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Abstract. Prediction and understanding of human behavior is of high
importance in many modern applications and research areas ranging from
context-aware services, wireless resource allocation to social sciences. In
this study we collect a novel dataset using standard mobile phones and
analyze how the predictability of mobile sensors, acting as proxies for hu-
mans, change with time scale and sensor type such as GSM and WLAN.
Applying recent information theoretic methods, it is demonstrated that
an upper bound on predictability is relatively high for all sensors given
the complete history (typically above 90%). The relation between time
scale and the predictability bound is examined for GSM and WLAN
sensors, and both are found to have predictable and non-trivial behavior
even on quite short time scales. The analysis provides valuable insight
into aspects such as time scale and spatial quantization, state representa-
tion, and general behavior. This is of vital interest in the development of
context-aware services which rely on forecasting based on mobile phone
sensors.

1 Introduction

The wide acceptance of sensor rich mobile phones and related applications en-
ables deep studies of human behavior. According to a recent study by Song et
al. [11, 12] based on mobile phone location trajectories, individual human mo-
bility patterns are highly predictable. When including the complete history of
the participants they derived an upper bound on prediction of the next location
of 93% in a large cohort of 45,000 users. The upper bound is based on informa-
tion theory. Using Fanos inequality it was shown in [12] that the entropy rate
transforms into an upper bound of the predictability.

Interest in understanding human behavior using mobile technology is increas-
ing, see e.g., the recent review by Kwok [9]. The work of Eagle et al. [4] on the
Reality Mining dataset, marks an early and important contribution. Using a
Hidden Markov model and the time of day, they demonstrate explicit prediction
accuracies (home, work, elsewhere) in the order of 95%. Furthermore, they use
principle component analysis (PCA) to visualize temporal patterns in daily life.
The stability of these temporal patterns was confirmed by Farrahi et al. [5] in
the same dataset using unsupervised topic models.



While Eagle et al. focus on finding statistical regularities in behaviors at the
group level using parametric models Song et al. [11] are interested in individual
predictability using non-parametric methods and argue that inter-participant
variability is significant and in fact power-law distributed. For a further discus-
sion on parametric and non-parametric models, and the relation to information
theory, we refer to Bialek et al. [3].

We follow the implicit modeling approach by Song et al., i.e., using bounds
rather than explicit predictors to discuss human behavior in a novel mobile
phone data set that complements the analysis of Song et al. Our data set has
significantly higher temporal resolution and involves more sensors, however, in
a much smaller cohort (N = 14).

The opportunity to analyze multiple sensors is quite unique and produces new
insight both on the predictability of each sensor and on sensor dependencies. We
show that all the location and proximity based sensors have a relatively high
predictability bounds for the entire population. Whereas Song et al. [11] provide
important results on location prediction, the multiple sensors applied in our
study can potentially provide a richer description of context beyond location.
And as the extended set of sensors enjoys similar high predictability rates, it
may contribute additional useful information on human behavior and support
more general context dependent services.

Furthermore, we are interested in the predictability on different time scales,
and to probe whether it is possible to predict non-trivial behaviors on smaller
scales than the one hour time scale considered in [11]. Finally, we suggest apply-
ing mutual information - or prediction information [3] - as a method to easily
estimate an optimal time scale in a non-parametric fashion. The information
theoretic approach is based on upper and lower bounds on predictability. In this
paper we use the upper bound proposed by Song et al., and derive and analyze
a tighter lower bound based on a first Markov model [7], rather than the zero
order model of [12].

An early version of this work was presented to the machine learning commu-
nity in [7]. The present paper extends this work with; 1) an extended description
of the experimental setup; 2) comparison between WLAN and GSM, in particu-
lar in relation to optimal time scale; 3) extended discussion and interpretation.

The paper first gives a presentation of the experimental setup and the ac-
quired mobile phone dataset. In Section 3 we present the information theoretic
tools necessary to follow the analysis of the dataset. The result of the study is
presented and discussed in Section 4, followed by the conclusion in Section 5.

2 Experimental Setup

Within the last decade there has been a number of studies of real-world dataset or
lifelogs reflecting human life [1, 2]. In this section we present a software platform
for obtaining such lifelogs using standard off-the-shelf mobile phones functioning
as individual wearable sensor platforms.



Fig. 1. Mobile Context Toolbox architecture [10]. The bottom two layers provide low-
level access to the embedded sensors, whereas the adapters and context widget layers
provide high-level Python interfaces to sensors and inferred information for applica-
tions.

