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Institute Jožef Stefan, Ljubljana, Slovenia, nada.lavrac@ijs.si

Fraunhofer AiS, Schloß Birlinghoven, 53754 Sankt Augustin, Germany, stefan.wrobel@ais.fhg.de

Abstract

Propositionalization has already been shown to
be a particularly promising approach for robustly
and effectively handling relational data sets for
knowledge discovery. In this paper, we compare
up-to-date methods for propositionalization from
two main groups: logic-oriented and database-
oriented techniques. Experiments using several
learning tasks - both ILP benchmarks and tasks
from recent international data mining competi-
tions - show that both groups have their spe-
cific advantages. While logic-oriented methods
can handle complex background knowledge and
provide expressive first-order models, database-
oriented methods can be more efficient especially
on larger data sets. Accuracies gained vary such
that a combination of the features produced by
both groups seems a further valuable venture.

1 Introduction
Following the initial success of the pioneering system LI-
NUS [Lavrač and Džeroski, 1994], approaches to multire-
lational learning based on propositionalization have gained
significant new interest in the last few years. In a mul-
tirelational learner based on propositionalization, instead
of searching the first-order hypothesis space directly, one
uses a transformation module to compute a large number of
propositional features and then uses a propositional learner.
While less powerful in principle than systems that directly
search the full first-order hypothesis space, it has turned
out that in practice, in many cases it is sufficient to search
a fixed subspace that can be defined by feature transforma-
tions. In addition, basing learning on such transformations
offers a potential for enhanced efficiency which is becom-
ing more and more important for large applications in data
mining. Lastly, transforming multirelational problems into
a single table format allows one to directly use all propo-
sitional learning systems, thus making a wider choice of
algorithms available.

In the past three years, quite a number of different propo-
sitionalization learners have been proposed (cf. [Alphonse
and Rouveirol, 2000; Kramer and Frank, 2000; Knobbe
et al., 2001; Krogel and Wrobel, 2001; Lavrač and Flach,
2001; Lavrač et al., 2002b]). While all such learning sys-
tems explicitly or implicitly assume that an individual-
centered representation is used, the available systems dif-
fer in their details. Some of them constrain themselves to

∗An extended version of this document appeared in the Proc.
of the 13th Int. Conf. on ILP, Szeged, Sept. 2003.

features that can be defined in pure logic (existential fea-
tures), while others, inspired by the database area, include
features based on e.g. aggregation. Unfortunately, in the
existing literature, only individual empirical evaluations of
each system are available, so it is difficult to clearly see
what the advantages and disadvantages of each system are,
and on which type of application each one is particularly
strong.

In this paper, we therefore present the first comparative
evaluation of three different multirelational learning sys-
tems based on propositionalization. In particular, we have
chosen to compare the systems RSD [Lavrač et al., 2002b],
a subgroup discovery system of which we are interested in
its feature construction part, SINUS, the successor of LI-
NUS and DINUS [Lavrač and Džeroski, 1994], and RE-
LAGGS [Krogel and Wrobel, 2001], a database-inspired
system which adds non-existential features. We give de-
tails on each system, and then, in the main part of the pa-
per, provide an extensive empirical evaluation on six popu-
lar multirelational problems. As far as possible, we have
taken great care to ensure that all systems use identical
background knowledge and declarations to maximize the
strength of the empirical results. Our evaluation shows in-
teresting differences between the involved systems, indicat-
ing that each has its own strengths and weaknesses and that
neither is universally the best. In our discussion, we ana-
lyze this outcome and point out which directions of future
research appear most promising.

The paper is structured as follows. In the following sec-
tion (section 2), we first recall the basics of propositional-
ization as used for multirelational learning. In the subse-
quent sections, we then discuss each of the three chosen
systems individually, first RSD (section 3.1), then SINUS
(section 3.2), and finally RELAGGS (section 4). Section 5
is the main part of the paper, and presents an empirical eval-
uation of the approaches. We give details on the domains
that were used, explain how the domains were handled by
each learning system, and of course present a detailed com-
parison of running times and classification accuracies. The
results show noticeable differences between the systems,
and we discuss the possible reasons for their respective be-
havior. We finish with a summary and conclusion in section
6, pointing out some areas of further work.

