
A Framework for Mobile User Activity Logging

Wolfgang Woerndl, Alexander Manhardt, Vivian Prinz

TU Muenchen, Chair for Applied Informatics / Cooperative Systems (AICOS)

Boltzmannstr. 3, 85748 Garching, Germany
{woerndl, manhardt, prinzv}@in.tum.de

Abstract. The goal of this work is a unified approach for collecting data about
user actions on mobile devices in an appropriate granularity for user modeling.
To fulfill this goal, we have designed and implemented a framework for mobile
user activity logging on Windows Mobile PDAs based on the MyExperience
project. We have extended this system with hardware and software sensors to
monitor phone calls, messaging, peripheral devices, media players, GPS
sensors, networking, personal information management, web browsing, system
behavior and applications usage. It is possible to detect when, at which location
and how a user employs an application or accesses certain information, for
example. To evaluate our framework, we applied it in several usage scenarios.
We were able to validate that our framework is able to collect meaningful
information about the user.

Keywords: user modeling, mobile, activity logging, personal digital assistant,
sensors

1. Introduction

Mobile devices like Smartphones and personal digital assistants (PDAs) are becoming
more and more powerful and are increasingly used for tasks such as searching and
browsing Web pages, or managing personal information. However, mobile
information access still suffers from limited resources regarding input capabilities,
displays, network bandwidth etc. Therefore, it is desirable to tailor information access
on mobile devices to data that has been collected and derived about the user (the user
model).

When adapting information access, systems often apply a general user modeling
process [1]. Thereby, we can identify three main steps (Fig. 1): 1. collecting data
about the user, 2. analyzing the data to build a user model, 3. using the user model to
adapt information access.

Fig. 1. User modeling process [1]

In this work, we focus on the first step of this user modeling process: the collection

of data about the user in a mobile environment. The goal of this work is a unified
approach for recording user actions on mobile devices in a granularity appropriate for
user modeling. To fulfill this goal, we have designed and implemented a framework
for mobile user activity logging on Windows Mobile PDAs. The framework handles
different kinds of hardware and software sensors in a combined and consistent way.

The remainder of this paper is organized as follows. The next section describes
requirements and related work. In Section 3 we explain the design and
implementation of our framework for mobile user activity logging. Section 4 covers
the evaluation of our approach. Finally, we give a summary and outlook for future
work in Section 5.

2. Requirements and Related Work

2.1. Requirements

The most important feature of our mobile user activity logger is to cover all user
actions that can occur on a mobile device with associated sensor data. Since the goal
of this work is collecting data for a specific purpose (user modeling), it is important to
consider the granularity of the data recording. To test the usability of a mobile
software application, for example, it may be necessary to record movements on a

touch screen, single keystrokes or exactly where a user hits a button. This may lead to
too much data that has to be handled and stored. On the other hand, if a system only
records that a user has been starting the mobile web browser, for example, this
information may not be sufficient to be able to derive knowledge about what the user
is interested in. For our purpose of user modeling, it is useful to also collect which
web sites the user has visited or which keywords she has entered for a web search, for
instance.

For hardware sensors, an activity logging system shall record data when user
actions lead to a change in the situation the user is in. For example, the system should
log when a user is driving or walking around and thus changing her position.
Alternatively, the system could record a snap shot of the sensor status at fixed time
intervals. This may lead to a lot of redundant data and is not preferable since
resources such as storage capacity are limited on the mobile device.

Another focal point to consider is implicit versus explicit user profile acquisition.
Due to the limitation of the mobile user interface, necessary user interactions should
be kept at a minimum. Users do not like to fill out forms or answer questions on a
mobile device. In addition, the system should take into consideration the mobile-
users’ limited attention span while moving, changing locations and contexts, and
expectations of quick and easy interactions [2]. Therefore, the data collection should
be based on observing the user in her ongoing activities without distracting her too
much. It is desirable to collect real usage data as it occurs in its natural setting [3].
Explicit user interaction could be optionally used to augment the implicitly collected
data from hardware and software sensors. For example, the system could optionally
ask whether a user is in a “work” or “leisure” setting in a particular location. By doing
so, the user modeling system could later aggregate information from different
“leisure” situations.