2.1 Mobile Context Toolbox

Since utilizing multiple sensor inputs on mobile devices can be a complex task we
have used our Mobile Context Toolbox [10], which provides an open extensible
framework for the Nokia S60 platform running the Symbian mobile Operating
System present in mobiles phones such as Nokia N95. The framework provides
access to multiple embedded mobile phone sensors, including accelerometer, mi-
crophone, camera, etc., as well as networking components such as phone appli-
cation data (calendar, address book, phone log, etc.), and phone state (profile,
charge level, etc.).

In principle, mobile devices can acquire information from the surrounding
environment as well as from online sources, but in the present study we focus on
information that can be acquired through the large variety of sensors embedded
in the device. The framework has multiple layers (as depicted in Fig. 1) on top of
the Nokia S60 platform. The framework uses Python for S60 (PyS60) with a set
of extensions for accessing low-level sensors and application data. The adapters
layer provides interfaces for the low-level sensors, whereas the context widgets
uses one or more adapters to infer higher-level contextual information. Finally,



the application layer utilize contextual information inferred from context widgets
and/or directly from context adapters. Further details and explanation of the
Mobile Context Toolbox is provided in [10].

2.2 Logging Data From Embedded Sensors

For the purpose of using mobile phones as an instrument for gathering lifelog

information we have built a Context Logger application, which subscribes to all
sensors through the relevant system components and then continuously records
all events received from the multiple adapters and widgets. In effect all accessible
sensor data is recorded, as shown in Table 1.

All sensor recordings are time stamped using the embedded mobile phone
timer. The accelerometer was sampled every 2 seconds. Samples are read-out
every 30s, in batches of 15 samples. The purpose of reading in bursts is to en-
able reading short bursts with higher sampling rate. GSM cellular information
acquired included the Cell ID with country code, operator code, and location
area code. In the present system the phone software API only allow reading the
CellID of the GSM base transceiver station to which the phone is currently con-
nected (not the ones visible). Since the GPS sensor is the most energy expensive
sensor, it was only sampled 2–3 times an hour to reduce the energy consump-
tion. Bluetooth scans was performed approximately every 1.5-3 minutes. The
sampling rate varies as the Bluetooth discovery time increases with the number
of Bluetooth devices available within discovery range. A discovery of a Bluetooth
device will always produce the unique MAC address of the device, however, the
lookup of the Bluetooth ”friendly name” and device type might fail as more time
is required to obtain this information. WLAN scanning is performed approxi-
mately once a minute, recording MAC address, SSID, and RX level (power ratio
in decibels – a measurement of the link quality) of discovered Access Points. Fi-
nally, phone activity (SMS, MMS, and calls) were recorded whenever it occurred
(phone number and direction).

In addition to the above mentioned sensor data, the Context Logger applica-
tion allows a user to manually label his/her present location and activity. The
label is a text string which can be entered by the user on the mobile phone,
such as, home, running, and having dinner. Entered labels will be stored and
subsequently shown on a list to pick from in order to avoid re-typing location
and activity labels. Users can manually choose to label location and activity by

Sensor Sampling Data

Accelerometer 30/minute 3D Accelerometer values
GSM 1/minute CellID of GSM base transceiver station
GPS 2–3/hour Longitude, Latitude, and Altitude
Bluetooth 20–40/hour Bluetooth MAC, friendly name, and device type
WLAN 1/minute Access Point MAC address, SSID, and RX level
Phone activity Event Phone number and direction of call or message
Table 1. List of embedded mobile phone sensors used for collecting data



selecting a menu item in the Context Logger application, however, this mech-
anism is further enhanced with the ability to automatically prompt for labels.
Thus, a user can choose to enter a label at any point in time, but the application
will also prompt the user to label a location and activity 2–3 times a day in order
to receive feedback. The data location and activity data recorded on the mobile
phone is a key-value pair along with the time stamp. There are no pre-defined
location and activity labels defined in the application and the labeling is com-
pletely free form with the users determining, how they want to write their text
labels.

Situations with missing data may occur due to the phone running out of
battery, being switched off, or simply not able to acquire data through one or
more sensors (for instance no GSM reception).

