Q. At each
intermediate peer, BQ is responsible for (1) updating the link cost ηj to the
entry in LC(F Q) and (2) dropping pheromones by applying the pheromone
trail update rule. Our pheromone trail update rule is adopted from [9] and
defined as follows:

τcj ← τcj + Z, where Z = wd ·
|D|
d∗ + (1− wd) ·

Tmax

2·TD

The amount Z depends on the number of documents found and the total
link costs. wd weights the influence of documents’ quantities and link costs.
Z is derived by comparing the goodness of the found solution to an optimal
one. Since there is no optimal solution, we set the optimal value for a path’s
total link costs to Tmax

2 and use a constant d∗ for the optimal number of
documents. Since both values merely act for assessing the quality of the found
solution and each solution is compared to the same values, we can safely rely
on estimates. Additionally, 50% of Z are dropped on the pheromone trail
corresponding to the superconcept of c, one level higher in the taxonomy.
This way, the algorithm exploits the information from the taxonomy by
reflecting the hierarchical structure of concepts in the pheromone trails.

Step 6 Add Pi to F Q’s stack of already visited peers S(F Q) and add the cost
of the last used link to LC(F Q).

Step 7 If TFstart + Tmax < CurrentT ime, continue at step 3. Otherwise, if
F Q’s maximum lifetime is over, kill it.

The algorithm as described above acts on the assumption that the query consists
of only one keyword c, but SemAnt also provides for queries containing multiple
keywords c1, . . . , cn. In that case, all corresponding pheromone trails must be
incorporated. In the transition rules, the average amount of pheromones of all
keywords (τc1u+. . . +τcnu)· 1n instead of τcu is used for all neighbouring peers Pu.

Additionally, the pheromone trail update rule is applied not only to to τcu but
to τc1u, . . . , τcnu and to all trails for the superconcepts of c1, . . . , cn.

Please note that unlike in AntNet, a single forward ant can generate multiple
backward ants. Since the maximum lifetime of F Q is Tmax, all BQs will arrive
within a time interval of 2 ∗ Tmax. As soon as a backward ant arrives at the
querying peer P Q, the result documents D are presented to the user. If the user
decides to download a document d, a direct connection between P Q and the
peer P D that stores d is established and the document is retrieved from P D.

Each peer applies the following evaporation rule in a predefined interval te

for each link to neighbouring peer Pu and each concept c, where the amount of
evaporating pheromones is controlled by parameter ρ ∈ [0, 1]:

τcu ← (1− ρ) · τcu

If new peers are joining the network, if peers are leaving, or if a peer adds or
removes documents from the repository, it is necessary to adapt the pheromone
trails in order to reflect these changes. To correct the amount of pheromones
we apply the η-strategy elaborated by Gutsch and Middendorf [10]. Accord-
ing to this strategy, the closer a link is to a joining or leaving node, the more
pheromones are removed from it. This helps the ants to find new paths by in-
creasing the influence of new links. In [10], the measurement of closeness is based
on the link costs. SemAnt uses a simplified version of the η-strategy where close-
ness is measured in number of hops.

We define a modification rule for calculating the necessary modifications
of τcu which considers the number of added or removed documents |Dc| that are
instances of concept c:

τcu ←

{

τcu − τcu · λh if |Dc| ≥ d∗

τcu − τcu · λh ·
|Dc|
d∗ else

,

where λ is a list of predefined values λh ∈ [0, 1] specifying the decrease of τcu, h =
{1, 2, 3} represents the number of hops from Pu to the peer where the changes
of τcu occur, and λ1 < λ2 < λ3. The constant d∗ represents the optimal number
of documents and is used as a point of reference that restricts the maximum
decrease of pheromones. For the adaptation of trails using the above formula,
we have to employ a broadcast strategy. Each message contains an unique key,
and all peers maintain a list of already processed messages to prevent processing
a message twice.

If a peer Px leaves in a controlled way, it creates a list Cx that contains the
total number of documents |Dc| that are instances of c for each concept c. A
message Mleave containing the list Cx and h = 1 is sent to all neighbouring
peers Pu. Upon receipt, every Pu removes all entries τcx where 0 ≤ c < C
and C is the number of concepts in the taxonomy. After that, it applies the
modification rule. In the next step, Pu increases h by one and broadcasts Mleave

to all its neighbouring peers. These peers apply the modification rule and again
(1) increase h by one and (2) send Mleave to all their neighbouring peers which
are three hops away from Px. Each receiving peer applies the modification rule.

If a peer fails, it leaves without the possibility of adapting pheromone trails. In
this case, we have to rely on evaporation and on the exploring strategy.

If a new peer Py joins the network, all its table entries τcu are initialized
with τinit. To modify the pheromone amounts of its neighbourhood, a list Cy as
described above is created by Py. In the next step, a message Mjoin containing Cy

and h = 1 is sent to all neighbouring peers Pu. Each Pu applies the modification
rule and adds a new row τcy where 0 ≤ c < C to its pheromone trail table τ ,
and initializes the new pheromone trails with τinit. Finally, the peer increases h
by one and sends Mjoin to all its neighbouring peers, which in turn apply the
modification rule.