2 Propositionalization
Following [Kramer et al., 2001], we understand propo-
sitionalization as a transformation of relational learning
problems into attribute-value representations amenable for
conventional data mining systems such as C4.5 [Quinlan,
1993], which can be seen as propositional learners. At-



tributes are often called features and form the basis for
columns in single table representations of data. Single-
table representations and models that can be learned from
them have a strong relationship to propositional logic and
its expressive power, cf. [Flach, 1999], hence the name for
the approaches discussed here. As further pointed out in
[Flach, 1999], propositionalization can mostly be applied
in domains with a clear notion of individual with learning
occurring on the level of individuals only.

We focus in this paper on the same kind of learning tasks
as [Kramer et al., 2001]:

Given some evidence E (examples, given extensionally
either as a set of ground facts or tuples representing
a predicate/relation whose intensional definition is to
be learned),
and an initial theory B (background knowledge, given
either extensionally as a set of ground facts, relational
tuples or sets of clauses over the set of background
predicates/relations)

Find a theory H (hypothesis, in the form of a set of logical
clauses) that together with B explains some properties
of E.

Usually, hypotheses have to obey certain constraints in
order to arrive at hypothesis spaces that can be handled ef-
ficiently. These restrictions can introduce different kinds of
bias.

During propositionalization, features are constructed
from relational background knowledge and structural prop-
erties of individuals. Results can then serve as input to dif-
ferent propositional learners, eg. as preferred by the user.

Propositionalizations can be either complete or partial
(heuristic). In the former case, no information is lost in the
process; in the latter, information is lost and the representa-
tion change is incomplete: the goal is to automatically gen-
erate a small but relevant set of structural features. Further,
general-purpose approaches to propositionalization can be
distinguished from special-purpose approaches that could
be domain-dependent or applicable to a limited problem
class only.

In this paper, we focus on general-purpose approaches
for partial propositionalization. In partial propositionaliza-
tion, one is looking for a set of features, where each feature
is defined in terms of a corresponding program clause. If
the number of features is m, then a propositionalization
of the relational learning problem is simply a set of clauses:

f1(X) : −Lit1,1, . . . , Lit1,n1 .
f2(X) : −Lit2,1, . . . , Lit2,n2 .
. . .
fm(X) : −Litm,1, . . . , Litm,nm .

where each clause defines a feature fi. Clause body
Liti,1, ..., Liti,n is said to be the definition of feature fi;
these literals are derived from the relational background
knowledge. In clause head fi(X), argument X refers to
an individual. If such a clause is called for a particular in-
dividual (i.e., if X is bound to some example identifier) and
this call succeeds at least once, the corresponding Boolean
feature is defined to be “true” for the given example; other-
wise, it is defined to be “false”.

It is pointed out in [Kramer et al., 2001] that features
can also be non-Boolean requiring a second variable in the
head of the clause defining the feature to return the value of
the feature. The usual application of features of this kind
would be in situations where the second variable would

have a unique binding. However, variants of those features
can also be constructed for non-determinate domains, eg.
for aggregation as described below.

3 Logic-oriented approaches
The next two presented systems, RSD and SINUS, tackle
the propositionalization task by constructing first-order
logic features, assuming – as mentioned earlier – there is
a clear notion of a distinguishable individual. In this ap-
proach to first-order feature construction, based on [Flach
and Lachiche, 1999; Kramer et al., 2001; Lavrač and Flach,
2001], local variables referring to parts of individuals are
introduced by the so-called structural predicates. The
only place where nondeterminacy can occur in individual-
centered representations is in structural predicates. Struc-
tural predicates introduce new variables. In the proposed
language bias for first-order feature construction, a first-
order feature is composed of one or more structural predi-
cates introducing a new variable, and of utility predicates as
in LINUS [Lavrač and Džeroski, 1994] (called properties
in [Flach and Lachiche, 1999]) that ‘consume’ all new vari-
ables by assigning properties to individuals or their parts,
represented by variables introduced so far. Utility predi-
cates do not introduce new variables.

Although the two further presented systems are based
on a common understanding of the notion of a first-order
feature, they vary in several aspects. We first overview their
basic principles separately and then put them in a mutual
comparison.