Finally, every system that collects data about the user has to consider users’
privacy concerns. For mobile user modeling this is especially important since
additional information such as the user position is available. Sensor data may be even
more sensible than information users provide in a web form. Therefore, it is desirable
to keep the collected data on the mobile device and not send it to a server over a
network. By doing so, the user can always shut down the data recording or delete the
data. She thus is able to retain control over the collected data. In addition, the user
should have an option to manually disable individual sensors. This option is also
beneficial to be able to save battery power. An example is to disable the GPS sensor
when a user is inside a building for a whole day.

2.2. Related Work

In a nutshell, existing related work is either focused on gathering data in a non-mobile
desktop setting, do collect data from specific sensors only (e.g. analysis of user
location based on GPS logs) or were created for different purposes other than user
modeling.

An example for activity logging in a desktop setting is the approach by Chernov
et.al. [4]. Similar to our aim, their goal is to collect data sets about user behavior using
a single methodology and a common set of tools. One of their main considerations is

to protect the data from unauthorized access. Because all the data is stored directly on
the user’s computer, it is up to the user to decide to whom and in what form the data
should be released. However, it is not available and usable for mobile devices.

There is plenty of work in capturing and analyzing user movement using GPS and
other positioning technologies. An example is the Geolife project [5]. The goal is to
mine interesting locations and classical travel sequences in a given geospatial region
based on GPS trajectories of multiple users. Their model infers the interest of a
location by taking several factors into account. However, this work and other similar
approaches in mobile user modeling only focus on single or a few sensors such as
GPS and do not attempt to record all user actions on mobile devices.

The Mobile Sensing Platform described in [6] is an interesting system designed for
embedded activity recognition. It incorporates multimodal sensing, data processing
and inference, storage, all-day battery life, and wireless connectivity into a single
wearable unit. However, it is an extra device the user has to carry, and the system
cannot capture all the everyday activities users perform on their PDAs.

MobSens is a system to derive sensing modalities on smart mobile phones [7]. The
authors discuss experiences and lessons learned from deploying four mobile sensing
applications on off-the-shelf mobile phones in the framework that contains elements
of health, social, and environmental sensing at both individual and community levels.
However, the system’s focus is on hardware sensors. Actions that users perform with
software on a mobile device are not integrated.

MyExperience is an interesting project as it allows for capturing both objective and
subjective in situ data on mobile computing activities [3]. The purpose of
MyExperience is to understand how people use and experience mobile technology to
be able to optimize the design of mobile applications, for example. Hence the system
is not tailored towards user modeling, but it can serve as a foundation for our
implementation, since the framework is extensible. We will therefore describe the
MyExperience project in more detail in the next section.

3. Design and Implementation of the Mobile User Activity Logger

In this section we discuss issues concerning the design and implementation of our
mobile user activity logger including the various hardware and software sensors. The
logger is based on the MyExperience framework.

3.1. The MyExperience Project

MyExperience is a software tool for Windows Mobile PDAs and smartphones based
on the Microsoft .NET Compact Framework 2.0 and the Microsoft SQL Compact
Edition database. The software is available as a BSD-licensed open source project [8].
MyExperience runs continuously with minimal impact on people’s personal devices.
It has an event-driven, “Sensor-Trigger-Action” architecture that efficiently processes
a variety of sensed events [3]. The collected data is enhanced by direct user feedback
to enable capturing both objective and subjective information about user actions.

MyExperience is based on a three-tier architecture of sensors, triggers and actions.
Triggers use sensor event data to conditionally launch actions. One novel aspect of
MyExperience is that its behavior and user interface are specified via XML and a
lightweight scripting language similar to the HTML/JavaScript paradigm on the web
[8].