2.3 Data Collection

An initial deployment of the system included continuous use by 14 participants,
each equipped with a standard mobile phone (Nokia N95) which had the Mobile
Context Toolbox pre-installed along with the Context Logger application that
would continuously record the data acquired from all sensors currently supported
by our framework. The participants were using the mobile phone as their regular
mobile phone for a period of five weeks or more, as they were given instructions
to insert their own simcard into the phone. Furthermore, they were instructed
to make and receive calls, send messages, etc., as they would usually do, and
generally use the phone as they would use their own phone. Therefore, no par-
ticular instructions were given, since we wanted to establish data from regular
usage of the mobile phone, and thereby acquire real-life data. This means that
the participants would not necessarily carry the phone on the body all the time
such as carrying the mobile phone in a pocket.

As the survey is completely dependent on the cooperation of the participants
and due to increased use of sensors, the lack of battery time was considered a
risk in terms of participants leaving the survey. Thus, the sensor configuration
of sampling on the phone was based on optimizing the resource consumption,
so that the participants should only need to recharge the phone once a day
(typically during the night).

The experiment started on October 28, 2008 and ended January 7, 2009 and
the participants were students and staff members from The Technical University
of Denmark volunteering to be part of the experiment. Thus, the participants
were mainly situated in the greater Copenhagen area, Denmark. The 14 partic-
ipants took part in the experiment between 31 to 71 days, resulting in approxi-
mately 472 days of data covering data collection periods totalling 676 days. The
average duration was 48.2 days. An overview of the collected data is provided in
Table 2.

During the experiment a total of approximately 20 million data points were
collected with the accelerometer contributing the most with 14.5 million data
points. A summary of recordings from Bluetooth scans, WLAN scans, GPS
readings, and GSM readings can be seen in Table 2. It is worth noticing the



Part. Accel BT. BT.* GPS GSM GSM* Ann. PA. WLAN WLAN* Days

1 1474480 54349 2846 516 69458 529 533 544 224101 6387 71

2 2045773 38028 2478 1514 75669 603 596 1062 364272 6040 66

3 318597 27329 790 12 37217 98 222 21 125600 630 31

4 875287 7880 743 2 17750 228 134 620 186421 2394 52

5 1117147 13575 2373 4058 56206 227 386 277 251016 2347 48

6 711490 23702 1141 95 51702 235 82 839 92396 2119 50

7 1184457 13327 1765 3 45826 955 272 581 139466 4017 46

8 700258 42346 2080 614 74250 172 212 74 154108 3359 41

9 1101926 42346 1050 119 37393 100 104 497 104576 1804 38

10 1103086 21676 2104 419 63937 419 414 116 192338 2650 48

11 1122315 12492 655 929 46158 929 163 121 295716 2286 47

12 796452 30610 2317 40 51548 40 143 151 97769 2403 50

13 1024276 27550 1741 1114 49349 1114 137 949 171951 5463 51

14 971558 21502 1303 44 40017 44 149 686 118687 1263 36

Total 14547102 350879 20408 9479 716480 2837 3547 6538 2518417 28110 48.2

Table 2. Overview of collected data for each participant in the experiment: Participant,
Accelerometer, Bluetooth, Unique Bluetooth devices, GPS, GSM, Unique GSM cells,
Annotations, Phone Activity, WLAN Access Points, Unique WLAN Access Points,
Duration in days.

number of unique Bluetooth devices, unique GSM cells, and unique WLAN ac-
cess points discovered accumulatively during the experiment by all participants:
20408, 2837, and 28110, respectively. In total 9479 readings of GPS position
were recorded, but the recordings varies a lot among the participants due to the
nature of the GPS technology. As a GPS position typically can not be obtained
indoor only a subset of users have sufficient recordings of GPS position. For
instance, if they typically place the mobile phone near a window when indoor
where a GPS position can be obtained. A total of 6538 calls and messages took
place during the experiment.

The participants provided 3547 annotations of locations and activities in
total. On average the participants provided 253 annotations during their par-
ticipation, with an overall average of 5.3 labels provided per user per day. The
most active participants provided 8-9 labels per day on average, whereas the
least active participants provided 2 labels per day on average.

3 Methods

In this study we will apply an information theoretic approach in the analysis
of the dataset obtained and described in Section 2. Although before describing
the details involved in this, we consider the preprocessing required for the final
analysis.