3.1 RSD
RSD has been originally designed as a system for relational
subgroup discovery [Lavrač et al., 2002b]. Here we are
concerned only with its auxiliary component providing
means of first-order feature construction. The RSD im-
plementation in the Yap Prolog is publicly available from
http://labe.felk.cvut.cz/˜zelezny/rsd,
and accompanied by a comprehensive user’s manual.

To propositionalize data, RSD conducts the following
three steps.

1. Identifies all first-order literal conjunctions which
form a legal feature definition, and at the same time
comply to user-defined constraints (mode-language).
Such features do not contain any constants and the
task can be completed independently of the input data.

2. Extends the feature set by variable instantiations. Cer-
tain features are copied several times with some vari-
ables substituted by constants detected by inspecting
the input data. During this process, some irrelevant
features are detected and eliminated.

3. Generates a propositionalized representation of the in-
put data using the generated feature set, i.e., a rela-
tional table consisting of binary attributes correspond-
ing to the truth values of features with respect to in-
stances of data.

Syntactical construction of features.
RSD accepts declarations very similar to those used by sys-
tems Aleph [Srinivasan and King, 1996] and Progol [Mug-
gleton, 1995], including variable types, modes, setting a re-
call parameter etc, used to syntactically constrain the set of
possible features. Let us illustrate the language bias decla-
rations by an example on the well-known East-West Trains
data domain.



• A structural predicate declaration in the East-West
trains domain can be defined as follows:

:-modeb(1, hasCar(+train, -car)).

where the recall number 1 determines that a feature
can address at most one car of a given train. Input
variables are labelled by the + sign, and output vari-
ables by the - sign.

• Property predicates are those with no output variables.

• A head predicate declaration always contains exactly
one variable of the input mode, e.g., :-modeh(1,
train(+train)).

Additional settings can also be specified, or they acquire
a default value. These are the maximum length of a feature
(number of contained literals), maximum variable depth
[Muggleton, 1995] and maximum number of occurrences
of a given predicate symbol.

RSD produces an exhaustive set of features satisfying
the mode and setting declarations. No feature produced
by RSD can be decomposed into a conjunction of two fea-
tures. For example, the feature set based on the following
declaration

:-modeh(1, train(+train)).
:-modeb(2, hasCar(+train, -car)).
:-modeb(1, long(+car)).
:-modeb(1, notSame(+car, +car)).

will contain a feature

f(A):-
hasCar(A,B),hasCar(A,C),long(B),long(C),
notSame(B,C).

but it will not contain a feature with a body

hasCar(A,B),hasCar(A,C),long(B),long(C)

as such an expression would clearly be decomposable into
two separate features.

In the search for legal feature definitions (corresponding
to the exploration of a subsumption tree), several pruning
rules are used in RSD, that often drastically decrease the
run times needed to achieve the feature set. For more in-
formation about this point, the reader is referred to the full
ILP-2003 paper.

Extraction of constants and filtering features.
The user can utilize the reserved property predicate
instantiate/1 to specify a type of variable that should
be substituted with a constant during feature construction. 1

For example, consider that the result of the first step is the
following feature.

f1(A) :-
hasCar(A,B),hasLoad(B,C),shape(C,D),
instantiate(D).

In the second step, after consulting the input data, f1 will
be substituted by a set of features, in each of which the
instantiate/1 literal is removed and the D variable is
substituted by a constant, making the body of f1 provable
in the data. Provided they contain a train with a rectangle
load, the following feature will appear among those created
out of f1:

f11(A) :- hasCar(A,B),hasLoad(B,C),
shape(C,rectangle).

1This is similar to using the # mode in a Progol or Aleph dec-
laration

A similar principle applies for features with multiple oc-
currences of the instanti ate/1 literal. More details
are provided in the full ILP-2003 paper.

For the sake of efficiency, we do not perform feature fil-
tering by a separate postprocessing procedure, but rather
discard certain features already during the feature construc-
tion process described above. We keep a currently devel-
oped feature f if and only if simultaneously (a) No feature
has so far been generated that covers (is satisfied for) the
same set of instances in the input data as f , (b) f does not
cover all instances, and finally: (c) Either, the fraction of in-
stances covered by f is larger than a user-specified thresh-
old, or the threshold coverage is reached by ¬f . Again,
more details are provided in the full ILP-2003 paper.