3.2. Overview of our mobile activity logger

As part of this work, we implemented 27 new hardware and software sensors and we
used 11 existing sensors from the MyExperience project. Figure 2 gives an overview
of available hardware and software sensors. Note that in our work a “sensor” more
precisely is a piece of code that either connects to an actual hardware sensor on the
mobile device, or reacts to software events or user input.

Fig. 2. Available sensors

MyExperience allows for configuring sensors via an XML file [8]. Note that the

configuration not only controls which sensors to use for data recording, but
MyExperience sensors also trigger actions such as starting an explicit user dialogue
(Fig. 3, left). Since it is not viable to ask the end user to modify XML files on the
mobile device, we have implemented an easy-to-use interface to activate and
deactivate individual sensors (Fig. 3, right). Users may want to disable sensors for
privacy reasons, and also to reduce power consumption or CPU load on the mobile
device. The activity logger itself can be started and shut down manually by the user if
necessary.

Fig. 3. Requesting explicit user feedback (left), and selecting sensors (right)

The implementation of sensors for implicit data acquisition can be summarized

into the following categories:
- Application information such as visited web sites is usually stored in log files

and local databases.
- Some sensors such as battery power status can be queried by using

“SystemState” members of the .NET Compact Framework.
- Information about the location of local log files and some system information,

such as display orientation and brightness, is available via the registry of the
mobile device.

We will explain the available hardware and software sensors and issues concerning

their implementation in more detail in the following subsections.

3.3. Sensors

3.3.1. Phone Calls

Making phone calls is one of the most important features of mobile devices. The
fundamental parameters of a phone call are the phone numbers, the direction of the
connection (outgoing, incoming, calls not accepted), the timestamp and the duration
of the call. Furthermore, if the number of the other party can be found in the user’s

address book, additional information like name and group membership (e.g. family,
friend) can be determined. This information could be used to suggest a callee’s phone
number, for example, when a user accesses the phone function of her device at a
certain day and time of the week.

The .NET Compact Framework offers a possibility to setup an event handler for
incoming calls. However, a handle to log outgoing calls is not provided. Yet logging
outgoing calls is important for mobile user modeling, because they are the direct
result of a user action. Therefore, we implemented a sensor to log the stated
information about all phone calls. This sensor uses a list of all calls the Windows
Mobile operating system keeps in a file in the Embedded Database (EDB) format.
Our framework uses this list to retrieve the call parameters, and conducts a reverse
search in the user’s address book to determine more information about the other party
of a call if available.

We integrated sensors to count missed calls, for GSM signal strength and searching
for service from the MyExperience project without modification.

3.3.2. Messaging and Personal Information Management (PIM)

Windows Mobile provides the Microsoft Office Outlook Mobile Tool for managing
Emails and SMS messages. The program splits information about messages by
different accounts. Access to the internal Outlook database is possible with a wrapper
library “MAPIdotnet” in the “Messaging API” of the .NET Compact Framework. We
used this API to retrieve information about incoming and outgoing messages. Our
corresponding software sensor records one log entry for every Email/SMS/MMS
message. Similar to phone calls, we store additional information of the sender or
recipient of a message if the person can be found in the user’s address book.

Outlook Mobile is also the default tool for personal information management
(PIM) on a Windows Mobile device. Appointments (calendar), contact data or tasks
(ToDo lists) are interesting categories of data for user modeling as well. We have
implemented sensors to log changes a user makes in her PIM data. Basically, there are
two options. The first one is to monitor the data in the local Outlook database
“pim.vol”. We can recognize changed entries by comparing the Outlook IDs before
and after the usage of Outlook. We have implemented separate but similar sensors for
calendar, contacts and tasks. These sensors are triggered when the system recognizes
that Outlook is called up or shut down. The second option to log Outlook data is
based on an event handler. In this case, the system is immediately modified when the
user adds, modifies or deletes data in Outlook. Our sensor then generates a log entry
that includes the ID of the corresponding data item.