If documents are added to or removed from the repository of a peer Pz, it
creates a list Cz as described above and sends a message Mchange to its neigh-
bouring peers, which in turn apply the modification rule.

4.3 Simulation Environment

To prove that our ideas are feasible, SemAnt must be tested using simulation.
We planned to build our simulation environment on the Anthill [2] open source
framework described in Section 3, but the initial test runs performed with the
Gnutant algorithms which are part of Anthill did not produce the expected
results. We used the ACM CCS Classification Scheme [1] containing 369 con-
cepts for our tests. Our simulations showed that the Anthill framework is not
scalable because Out-of-Memory errors occured after approximately 2000 itera-
tions. These shortcomings lead to the decision to build our own environment. We
are currently working on it, but have not finished it yet. Our simulation environ-
ment is configurable for number of peers, network topology, network parameters
(bandwidth, latency) for each link, peers that join during the simulation, peers
that leave during the simulation, documents added or removed during the sim-
ulation, and for all configurable parameters of the algorithm. As soon as our
prototype is finished, SemAnt will be tested in networks with different topolo-
gies to determine the one in which it performs best. In addition, appropriate
values for the configurable parameters of the algorithm must be figured out. We
expect that the optimal parameter values are different for each topology.

5 Conclusion

This paper presents work in progress on our efforts to utilize ant-based algo-
rithms in taxonomy-based peer-to-peer environments. We undertook an exhaus-
tive study of the constituents of ant-based algorithms to identify the ones that
are best qualified for deployment in peer-to-peer environments. Those selected
were then customized to our application scenario and used in the design of our
proposed algorithm SemAnt. Our approach exploits the knowledge provided by
the underlying taxonomy by reflecting it in the pheromone tables. Hence, it is
taken into consideration for all routing decisions.

Acknowledgements

We thank Veronika Stefanov and Alexander Löser for fruitful discussions and
Christoph Tempich for providing us with a simulation environment.

References

1. Association for Computing Machinery. ACM Computing Classification System
(ACM CCS). http://www.acm.org/class/1998/, 1998.

2. O. Babaoglu, H. Meling, and A. Montresor. Anthill: A Framework for the Devel-
opment of Agent-Based Peer-to-Peer Systems. In Proceedings of the 22nd Inter-
national Conference on Distributed Computing Systems (ICDCS 02). IEEE, July
2002.

3. W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden. Progressive Distributed
Top-k Retrieval in Peer-to-Peer Networks. In Proceedings of the 21st International
Conference on Data Engineering (ICDE 2005), April 2005.

4. E. Bonabeau, M. Dorigo, and G. Theraulaz. Inspiration for Optimization from
Social Insect Behaviour. Nature, 406:39–42, 2000.

5. G. D. Caro and M. Dorigo. AntNet: Distributed Stigmergy Control for Commu-
nications Networks. Journal of Artificial Intelligence Research, 9:317–365, 1998.

6. A. Colorni, M. Dorigo, and V. Maniezzo. Distributed Optimization by Ant
Colonies. In Proceedings of the 1st European Conference on Artificial Life, pages
134–142. MIT Press, 1991.

7. B. F. Cooper. Guiding Queries to Information Sources with InfoBeacons. In Mid-
dleware 2004, ACM/IFIP/USENIX International Middleware Conference, volume
3231 of Lecture Notes in Computer Science, pages 59–78. Springer, October 2004.

8. M. Dorigo and G. D. Caro. New Ideas in Optimization, chapter The Ant Colony
Optimization Meta-Heuristic, pages 11–32. McGraw-Hill, 1999.

9. M. Dorigo and L. M. Gambardella. Ant Colony System: A Cooperative Learning
Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary
Computation, 1:53–66, 1997.

10. M. Guntsch and M. Middendorf. Pheromone Modification Strategies for Ant Al-
gorithms Applied to Dynamic TSP. In Applications of Evolutionary Computing,
Lecture Notes in Computer Science, pages 213–222. Springer, 2001.

11. K. Schelfthout and T. Holvoet. A Pheromone-Based Coordination Mechanism
Applied in Peer-to-Peer. In Agents and Peer-to-Peer Computing, Second Inter-
national Workshop (AP2PC 2003), volume 2872 of Lecture Notes in Computer
Science, pages 71–76. Springer, July 2003.

12. R. Schoonderwoerd, O. Holland, J. Bruten, and L. Rothkrantz. Ant-based Load
Balancing in Telecommunications Networks. Journal an Adaptive Behavior, 5:169–
207, 1996.

13. K. M. Sim and W. H. Sun. Ant Colony Optimization for Routing and Load-
Balancing: Survey and New Directions. IEEE Transactions on Systems, Man, and
Cybernetics, Part A: Systems and Humans, 33(5):560–572, 2003.

14. T. Stützle and H. Hoos. Improvements on the Ant-System: Introducing the MAX-
MIN Ant System. In Proceedings of the International Conference of Artificial
Neural Networks and Genetic Algorithms, pages 245–249. Springer, 1997.

15. C. Tempich, S. Staab, and A. Wranik. REMINDIN’: Semantic Query Routing
in Peer-to-Peer Networks based on Social Metaphors. In Proceedings of the 13nd
International World Wide Web Conference (WWW2004), May 2004.