Creating a single-relational representation.
When an appropriate set of features has been generated,
RSD can use it to produce a single relational table repre-
senting the original data. Currently, the following data for-
mats are supported: a comma-separated text file, a WEKA
input file, a CN2 input file, and a file acceptable by the RSD
subgroup discovery component [Lavrač et al., 2002b].

3.2 SINUS
What follows is an overview of the SINUS ap-
proach. More detailed information about the par-
ticulars of implementation and its wide set of
options can be read at the SINUS website at
http://www.cs.bris.ac.uk/home/rawles/sinus/.

LINUS.
SINUS was first implemented as an intended extension to
the original LINUS transformational ILP learner [Lavrač
and Džeroski, 1994]. Work had been done in incorporating
feature generation mechanisms into LINUS for structured
domains and SINUS was implemented from a desire to in-
corporate this into a modular, transformational ILP system
which integrated its propositional learner, including trans-
lating induced models back into Prolog form.

The original LINUS system had little support for the
generation of features as they are discussed here. Trans-
formation was performed by considering only possible ap-
plications of background predicates on the arguments of
the target relation, taking into account the types of argu-
ments. The clauses it could learn were constrained. The de-
velopment of DINUS (‘determinate LINUS’) [Lavrač and
Džeroski, 1994] relaxed the bias so that non-constrained
clauses could be contructed given that the clauses involved
were determinate. DINUS was also extendable to learn re-
cursive clauses. However, not all real-world structured do-
mains have the determinacy property, and for learning in
these kinds of domains, feature generation of the sort dis-
cussed here is necessary.

SINUS.
SINUS 1.0.3 is implemented in SICStus Prolog and pro-
vides an environment for transformational ILP experimen-
tation, taking ground facts and transforming them to stan-
dalone Prolog models. The system works by performing
a series of distinct and sequential steps. These steps form
the functional decomposition of the system into modules,
which enable a ‘plug-in’ approach to experimentation —
the user can elect to use a number of alternative approaches
for each step. For the sake of this comparison, we focus on
the propositionalization step, taking into account the nature
of the declarations processed before it.



• Processing the input declarations. SINUS takes in a
set of declarations for each predicate involved in the
facts and the background knowledge.

• Constructing the types. SINUS constructs a set of val-
ues for each type from the predicate declarations.

• Feature generation. The first-order features to be used
as attributes in the input to the propositional learner
are recursively generated.

• Feature reduction. The set of features generated are
reduced. For example, irrelevant features may be re-
moved, or a feature quality measure applied.

• Propositionalization. The propositional table of data
is prepared internally.

• File output and invocation of the propositional
learner. The necessary files are output ready for the
learner to use and the user’s chosen learner is in-
voked from inside SINUS. At present the CN2 [Clark
and Niblett, 1989] and CN2-SD (subgroup discovery)
[Lavrač et al., 2002a] learners are supported, as well
as Ripper [Cohen, 1995]. The Weka ARFF format
may also be used.

• Transformation and output of rules. The models in-
duced by the propositional learner are translated back
into Prolog form.

Predicate declaration and bias.
SINUS uses flattened Prolog clauses together with a def-
inition of that data. This definition takes the form of an
adapted PRD file (as in the first-order Bayesian classifier
1BC [Flach and Lachiche, 1999]), which gives informa-
tion about each predicate used in the facts and background
information. For more information about this point, the
reader is referred to the full ILP-2003 paper.

Example of a domain definition in SINUS. Revisiting
the trains example, we could define the domain as follows:

--INDIVIDUAL
train 1 train cwa
--STRUCTURAL
train2car 2 1:train *:#car * cwa
car2load 2 1:car 1:#load * cwa
--PROPERTIES
cshape 2 car #shape * cwa
clength 2 car #length * cwa
cwall 2 car #wall * cwa
croof 2 car #roof * cwa
cwheels 2 car #wheels * cwa
lshape 2 load #shapel * cwa
lnumber 2 load #numberl * cwa

For each predicate, the name and number of arguments
is given. Following that appears a list of the types of each
argument in turn.2 Types are defined with symbols describ-
ing their status. The # symbol denotes an output argument,
and its absence indicates an input argument. In the struc-
tural predicates, the 1: and *: prefixes allow the user
to define the cardinality of the relationships. The example
states that while a train has many cars, a car only has one
load.