3.3.3. Web Browsing

Analyzing the web browsing activities on the mobile device is an important part of
mobile user modeling. We have created a MyExperience action to capture the usage
of the Pocket Internet Explorer (PIE). It is not possible to directly query visited web
sites in the .NET Compact Framework. However, the PIE manages information about

visited web sites, cookies and temporary internet files (cache) in three local files in
different folders. The location of these files can be determined using the Windows
Mobile registry. Access to these file is not permitted by the system if the PIE is
running. Therefore, our sensor checks access to these files on start-up, and
synchronizes the data with the activity log. The system keeps a timestamp of every
accessed URL and visited web sites can hence be added to the activity log later on.

It is not only interesting for user modeling that a user has visited a web site, but
also which keywords she has used for web searching. This information can be
determined by analyzing the URL of web searches. For example, a query with Google
leads to an URL similar to “http://www.google.com/search?q=activity+logging” in
the log file. URLs to other search engine are comparable. We analyze and store the
search keywords of about 20 search engines including Google, Yahoo and Bing, and
also the query strings when accessing Wikipedia. Figure 5 (below) includes an
example snapshot of recorded web browsing information.

3.3.4. Positioning

Obviously, one of most important differences between mobile and non-mobile
systems is that the current user location is important in a mobile environment.
Therefore it is important to log the user position in a mobile user modeling
framework. There are a lot of work going on with regard to positioning systems,
including approaches based on cell ID and WLAN access points. Since more and
more mobile devices are equipped with a Global Position System (GPS) sensor, we
decided to integrate GPS positioning in our framework.

The MyExperience project already includes a “GpsLatLongSensor” to trace GPS
position. This sensor records GPS coordinates every one second. However, this leads
to a lot of redundant GPS coordinates being stored in the user activity log which is not
relevant for mobile user modeling. Therefore, we have extended this sensor with an
option to configure a threshold. The threshold triggers when the parameterized
distance to the last recorded location in meters is surpassed. Figure 4 shows an
example configuration for our GPS logging sensor.

Fig. 4. Configuration of the “GpsLatLongThresholdSensor” sensor

First tests with this sensor revealed problems with weak GPS signals. Especially
when activating the GPS sensor, or leaving a building with no signal, the first log
entries sometimes deviated from the actual position by several kilometers on our test
devices. In addition, the system sometimes recorded “(0, 0)” coordinates with no
signal. These phenomena are not a problem when using GPS for navigation, for
example, because the system quickly calibrates itself and then provides correct
coordinates. However, we aimed at avoiding these false values in our user activity
logs. Thus, we implemented a solution based on the “dilution of precision” (DOP)
parameter of GPS sensors. This value is determined by the GPS sensor itself and
specifies the additional multiplicative effect of GPS satellite geometry on GPS
precision. The lower the value, the more accurate the measurement. We obtained
good results – i.e. inaccurate log entries were eliminated – with a minimum DOP
value of 5 in our tests.

3.3.5. Networking and Peripheral Devices

State-of-the-art mobile devices usually support several technologies for wireless
connectivity, including GSM, Wireless-LAN/Wifi and Bluetooth. A mobile system
could utilize information about networking usage to automatically activate and
deactivate connections based on past user behavior. We give a detailed example as a
case study in our evaluation in Section 4. We have implemented different sensors to
log when the user has turned on WiFi access, when the system is actually connected
to a WiFi access point, and the Bluetooth connection status. Furthermore, our
framework provides sensors to monitor peripheral devices such as a headset or
Bluetooth hands free kits often used in cars.

3.3.6. Application Usage and Media Player

A mobile user modeling framework should be able to derive a possible correlation
between application usage and sensor data. MyExperience offers a sensor to retrieve
the title of the active window and thus determine the active application. However, it is
possible that some applications are missed because this sensor queries the system
periodically to determine this value. Therefore, we have modified this sensor using an
event handler. In addition, our framework offers a sensor to log installed applications.