A general issue in obtaining discrete times series is the number of quantization
levels and sample rate of the true process [3]. The scan cycles used to obtain the



present dataset are non-uniformly sampled and the scan cycles are of different
length for each sensor. We therefore construct a commonly aligned time series for
each sensor by creating non-overlapping frames of a given window length. The
original samples falling within the frame is then assigned to it. If multiple samples
falls within a frame they are merged, which is reasonable for the indicator type
of sensors (WLAN, GSM, BT). This is similar to combining states in a Markov
model effectively altering the state transitions. In case of the acceleration sensor,
the feature is calculated as the average power within a window represented as
a discrete levels1, i.e., XACC ∈ {off, 1, 2, 3}. Considering the WLAN sensor
and integrating all the networks seen into a state effectively means that the
predictive variable becomes the WLAN state and not the location as such. If a
specific location is needed a lookup to a database could return the position of the
WLAN access point and generate a location variable from that. An alternative
would be to directly work on a location variable generated from the WLAN
access point, but this is not considered here.

The proposed representation constitutes a very detailed description of the
participant state. An alternative suggested in [11, 12], represents the state as the
most visited GSM cell location within a time window. Both approaches involve a
relatively complex temporal quantization and resampling of the original data. To
evaluate the consequence temporal scale, we consider the change in predictability
bounds as the window length is decreased from one hour to one minute.

3.1 Information Theoretic Measures

We consider the problem of quantifying the predictability obtainable in a dis-
crete process, X = (X1, X2, .., Xi), where i is the time index and X is the state
variable. This is to a large degree motivated by previous work on predictabil-
ity, complexity and learning (see e.g. [3]), and recent development on a similar
dataset [11]. Here predictability is defined as the probability of an arbitrary al-
gorithm correctly predicting the next state. Hence, given the history the basic
distribution of interest is P (Xi+1|X1, X2, .., Xi). In the case where we have no
information regarding the history, the distribution naturally reduces to P (X).
When P (X) is uniform, i.e., each of M states have the same probability of
occurring, the Shannon entropy (in bits) is defined as Hrand (X) = log2 M .

In the case where the distribution of X is non-uniform, the entropy is given
as

Hunc (X) = −
∑

i∈I
p (xi) log (p (xi)) (1)

with p (x) = P (X = x). This in turn represents the information when no history
is available, hence, the acronym unc (uncorrelated).

The entropy rate of the participants trajectory, or the average number of
bits needed to encode the states in the sequence, can be estimated taking into

1 An equiprobable quantization is used, i.e., each level has the same frequency of
occurrence within the entire dataset.



Fig. 2. Participant 2. Time series for WLAN (top 100) and GSM data (top 30). The
time series are considered in a vector space representation, hence, each column is a
state vector.

account the complete history. This is done by defining the stationary stochastic
process X = {Xi} which have the entropy rate defined as

H (X) = lim
n→∞

1

n

∑n

i=1
H

(

Xi|h
i−1

)

, (2)

where the history hi at time step i is hi = {X1, X2, ..., Xi−1}. It is noted that
0 ≤ H ≤ Hunc ≤ Hrand < ∞.

A challenge in using these information measures based on real and unknown
processes is the estimation of the entropy rate. A number of ideas have emerged
based on compression techniques such as Lempel-Ziv (LZ) (including string
matching methods) and Context Weighted Trees for binary processes. For a
general overview, we refer to [6]. An appealing aspect of these non-parametric
methods is that we avoid directly limiting model complexity as would be nec-
essary if we applied parametric or semi-parametric models. In this study we
estimate the entropy rate using a LZ based estimator as described in [8, 6] and
also applied in [12]. The entropy rate estimate for a time series of length n is
given by

Hest =

[

1

n

∑n

i=1

Li

log2n

]−1

(3)

where Li is the shortest substring starting at time step i, which has not been
seen in the past. The consistency under stationary assumptions is proved in [8]
where the method is applied to the analysis of English text.



Given estimates of the entropy and the entropy rate we consider a related
quantity, namely mutual information - or predictive information [3]. This mea-
sure is already available given the information measures above as

Ipred = lim
n→∞

1

n

n
∑

i=1

H (Xi) − H
(

Xi|h
i−1

)

(4)

= Hunc (X) − Hest (X) (5)

In effect Ipred represents the mutual information between the distributions cor-
responding to knowing and not knowing the past history. Hence, it quantifies the
fundamental information gain in knowing the (complete) past when prediction
the future, and we propose it as a easy way to evaluate quantization and time
scale effects. We illustrate the behavior of the measure on a time scale selection
problem in Section 4.

3.2 Predictability

In order to construct bounds on the predictability we consider the probability,
Π , that an arbitrary algorithm is able to predict the next state correctly.

