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Abstract. There has been extensive research on social networks and
methods for specific tasks such as: community detection, link predic-
tion, and tracing information cascades; and a recent emphasis on using
temporal dynamics of social networks to improve method performance.
The underlying models are based on structural properties of the network,
some of which we believe to be artifacts introduced from common misrep-
resentations of social networks. Specifically, representing a social network
or series of social networks as an accumulation of network snapshots is
problematic. In this paper, we use a dataset with timestamped interac-
tions to demonstrate how cumulative graphs differ from activity-based
graphs and may introduce temporal artifacts.

1 Introduction

The modeling of social networks is an expansive and active area of research.
While models may incorporate other network features such as node attributes
[4, 24, 16], nearly all rely on network structure. Many methods are now also
incorporating temporal dynamics [12, 10, 20, 22], but how the temporal informa-
tion is integrated varies. There are various approaches [20, 21] to representing a
dynamic social network as a series of networks, but until recently [15] all have
lacked theoretical foundation.

Dynamic network representations which capture edge deactivation [20] have
shown to improve task-specific performance. However, many state-of-the-art
methods [23, 16] are based on cumulative graphs and ignore edge deactivation.
The findings presented in this paper suggest that some existing models may
be designed to accomodate temporal artifacts introduced by not including edge
deactivation in the processing of network data.

There are two social network phenomena which motivate our analysis: social
capacity [3] and bursty events [1]. Social capacity can be viewed as a per-node
limit on the number of incident edges active at any given time and thus conflicts
with the claim of densification and shrinking diameters in social networks [8,
11] unless additional conditions are met. For example, a network where every
new node has a larger social capacity would lead to densification and shrinking
diameters. While variation in social capacity based on demographics has been



observed [15] there has been no evidence presented that would indicate social
capacity is a function of when a node joins the network.

In order to measure the existence of densification and shrinking diameters,
we first must construct a series of network snapshots which more accurately cap-
tures network structure than simply accumulating all edges over time. We do
this by using communication activity between nodes as evidence that an edge is
active. The bursty dynamics of social communication are accounted for by mea-
suring the inter-event times and selecting an observation window large enough to
minimize incorrectly deactivating an active edge. Thus we are able to construct
a series of activity graphs which provide a more accurate approximation of the
network state at a given point in time. This method of graph construction has
been used previously on a mobile phone network [15] to improve understand-
ing of communication strategies. We can then measure and compare evidence of
densification and shrinking diameters in both a cumulative graph series and an
activity graph series.

Densification and diameter shrinking are accepted as basic characteristics of
dynamic social networks. However, this paper presents results which contradict
those findings. When edge deactivation is incorporated, we do not find evidence
of densification and diameter shrinking. We suggest this may be an effect of
social capacity.

2 Related Work

Existing methods for social network tasks have either ignored temporal dynamics
[16, 24] or proposed methods to filter edges with a decay function [20] or slid-
ing window [21]. While these attempts to account for temporal dynamics may
be effective, they are ad-hoc and lack a theoretical justification. The work by
Miritello et al. [14] proposes the selection of an observation window size based
on inter-event statistics and a simple method for identifying edge activation and
deactivation. While similar to existing sliding window approaches, this method
is motivated by social interaction patterns (bursty events). This approach is used
to construct the activity graph series for our experiments.

Models of dynamic social networks based on node interaction activity [9, 17]
have been introduced. These models are capable of generating single network
snapshots which resemble real world networks. The existing models are unable
to produce a graph series which corresponds to a real-world network series. How-
ever, their ability to generate networks with realistic structure indicates they are
an alternative to previous models which heavily rely on preferential attachment
[2] or community affiliation [23] and ignore social interaction patterns. There
are many types of temporal networks [6] and this paper presents observations on
dynamic social networks, specifically person-to-person communication networks.



3 Background

The concepts of social capacity [3] and bursty communications [19, 1] have been
considered separately and recent literature [15, 13, 14] has attempted to measure
and use these to determine the state of edges in a large social network.

Social capacity captures the maximum number of relationships one prefers to
maintain at any given time and there is evidence that social capacity is conserved
over time [15, 5, 7]. The term bursty is used to describe the temporal patterns of
social interactions between pairs of nodes. That is, humans tend to interact in
bursts and these patterns must be considered in order to correctly identify the
activation/deactivation of edges.

The observation of social capacity and burstiness of human interaction in
some networks suggests careful consideration is required to construct accurate
static views of these networks. In fact, accepted claims of graph evolution [8, 11]
appear to fail when graph series are constructed based on timestamped interac-
tions rather than accumulated without regard for edge deactivation.

Previous literature [23] introduced densification and diameter shrinking as
common network characteristics and we briefly describe them here. Densification
is the super-linear growth of edges relative to nodes and results in a network
becoming denser over time. Diameter shrinking is the reported tendency for
network diameters to decrease over time as more edges are accumulated. We can
see both how densification may lead to diameter shrinking and contradicts the
notion of social capacity.