Logging user action inside an application is difficult in the Windows Mobile
operating system, because this information is generally available inside the active
process only. Therefore it is not possible to record the text a user enters on the virtual
keyboard in a text processing program directly, for example. As an exception, the
keystrokes on the hardware keys on a Windows Mobile device can be retrieved.

It is possible to build sensors for specific applications to be able to log more
detailed information about application usage. As an example, we have implemented a
sensor that logs the played tracks in the Windows Media Player. This information
could be utilized later to provide context-aware media recommendations to the user.

3.3.7. System State

Finally, the last category of implemented sensors in our mobile user activity
framework includes sensors that query the system state. Changes in the system state
can be either triggered by user actions or an indirect result from usage of the device,
for example battery power. Both are interesting for user modeling. Figure 2 lists the
sensors we have implemented with regard to system state. An example is a sensor
logging the input method a user selects. This information can be utilized to
automatically select the appropriate input method based on previous user behavior.
Windows Mobile devices with a touch screen usually offer a virtual keyboard and
handwriting-recognition method such as Block Recognizer, Letter Recognizer or
Transcriber. We implemented most of these system sensors by querying
“SystemState” members in the “Microsoft.WindowsMobile.System” namespace of
the .NET Compact Framework. The selected signaling type (vibration or ring) can be
determined by querying a registry entry, in this case the variable
“HKC\\ControlPanel\Sounds\RingTone0”.

3.4. MyExperience Analyzer tool

The MyExperience framework stores all the information in a Microsoft SQL CE
(Compact Edition) database on the mobile device [8]. The most important database
table for our purposes is “SensorHistory” which stores the implicitly recorded data
from the explained sensors. The MyExperience framework includes an “Analyzer”
tool to manage and query the SQL CE database. We have extended this program with
options to save and categorize queries. Queries are kept in an XML file, so it is
possible to use them outside of the Analyzer tool.

Figure 5 depicts a screenshot of the extended Analyzer tool. On the left side, you
can see the query library. This list corresponds to the implemented sensors in the
categories explained above. On the right side of the window, an example query is
shown. On top is the SQL CE query necessary to retrieve the Pocket Internet Explorer
log entries.

Joining information from different sensors is possible but lead to rather complex
SQL CE queries if done directly in the database. The Analyzer tool is intended to
roughly check the collected data, not to interpret the gathered log data. For analysis
and interpretation, the data can be exported from the database and further processed in
data mining or other tools. For example, it is straight-forward to analyze where the
user has performed certain actions. This is also included in the following evaluation
section.

Fig. 5. Analyzer screenshot

4. Evaluation

In this section, we explain the evaluation of our approach. Note that we have focused
on the collection of user data only at this time. Therefore, our approach and the
evaluation do not cover the whole user modeling process (see introduction, Section
1), just the first step.

4.1. Experiences

We tested our sensors during implementation to make sure they perform accurately.
Afterwards, we conducted a test run of the system lasting several weeks and included
all sensors. During this time, 6748 log entries were recorded. In addition, we looked
at scenarios to find out whether the recorded data can lead to meaningful data for user
modeling. We describe one of these scenarios as a case study in chapter 4.2. We did

not include explicit user feedback (Fig. 3, left) in these tests, but this function could
have been integrated easily.

Figure 6 depicts a visualization of parts of the logged data. For this visualization,
the GPS position data was converted into the GPS Exchange Format (GPX) for
Google Maps. The (blue) markers show locations where the user performed some
activity on the mobile device. The figure depicts a typical scenario when a user travels
from home to office during a work day. When looking at the data more closely, we
were able to assess that the log files reproduced the user actions very well and in
reasonable granularity for user modeling. Another example of the logged data is
shown in the screenshot of the analyzer in Figure 5 (above). Thereby, the user was
using her Pocket Internet Explorer to perform some web searches and the keywords of
the searches were detected by the system.