Based on the entropy rate and Fano’s inequality Song et al. derives a bound
so Π ≤ Πmax (H (X) , M) with Πmax given by the relation [12]

H (X) = H (Πmax) + (1 − Πmax) log2 (M − 1) (6)

with the function, H (Πmax), given by

H (Πmax) = −Πmaxlog2 (Πmax) − (1 − Πmax) log2 (1 − Πmax) (7)

This non-linear relation between Πmax and the estimate of H(X) is easily solved
using standard methods (for a full derivation see [12]).

Adopting this approach we obtain three upper bounds based on the entropy
estimates previously mentioned. The first, Πrand, provides an upper bound on
a random predictor. The second upper bound is Πunc which bounds the per-
formance obtainable with a predictor utilizing the observed state distribution.
Finally, the most interesting bound, Πmax, provides a upper limit for the per-
formance of any algorithm utilizing the complete past.

The upper bound is of course interesting in understanding the potential pre-
dictability, although we find a lower bound equally important in the analysis.
Song et. al. [11] show how a simple lower bound can be constructed based on
the so-called regularity. The regularity is in essence a zero order Markov model
based on the most likely state at any given time of the day, i.e., using only the
time of occurrence and no sequence information. This is an intuitive measure for
some time periods such as daily patterns, e.g., utilizing where a person is most
likely to be each morning at 7.00. However, if the time scale is in the minute
range it does not necessarily make sense to consider the regularity.

Instead we propose to use a predictor using the immediate past as the repre-
sentative of the lower predictability bound. For this purpose we use a first order



Markov model with the transition probabilities estimated from the finite process.
Thus, the next state prediction is based on the distribution P (Xi+1|X1, X1, ..., Xi) =
P (Xi+1|Xi).

To avoid overfitting which tends to render the bounds overly optimistic, we
use a resampling scheme in which the entropy and the next state distribution
is estimated based on 2/3 of the data and tested on the remaining 1/3. This
is performed for nine distinct subsections in a compromise between accuracy of
the estimate and the needed samples for the entropy estimator to converge. The
resampling further allows us to verify that the LZ entropy estimate converges to
reasonable similar values for separate temporal sections of the participants life.
Any variation across subsections will result in a greater variance of the estimated
bound.

4 Results

In order to provide insight into the predictability of mobile phones sensors and
thereby indirectly insight into human behavior, we apply the information theo-
retic methods described in Section 2. The density estimates of the bounds are
all made using a standard kernel based density estimator (the bandwidth is
hand-tuned for visualization).

4.1 Individual Sensors

One of the goals in this study is to analyse the potential predictability of dif-
ferent sensors and to that end we provide the predictability bounds for the four
prominent sensors in the dataset, specifically GSM, WLAN, Bluetooth and ac-
celeration at 15 min. window length. Fig. 3 shows the predictability bounds for
the GSM, WLAN, Bluetooth and acceleration/activity sensors. By examining
the difference between Πmax and Πunc we find that there is considerable gain in
knowing the past. From the difference between the Markov model ΠMarkov and
the upper bound, ΠMax, we see that knowing more than just the previous state
seems to provide considerable benefit.

In the uncorrelated case, Hunc, participants show considerable differences in
the entropy for all sensors as typically expected in a real population. However,
conditioned on the past, the variability is typically lower (except for WLAN)
indicating that participants with high entropy have a relative predictable tra-
jectory. This corresponds well with the results observed in [11] for GSM based
localization. The Bluetooth data does, as mentioned, contain a considerable frac-
tion of unknown states (not off-states), which will tend to underestimate the true
entropy. This means that the bounds are most likely overestimated for Bluetooth.

The GSM, WLAN and Bluetooth sensors are inherently location or proximity
oriented sensors, and the estimated distributions all have modes in the high range
above 80%, but with noticeable difference in variability. Whereas GSM provides
small variability among participants, WLAN seems to provide a much larger
difference among participants. This is not surprising since WLAN is considerably



more noisy than GSM and captures a more local and detailed state than GSM.
Thus, some participants tend to have a relatively low predictability while others
are just as predictable as using GSM. The GSM complexity is on the other hand
more similar between mobile phone users. In effect WLAN is most likely the
more interesting sensor, but harder to predict, at least using the very detailed
representation.