SINUS constructs features left-to-right, starting with a
single literal describing the individual. For each new literal,

2The remaining * cwa was originally for compatibility with
PRD files.

SINUS considers the application of a structural or property
predicate given the current bindings of the variables. In the
case of structural predicates SINUS introduces new vari-
able(s) for all possible type matches. In the case of prop-
erty predicates SINUS substitutes all possible constants be-
longing to a type of the output argument to form the new
candidate literals.

The user can constrain the following factors of generated
features: the maximum number of literals (MaxL parame-
ter), the maximum number of variables (MaxV parameter)
and the maximum number of distinct values a type can take
(MaxT parameter).

The character of the feature set produced by SINUS de-
pends principally on the choice of whether and how to
reuse variables, i.e. whether to use those variables which
have already been consumed during construction of a new
literal. Details about three possible cases can be found in
the full ILP-2003 paper.

3.3 Comparing RSD and SINUS
A detailed comparison of RSD and SINUS can be found
in the full ILP-2003 paper. The following provides a sum-
mary.

RSD puts more stress on the pre-processing stage, in that
it allows a fine language declaration (such as by setting
bounds on the recall of specific predicates, variable-depth
etc.), verifies the undecomposability of features and of-
fers some efficiency-oriented improvements (pruning tech-
niques in the feature search, coverage-based feature filter-
ing). On the other hand, SINUS provides more added value
in the post-processing and interpretation of results obtained
from a learner using the generated features, in that it is able
to translate the resulting hypotheses back into a predicate
form.

4 Database-oriented approaches
In [Krogel and Wrobel, 2001], we presented a framework
for approaches to propositionalization and an extension
thereof by including the application of aggregation func-
tions, which are widely used in the database area. Our ap-
proach is built up on ideas from MIDOS [Wrobel, 1997],
and it is called RELAGGS, which stands for relational
aggregations. It is very similar to an approach called Polka
published at the same time by a different research group
[Knobbe et al., 2001]. A difference between the two ap-
proaches concerns efficiency of the implementation, which
was higher for Polka. Indeed, we were inspired by Polka
to develop new ideas for RELAGGS. Here, we present this
new variant of our approach, implemented with Java and
MySQL, with an illustrative example at the end of this sec-
tion.

Besides the focus on aggregation functions, we concen-
trate on the exploitation of relational database schema in-
formation, especially foreign key relationships as a basis
for a declarative bias during propositionalization, as well
as the usage of optimization techniques as usually applied
for relational databases such as indexes. These points led us
to the heading for this section and do not constitute differ-
ences in principle to the logic-oriented approaches as pre-
sented above. Rather, predicate logic can be seen as fun-
damental to relational databases and their query languages
[Abiteboul et al., 1995].

In the following, we preferably use database terminol-
ogy, where a relation (table) as a collection of tuples largely
corresponds to ground facts of a logical predicate, and an



attribute (column) of a relation to an argument of a predi-
cate, cf. also [Lavrač and Flach, 2001].

A relational database can be depicted as a graph with its
relations as nodes and foreign key relationships as edges,
conventionally by arrows pointing from the foreign key at-
tribute in the dependent table to the corresponding primary
key attribute in the independent table, cf. the example in
Figure 1 below.

The main idea of our approach is that it is possible to
summarize non-target relations with respect to the individ-
uals dealt with, or in other words, per example from the
target relation. In order to relate non-target relation tuples
to the individuals, we propagate the identifiers of the in-
dividuals to the non-target tables via foreign key relation-
ships. This can be accomplished by comparatively inex-
pensive joins that use indexes on primary and foreign key
attributes.