Fig. 6. Visualization of log data

Overall, our mobile logging framework performed well. There were a few program

crashes in the prototype implementation but these occurred only very seldom. When
the user was very active on her device and all sensors were enabled, the system
performance degenerated somewhat. However, it is possible and assumed that not all
sensors are active at all times. It is possible to deactivate sensors as explained above
(Chapter 3.2). Overall, the logging did not obstruct the user experience significantly.
Thus, our system complied with one of our main requirements: the implicit, non-
distracting observation of user actions.

Apart from that, we have to note that, for an ongoing recording of sensor data, an
active system status is required. Windows Mobile PDAs are usually configured to be
hibernated when the user is inactive for some time. When this occurs, our logger is
also stalled of course. However, with an inactive system, no meaningful user actions
can be recorded anyways. If the user just turns off the display of her device, the
recording of sensors such as battery power or GPS position continues. The battery
power is shortened to a couple of hours at most without charging when all sensors are
activated, but again the power consumption can be reduced by deactivating costly
sensors such as the GPS module. It seems reasonable to define profiles with different
sensors active (e.g. “indoor” with a disabled GPS sensor, or “light” with only a small
subset of sensors active). Users would only have to choose among predefined profiles,
not all sensors. But this profiling feature has not been implemented yet.

4.2. Case Study: WLAN Activation Based on User Position

Fig. 7. WLAN activation based on position

In this scenario, we had a closer look on whether it is possible to identify locations

where a user usually activates the WiFi/WLAN connection on her mobile device. The
overall goal is that the system would then be able to automatically turn on WiFi when
the user enters such a region. Thus, a combination of the
“GpsLatLongThresholdSensor” with the “WiFiConnectedSensor” is investigated. In
this test, the user moved her mobile device in an area with two WLAN access points.
The GPS logging was set to store one log entry every 10 meters. The recorded
position data was combined with the WiFiConnectedSensor data based on the
timestamps of log entries. Figure 7 shows the graphical interpretation of the data.
Dark (red) dots mark GPS positions with no WLAN activated, while the light (green)
markings denote positions where the user has turned on WLAN. The (manually)
highlighted areas indicate these geographic regions where the user usually activated
her WLAN connection.

The recorded data corresponds very well with the actual WLAN access areas. We
noticed that some of the points were slightly off when the user was moving fast. This
behavior is due to slight delays when the system is observing and logging the
deactivation of WLAN access. Overall, the recorded data seemed to be very useful for
our purpose. Note again that the goal of this scenario was to evaluate whether the
collected data can lead to meaningful results for user modeling. The scenario showed
that a combination of sensors can be used to implement an adaptive function to
automatically activate the WiFi/WLAN connection on the mobile device based on
location. We have not investigated the actual data mining methods needed to identify
such patterns so far. Yet our tests showed that our mobile user activity logger
produced data in appropriate granularity for user modeling.

5. Conclusion and Outlook

The goal of this work is a unified approach for collecting data about user actions on
mobile devices in a granularity appropriate for user modeling. To realize this first step
of the user modeling process, we have designed and implemented a framework for
mobile user activity logging on Windows Mobile PDAs based on the MyExperience
project. We have extended this system with hardware and software sensors to monitor
phone calls, messaging, peripheral devices, media players, GPS sensors, networking,
personal information management, web browsing, system behavior and application
usage. Our evaluation showed that it is possible to detect when, at which location and
how a user uses an application or accesses certain information, for example.

