

A Fast and Simple Method for Profiling a Population of Twitter Users

MUSE2012@Bristol, UK

Hideki ASOH, AIST Kazushi IKEDA, KDDI R&D Labs, Inc. Chihiro ONO, KDDI R&D Labs, Inc.

Background

- Twitter as a real-time marketing tool
- Most users do not disclose profile (age, sex, location, occupation, etc.)
- Estimating user profile is important for marketing applications
 targeting advertisement

Profiling each User

Estimating user profile from each user's tweets [lkeda+ 2010]

□ Using SVM as classifier

- Input: Occurrences of characteristic words in last 200 tweets of the target user
- Training classifiers using tweets from users who disclose profile
- Choose characteristic words for each segment using information criteria (AIC) (about 10,000users/segment)

Examples of Characteristic Words

Male	Female
Government	Husband
Android	Mother
Wife	Bath
Company	Laundry
Google	Lunch

10s	20s	30s	40s
Mathematics	University	Work	Son
School	Part-time	Company	Holiday
Examination	Seminar	Business	Golf
Test	Job-hunting	Boss	Diplomacy
Physical Ed.	Lecture	Beer	Backache

Profiling a Population of Users

- In some applications, estimating profile of each user is NOT necessary
- Profiling a population of users who tweet about a specific event, content is required
 - □ ratio of male/female
 - □ ratio of 10s/20s/30s/40s/...
- ⇒ Class ratio estimation problem

Class Ratio Estimation

- Observation: X Class: Y
- Class ratio of the training sample and test sample (= target population) are different
 - □ Biased training sample
- Estimating class ratio in the target population

Class Ratio Estimation

- A kind of transfer learning P_{train}(X, Y) != P_{test}(X, Y)

 Class Ratio Estimation P_{train}(X|Y) = P_{test}(X|Y) P_{train}(Y) != P_{test}(Y)
- cf. Covariate Shift [Shimodaira 2000] $P_{\text{train}}(Y|X) = P_{\text{test}}(Y|X)$ $P_{\text{train}}(X) != P_{\text{test}}(X)$

Approaches

- Baseline : Classifying each sample and calculate class ratios by aggregation
 - Time consuming when the size of the target population is large
 - Classifier is suffered from sampling bias

•
$$P_{\text{train}}(Y|X) := P_{\text{test}}(Y|X)$$

Prior estimation using EM algorithm and bias correction [Saerens 2002] -> more time consuming

Direct Method : Class ratio estimation without classification of each sample

Idea of Direct Method

• Training data P(x,y) = P(x|y)P(y)• Test data Q(x, y) = P(x|y)Q(y) $Q(x) \equiv \sum P(x|y=c)Q(y=c)$ $Q'(x;\theta) \equiv \sum P(x|y=c)\theta_c$

Choose optimal θc which makes Q'(x) similar to Q(x)

Du Plessis and Sugiyama [ICML 2012]

Minimizing f-divergence $D_f(Q(x)||Q'(x)) = \int Q(x)f\left(\frac{Q'(x)}{Q(x)}\right)dx$

f-divergence

□ KL divergence $(f(z) = \log(z))$ □ PE divergence $(f(z) = (z-1)^2)$

using density ratio approximation for approximating divergence

Difficulties

- Computational Cost is high
- Good for low dimensional continuous inputs
- Not good for high dimensional characteristic word vector
 - some thousands dimensional
 - □ discretized data

Minimizing Difference of Means

 Instead of minimizing divergence, minimizing the difference of means of Q'(x) and Q(x)

$$\overline{Q(x)} = \int xQ(x)dx$$

$$\overline{Q'(x)} = \sum_{c} \theta_{c} \int xP(x|y=c)dx$$
$$\hat{\theta}_{c} = \operatorname{argmin}\left(\int xQ(x)dx - \sum_{c} \theta_{c} \int xP(x|y=c)dx\right)^{2}$$

Implementation

- Mean of the test dataset: μ
- Class mean of the training dataset: μ_c
- Class mean matrix: $A = (\mu_1, \mu_2, ..., \mu_K)$
- Class ratio vector: $\theta = (\theta_1, ..., \theta_K)$

$$\underset{\theta}{\operatorname{argmin}}(\mu - A \ \theta^{T})^{2}$$
$$\overset{\theta}{\theta^{*}} = A^{+} \mu$$

Experiments

- Male/female ratio
 2 classes
 - □ 1000 users, 200 tweets per a user
 - characteristic words: 4000 words
- Age class ratio
 - 4 classes(10s, 20s, 30s, over40)
 762 users, 200 tweets per a user
 characteristic words: 8000 words

Male/Female Ratio

Condition of Experiment

- 600 training400 test
- Training data
 female/male = 1:1
- Control female/male in test data
- Average of 10 times
- Results
 - Direct method is more stable than baseline
 - 60 times faster
 than baseline (in R)

Age Class Ratio

Condition of Experiments

- 458 training304 test
- Age ratio of training data 1:1:1:1
- Control 10s/30s in test data
- □ Average of 5 times

Results

- Direct method is more stable but ...
- Difficult to interpret

MSE of the Class Ratio Estimation

Summary

- Introduce the class ratio estimation problem
- Propose a very simple direct method without estimating profile of each user
- Apply the method to Twitter data in the marketing context
- The simple direct method is competitive and can be more robust than the baseline
- Performance seems to be degraded when the number of classes increases

Future Work

- More detailed evaluations
 - □ Various conditions, more users
- Bias-Variance trade-off
 - Try baseline method with weaker classifiers
 - naive Bayes, logistic classifier, etc.
- Improvement of the method
 - Minimize KL divergence
 - Introduce higher order statistics
- Performance evaluation in real services
 - □ Evaluate speed up effect
 - \Box Validation of the estimated results