In the current variant of RELAGGS, these joins – as
views on the database – are materialized in order to allow
for fast aggregation. Aggregation functions are applied to
single columns as in [Krogel and Wrobel, 2001], and to
pairs of columns of single tables. The application of the
functions depends on the type of an attribute. For numeric
attributes, average, minimum, maximum, and sum are com-
puted as in [Krogel and Wrobel, 2001], moreover standard
deviations, ranges, and quartiles. For nominal attributes,
the different possible values are counted, as in [Krogel and
Wrobel, 2001]. Here, the user can exclude nominal at-
tributes with high numbers of possible values with the help
of the parameter cardinality. Besides numeric and nomi-
nal attributes, we now also treat identifier attributes as or-
dinary numeric or nominal attributes, and date attributes
as decomposable nominal attributes, eg. for counting oc-
currences of a specific year. This way, most features con-
structed here are not Boolean as usual in logic-oriented ap-
proaches, but numeric.

Note that this approach can be seen as corresponding to
the application of appropriate utility functions in a logic-
oriented setting as pointed to in [Lavrač and Flach, 2001].

A PKDD dataset. Figure 1 (top) depicts parts of a rela-
tional database schema provided for the PKDD 1999/2000
challenges [Berka, 2000]. This dataset is also used for
our experiments reported on below in this paper, with table
loan as target relation containing the target attribute status.

All relations have a single-attribute primary key of type
integer with a name built from the relation name, such
as loan id. Foreign key attributes are named as their pri-
mary key counterparts. Single-attribute integer keys are
common and correspond to general recommendations for
efficient relational database design. Here, this allows for
fast propagation of example identifiers, eg. by a statement
such as select loan.loan id, trans.* from loan, trans where
loan.account id = trans.account id; using indexes on the
account id attributes.

Figure 1 (bottom) depicts the database following the in-
troduction of additional foreign key attributes for propa-
gated example identifiers in the non-target relations.

Details about the new database such as reasons for new
numbers of tuples are provided in the full ILP-2003 paper.

The new relations can be summarized with aggregation
functions in group by loan id statements that are especially
efficient here because no further joins have to be executed
after identifier propagation. Finally, results of summariza-
tion such as values for a feature min(trans.balance) are con-
catenated to the central table’s loan tuples to form the result

Loan (682)

Client (5,369) 

Order (6,471)

Account (4,500) 

Card (892)

Disp (5,369) 

District (77)

Trans (1,056,320)

Loan (682)

Client_new (827)

Order_new (1,513)

Account_new (682) Card_new (36)

Disp_new (827) District_new (1,509)

Trans_new (54,694)

Figure 1: Top: The PKDD 1999/2000 challenges financial
dataset: Relations as rectangles with relation names and
tuple numbers in parantheses, arrows indicate foreign-key
relationships, cf. [Berka, 2000]. Bottom: Relations after
identifier propagation.

of propositionalization.

5 Empirical evaluation

5.1 Learning tasks
We chose to focus on binary classification tasks for a se-
ries of experiments to evaluate the different approaches
to propositionalization described above, although the ap-
proaches can also support solutions of multi-class prob-
lems, regression problems, and even other types of learning
tasks such as subgroup discovery.

As an example of the series of Trains datasets and
problems as first instantiated by the East-West challenge
[Michalski, 1980], we chose a 20 trains problem, already
used as an illustrating example earlier in this paper. For
these trains, information is given about their cars and the
loads of these cars. The learning task is to discover (low-
complexity) models that classify trains as eastbound or
westbound.

In the chess endgame domain White King and Rook
versus Black King, taken from [Quinlan, 1990], the tar-
get relation illegal(A, B, C, D, E, F ) states whether a po-
sition where the White King is at file and rank (A, B),
the White Rook at (C, D) and the Black King at (E, F )
is an illegal White-to-move position. For example,
illegal(g, 6, c, 7, c, 8) is a positive example, i.e., an illegal
position. Two background predicates are available: lt/2
expressing the “less than” relation on a pair of ranks (files),
and adj/2 denoting the adjacency relation on such pairs.
The dataset consists of 1,000 instances.

For the Mutagenesis problem, [Srinivasan et al., 1996]
present a variant of the original data named NS+S2 (also
known as B4) that contains information about chemical
concepts relevant to a special kind of drugs, the drugs’
atoms and the bonds between those atoms. The Mutagene-
sis learning task is to predict whether a drug is mutagenic or
not. The separation of data into “regression-friendly” (188
instances) and “regression-unfriendly” (42 instances) sub-
sets as described by [Srinivasan et al., 1996] is kept here.
Our investigations concentrate on the first subset.