Note that collecting data about user actions is more complicated on a mobile
device than a desktop setting. This is due to restrictions in the available programming
interfaces of the mobile platforms, in our case the Windows Mobile operating system,
respective the .NET Compact Framework. We have explained some of the details of
implementing the sensors in Section 3. The granularity or level of detail of the data
collection is obviously dependent on the purpose of a subsequent user modeling task.
We have aimed at selecting and designing sensors that lead to information which
seems beneficial for learning user behavior in general. For example, our web
browsing sensor records search keywords, but not single keystrokes a user may
perform to fill in a web form. The framework can be used to implement new or
modified sensors to fit special data collection purposes. In addition, properties of
some sensors can be configured to adapt the data collection in more detail.

Future work includes integrating additional sensors. State-of-the-art mobile devices
are more and more equipped with sophisticated sensors such as gravitation sensors or
cameras that could be utilized for eye tracking. It is easy to integrate additional
sensors in the MyExperience project and our framework. Portability and
interoperability are also important issues. So far, our framework is tailored for the
Microsoft Windows Mobile framework but similar tools can be implemented on other
platforms like iPhone and Android. We are also investigating standards for
interoperability of data collected on different platforms or logging frameworks.
Existing relevant initiatives include the Attention Profiling Markup Language
(APML) [9] and the Contextualized Attention Metadata framework (CAMf) [10].

One of the most important next steps of our work is also to investigate the analysis
of the collected data using data mining and machine learning methods, and hence
studying the second step of the user modeling process (see Section 1). It is also
important to collect more substantial data sets in this regard.

Finally, our work focuses on observing one user so far. It may also be useful to
take other users’ logs into account and thus performing a “social” mobile user activity
logging. The goal could be to identify situations where similar behaving users have
performed certain actions, and personalize the mobile experience for the active user
accordingly. In addition, our system also collects data about social interactions that
can be utilized for analysis of social behavior.

References

1. Brusilovsky, P., Maybury, M.T.: From Adaptive Hypermedia to the Adaptive Web.
Communications of the ACM, vol. 45, no, 5, pp. 30-33 (2002)

2. Subramanya, S.R., Yi, B.K.: Enhancing the User Experience in Mobile Phones. IEEE
Computer, vol. 40, no. 12, pp. 114-117 (2007)

3. Froehlich, J., Chen, M., Consolvo, S., Harrison, B., Landay, J.,: MyExperience: A System
for In situ Tracing and Capturing of User Feedback on Mobile Phones. In Proc. of MobiSys
conf., San Juan, Puerto Rico (2007)

4. Chernov, S., Demartini, G., Herder, E., Kopycki, M., Nejdl, W.: Evaluating Personal
Information Management Using an Activity Logs Enriched Desktop Dataset. In Proc. of 3rd
Personal Information Management Workshop (PIM 2008), CHI conf., Florence, Italy (2008)

5. Zheng, Y., Zhang, L., Xie, X., Ma, W.: Mining Interesting Locations and Travel Sequences
From GPS Trajectories. In Proc. of International Conference on World Wild Web (WWW
2009), Madrid, Spain, ACM Press, pp. 791-800 (2009)

6. Choudhury, T. et.al.: The Mobile Sensing Platform: An Embedded Activity Recognition
System . IEEE Pervasive Computing, vol. 7, no. 2, pp. 32-41 (2008)

7. Kanjo, E., Bacon, J., Roberts, D., Landshoff, P.: MobSens: Making Smart Phones Smarter.
IEEE Pervasive Computing, vol. 8, no. 4, pp. 50-57 (2009)

8. MyExperience project web site. http://myexperience.sourceforge.net/. Accessed June 2010.
9. APML web site. http://apml.areyoupayingattention.com/. Accessed June 2010.
10. CAMf web site. http://www.ariadne-eu.org/index.php?option=com_content&task=view&

id=39&Itemid=55. Accessed June 2010.

	3.3.1. Phone Calls
	3.3.2. Messaging and Personal Information Management (PIM)
	3.3.3. Web Browsing
	3.3.4. Positioning
	3.3.5. Networking and Peripheral Devices
	3.3.6. Application Usage and Media Player
	3.3.7. System State