Fig. 3. Detailed representation: Predictability of GSM, WLAN, Bluetooth and Accel-
eration sensors. Crosses indicate individual participant estimates. The mode at 0.99
and 0.98 in the GSM and WLAN densities are due to participant 3 which is left out in
the further analysis for clarity.



4.2 Time Scale

A primary goal in this study is the analysis of the time scales involved in the
prediction of location based sensors with the aim to provide support for context-
based services and general understanding of human mobility. The focus in this
part is thus focused on the GMS and WLAN sensors and the predictability
on a wide range of window lengths - and the examination of the optimal scale
suggested by the predictive information.

Figure 4 shows how the predictability bounds changes with the window
length. Noticeable are the GSM results in Figure 4(a) which are directly com-
parable with the original results in [11]. The bounding box indicates that the
predictability is in the same range, although smaller in our case, possibly due
to the more detailed representation utilized here. However, we obtain a similar
upper bound at approximately 10 min. scale. This trend towards a high upper
bound continues as the scale progresses downwards to 60 seconds.

In general there are various fundamental ways why this might happen. First
of all, we may simply oversample a constant process leaving the resulting times
series highly trivial to predict. The second reason is that the fundamental de-
pendencies are removed when aggregating the cell at long scales and the shorter
time scale provides the best representation. A simple way to examine the first
options is to look at the predictability suggested by the first order Markov model
and determine how far it is from reaching the upper bound. We notice that the
despite ΠMarkov approaching ΠMax, there seems to be some non-trivial behav-
ior which is not predicted by the first order model. Not surprisingly this indicates
that the first order Markov model is too simple. However, the bound provides a
very convenient indication of what a more complex model is able to obtain.

Whereas GSM provides a rather rough indication of mobility and specific
location, WLAN cells have quite high location resolution. Examining the time
scale for WLAN reveals that the complexity of the problem is very high com-
pared to the GMS case as seen on the pure results obtained by the Markov
model. Despite this, we notice that the upper bound is still quite high. This
suggests that there is an large unexploited potential in applying a more complex
model than for example a first order Markov model. As with the GSM sensor we
find that the shorter time scales provides a higher upper bound, and noticeably
that the variability among the participants are lower, in effect offering better
generalization of the predictability across multiple users.

As we have hinted, the optimal scale time scale for predictability for both
GSM and WLAN at small time scales, and to examine the precise scale at which
the past offers the most information in predicting the future we consider the
predictive information. This is depicted in Figure 5 showing how the predictive
information depends on the time scale. We find that the optimal scale is in the 3-
4 minute range for both types of sensors. This is our main result and supplements
the results in Song et al. [11] who focused on longer time scales (60 minutes).
The high predictability at short time scales is of great interest for applications
and is ”good news” for pro-active services based on predicting human needs
and behavior. Furthermore, the fact that the two distinct sensors operating on



(a) GSM

(b) WLAN

Fig. 4. Predictability vs. window length in sec. (log scale). Notice that participant 3
has been removed from the density estimate due to his/her outlier nature as noticed
in Figure 3

different spatial resolution yet still suggest the same optimal temporal scale,
indicates that there exists fundamental information at this scale where both the
upper bound on GSM and WLAN predictability are quite high. Yet, the exact
information available at this scale and implications of this is to be examined in
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Fig. 5. Predictive Information (normalized) vs. window length (log scale). Participant
3 is left out.

a future analysis, for example using explicit modeling paradigms such as (multi-
way) factor analysis and advanced dynamical models.

5 Conclusion

In this paper we described an experimental setup for obtaining so-called lifelog

data using embedded mobile phones. The resulting dataset offers many possibil-
ities for investigating interesting elements of human behavior.

In the analysis we adopted an implicit modeling approach based on recent in-
formation theoretic methods to provide bounds for the prediction one could hope
to obtain using explicit modeling. We presented results on the predictability of
multiple mobile phone sensors showing that the basic findings in [11] general-
izes to more location and proximity based sensors. Specifically, that the gain in
knowing the past is significant, which indicates interesting potential for context-
aware mobile applications relying on forecasting for example GSM and WLAN
associations.

Finally, we showed that the prediction of human mobility generalizes to
shorter time scales than the one hour time scale previously studied in [11]. In
particular, we showed that the collected GSM and WLAN have the same optimal
time scales for prediction, specifically 3-4 minute range. Despite this encouraging
result, the exact interpretation and relevance of the patterns at the suggested
scale needs further investigation and analysis, for example using explicit model-
ing.
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