4 Evidence of Temporal Artifacts

4.1 Dataset Descriptions

A dataset with timestamped interactions is required to construct an accurate
temporal series of networks. We use data from Scratch [18], an online community
where users may write and share projects (programs). There are several ways
by which Scratch users may interact: project comments, project remixes, gallery
curation, and user following. More information about Scratch may be found
in [18]. We selected a single type of interaction to simplify analysis. Project
comments are a natural choice as they are the most-frequent interaction between
Scratch users and thus a better approximation of edge status (active/inactive).
These project comments serve as a means for users to communicate within the
context of a project. The comments in the Scratch dataset are timestamped and
thus we can create timestamped edges from comment authors to the project
authors.

The dataset spans over March 2007 to December 2011 and includes a large
period of rapid growth in Scratch users, shown in Figure 1, which does not slow
until towards the end of the dataset. There are a total of 7,788,000 interac-
tions between 164,205 users. We use all these interactions when constructing
the graph series. However, there are many short-term interactions and we filter
out directed interactions between pairs which only occur once or twice when



measuring communication behavior. Such interactions have undefined or trivial
inter-event statistics as there are zero or one inter-event observations when only
one or two interactions are observed. There are a total of 1,799,050 of such inter-
actions with frequency < 3 which were filtered, leaving 5,988,950 interactions.
The Scratch dataset used to construct the networks may be obtained from the
MIT Media Lab website1.
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Fig. 1: The number of interaction events occurring by month.

4.2 Methodology

As the relationships in the Scratch interaction network are based on communi-
cation events between nodes, we check for evidence of bursty patterns. Bursty
communication can be identified by the dispersion of inter-event times between
node pairs. If communication is bursty then the standard deviation of inter-event
time will be larger than the mean. The ratio of the mean and standard devia-
tion of inter-event times is the coefficient of variation (cv) and used to measure
dispersion. When cv > 1, there is evidence of bursty communication. The use of
dispersion to identify burstiness is further discussed by Miritello et al.[14].

We hypothesize the observation of densification and diameter shrinking [8,
11] may be attributed to the inclusion of deactivated edges in a network. To
test this we construct two graph series. The series are both constructed from the
Scratch dataset and each network in the series captures network activity over
consecutive and non-overlapping three-month periods. The three-month length
of the observation window was selected because it is large enough to account

1 https://llk.media.mit.edu/scratch-data



for the majority of inter-event times (97% of inter-event times are < 62 days)
and conveniently maps to annual quarters. The first series is a cumulative graph
series where new nodes and edges are added at each consecutive snapshot to the
previous network in the series. The second series is based on node interaction
activity and we refer to it as the activity graph series.

Edge activity is determined by tracking the activation and deactivation of
edges based on observations in a three-month window along with the previous
and next three-month periods. A similar approach has been used in previous
literature [14]. An edge is considered to activate if it is not present in the three
months preceding the three-month observation window but an event falls within
the observation window. Similarly, an edge is deactivated if an event occurs in
the observation window but not in succeeding three months. Only edges active
in each three-month observation window are used in the corresponding graph in
the activity graph series.

The edge-node ratio ( num.ofedges
num.ofnodes ) is calculated for each graph in both se-

ries and used to measure densification. If densification is present, we expect the
number of edges to grow super-linearly in the number of nodes [11]. We also mea-
sure the diameter of every graph in both series to determine whether diameter
shrinking is observed.
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Fig. 2: The log(cv) for node pairs in the Scratch interaction network with >= 3 events.
A small number of node pairs (1,038) were removed for this plot as they had a cv of
zero and thus were undefined.
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Fig. 3: The edge-node ratio over time in
the cumulative and activity graph series.
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Fig. 4: The diameter length over time in
the cumulative and activity graph series.

4.3 Results

As shown in Figure 2, bursty communication patterns are observed as the cv
values are frequently > 1 (log(cv) > 0).

We see evidence of densification in the cumulative series but not in the activ-
ity series, in Figure 3. The accumulation of edges, without removal of deactivated
edges, appears to introduce densification as a temporal artifact in the Scratch
interaction network. This is especially clear when the number of interactions
stops growing around July 2010, denoted by dashed vertical line in both Figures
3 and 4.

Surprisingly, an overall trend of diameter shrinking is not clearly observed
in either network series. Figure 4 shows a generally increasing diameter for both
series and a larger variance in diameter for the activity series. The lack of di-
ameter shrinking may be due to the growth of the Scratch website during most
of this time period. Both include a vertical line marking the month (July 2010)
when the increase in the number of Scratch interactions slows.

These findings are not unexpected but they are contrary to previous literature
[8, 11] which has served as the basis for state-of-the-art network models. The
edge-node ratio in the cumulative graphs is monotonically increasing over time
and social capacity is ignored. In contrast, the edge-node ratio in activity graphs
may decrease or stabilize as inactive edges are detected and removed.

5 Conclusion

This paper presents evidence that temporal artifacts may be introduced in so-
cial networks when the relationships represented by edges require allocation of
inelastic resource such as time or attention. Our findings suggest more accurate



social networks may be derived from ongoing dyadic interactions rather than
one-time events such as “following” or “friending.”

We plan to extend this work to include other datasets, explore how commu-
nity affiliation correlates to interaction patterns, and ultimately provide a model
of social networks which incorporates knowledge from these findings.
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