The PKDD Challenges in 1999 and 2000 offered a data



set from a Czech bank [Berka, 2000]. The data set com-
prises of 8 relations that describe accounts, their transac-
tions, orders, and loans, as well as customers including per-
sonal, credit card ownership, and socio-demographic data,
cf. Fig. 1. A learning task was not explicitly given for the
challenges. We compare problematic to non-problematic
loans regardless if the loan projects are finished or not.
We exclude information from the analysis dating after loan
grantings in order to arrive at models with predictive power
for decision support in loan granting processes. The data
describes 682 loans.

The KDD Cup 2001 [Cheng et al., 2002] tasks 2 and 3
asked for the prediction of gene function and gene local-
ization, respectively. From these non-binary classification
tasks, we extracted two binary tasks, viz. the prediction
whether a gene codes for a protein that serves cell growth,
cell division and DNA synthesis or not and the prediction
whether the protein produced by the gene described would
be allocated in the nucleus or not. We deal here with the
862 training examples provided for the Cup.

5.2 Procedure
The general schema for experiments reported here is the
following. As a starting point, we take identical prepara-
tions of the datasets in Prolog form. These are adapted
for usage with the different propositionalization systems,
eg. SQL scripts with create table and insert statements are
derived from Prolog ground facts in a straightforward man-
ner. Then, propositionalization is carried out and the results
are formated in a way accessible to the data mining envi-
ronment WEKA [Witten and Frank, 2000]. Here, we use
the J48 learner, which is basically a reimplementation of
C4.5 [Quinlan, 1993]. We use default parameter settings of
this learner, including a stratified 10-fold cross-validation
scheme for evaluating the learning results.

The software used for the experiments as well as SQL
scripts used in the RELAGGS application are available on
request from the first author. Declaration and background
knowledge files used with SINUS and RSD and available
from the second and third author, respectively.

Both RSD and SINUS share the same basic first-order
background knowledge in all domains, adapted in formal
ways for compatibility purposes. The language constraint
settings applicable in either system are in principle differ-
ent and for each system they were set to values allowing
to complete the feature generation in a time not longer than
30 minutes. Varying the language constraints (for RSD also
the minimum feature coverage constraint; for RELAGGS:
parameter cardinality), feature sets of different sizes were
obtained, each supplied for a separate learning experiment.

5.3 Results
Accuracies
Figure 2 presents for all six learning problems the predic-
tive accuracies obtained by the J48 learner supplied with
propositional data based on feature sets of growing sizes,
resulting from each of the respective propositionalization
systems.

Running times
The three tested systems are implemented in different lan-
guages/interpreters and operate on different hardware plat-
forms. Exact comparison of efficiency was thus not pos-
sible. For each domain and system we report the approxi-
mate average (over feature sets of different sizes) running
times. RSD ran under the Yap Prolog on a Celeron 800

MHz computer with 256 MB of RAM. SINUS was running
under SICStus Prolog3 on a Sun Ultra 10 computer. For
the Java implementation of RELAGGS, a PC platform was
used with a 2.2 GHz processor and 512 MB main mem-
ory. Table 1 shows running times of the propositionaliza-
tion systems on the learning tasks with best results in bold.

5.4 Discussion
The obtained results are not generally conclusive in favor
of either of the tested systems. Interestingly, from the point
of view of predictive accuracy, each of them provided the
winning feature set in exactly two domains.

The strength of the aggregation approach implemented
by RELAGGS manifested itself in the domain of East-
West Trains (where counting of structural primitives seems
to outperform the pure existential quantification used by
the logic-based approaches) and, more importantly, in the
PKDD’99 financial challenge rich with numeric data, ev-
idently well-modelled by RELAGGS’ features based on
the computation of data statistics. On the other hand, this
approach could not yield any reasonable results for the
‘purely-relational’ challenge of the King-Rook-King prob-
lem. Different performances of the two logic-based ap-
proaches, RSD and SINUS, are namely due to their dif-
ferent ways of constraining the language bias. SINUS wins
in both of the KDD’01 challenge versions, RSD wins in
the KRK domain and Mutagenesis. While the gap on KRK
seems little significant, the result obtained on Mutagenesis
with RSD’s 25 features4 is the best so far reported we are
aware of.

From the point of view of running times, RELAGGS
seems to be the most efficient system. It seems to be out-
performed on the PKDD challenge by RSD, however, on
this domain the features of both of the logic-based systems
are very simple (ignoring the cummulative effects of nu-
meric observations) and yield relatively poor accuracy re-
sults. Whether the apparent efficiency superiority of RSD
w.r.t SINUS is due to the RSD’s pruning mechanisms, or
the implementation in the faster Yap Prolog, or a combined
effect thereof has yet to be determined.

6 Future Work and Conclusion
In future work, we plan to complete the formal framework
started in [Krogel and Wrobel, 2001], which should also
help to clarify relationships between the approaches. We
intend to compare our systems to other ILP approaches
such as Progol [Muggleton, 1995] and Tilde [Blockeel and
Raedt, 1998]. Furthermore, extensions of the feature sub-
set selection mechanisms in the different systems should
be considered. Also, other propositional learners such as
support vector machines could be of advantage.

Specifically, for RELAGGS, we intend to investigate a
deeper integration with databases, also taking into account
their dynamics. The highest future work priorities for SI-
NUS are the implementation of a direct support for data
relationships informing feature construction, incorporating
a range of feature elimination mechanisms and enabling
greater control over the bias used for feature construction.
In RSD, we will try to devise a procedure to interpret the

3It should be noted that SICStus Prolog is generally consid-
ered to be several times slower than Yap Prolog.

4The longest have 5 literals in their bodies. Prior to irrelevant-
feature filtering conducted by RSD, the feature set has more than
5.000 features.
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Figure 2: Accuracies resulting from the J48 propositional learner supplied with propositionalized data based on feature
sets of varying size obtained from three propositionalization systems. The bottom line of each diagram corresponds to the
accuracy of the majority vote.

Table 1: Indicators of running times (different platforms, cf. text) and systems providing the feature set for the best-
accuracy result in each domain.

Problem Running Times Best Accuracy
RSD SINUS RELAGGS Achieved with

Trains < 1 sec 2 to 10 min < 1 sec RELAGGS
King-Rook-King < 1 sec 2 to 6 min n.a. RSD
Mutagenesis 5 min 6 to 15 min 30 sec RSD
PKDD99-00 Loan.status 5 sec 2 to 30 min 30 sec RELAGGS
KDD01 Gene.fctCellGrowth 3 min 30 min 1 min SINUS
KDD01 Gene.locNucleus 3 min 30 min 1 min SINUS



results of a propositional learner by a first-order theory by
plugging the generated features into the obtained hypothe-
sis.

As this paper has shown, each of the three considered
systems has certain unique benefits. The common goal of
all of the involved developers is to implement a wrapper
that would integrate the advantages of each.
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and P. Flach, editors, Proceedings of the Ninth Inter-
national Conference on Inductive Logic Programming
(ILP). Springer, 1999.

[Flach, 1999] P. A. Flach. Knowledge representation for
inductive learning. In A. Hunter and S. Parsons, editors,
Proceedings of the European Conference on Symbolic
and Quantitative Approaches to Reasoning and Uncer-
tainty (ECSQARU). Springer, 1999.

[Knobbe et al., 2001] A. J. Knobbe, M. de Haas, and
A. Siebes. Propositionalisation and Aggregates. In
L. de Raedt and A. Siebes, editors, Proceedings of the
Fifth European Conference on Principles of Data Min-
ing and Knowledge Disovery (PKDD). Springer, 2001.

[Kramer and Frank, 2000] S. Kramer and E. Frank.
Bottom-up propositionalization. In Work-in-Progress
Track at the Tenth International Conference on
Inductive Logic Programming (ILP), 2000.

[Kramer et al., 2001] S. Kramer, N. Lavrač, and P. A.
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Relational Data Mining. Springer, 2001.

[Krogel and Wrobel, 2001] M.-A. Krogel and S. Wrobel.
Transformation-Based Learning Using Multirelational
Aggregation. In C. Rouveirol and M. Sebag, editors,
Proceedings of the Eleventh International Conference
on Inductive Logic Programming (ILP). Springer, 2001.
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