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Abstract. Association rule extraction from operational datasets often produces several tens of thousands, and
even millions, of association rules. Moreover, many of these rules are redundant and thus useless. Using a semantic
based on the closure of the Galois connection, we define a condensed representation for association rules. This
representation is characterized by frequent closed itemsets and their generators. It contains the non-redundant
association rules having minimal antecedent and maximal consequent, called min-max association rules. We think
that these rules are the most relevant since they are the most general non-redundant association rules. Furthermore,
this representation is a basis, i.e., a generating set for all association rules, their supports and their confidences,
and all of them can be retrieved needless accessing the data. We introduce algorithms for extracting this basis and
for reconstructing all association rules. Results of experiments carried out on real datasets show the usefulness of
this approach. In order to generate this basis when an algorithm for extracting frequent itemsets—such as APRIORI

for instance—is used, we also present an algorithm for deriving frequent closed itemsets and their generators from
frequent itemsets without using the dataset.

Keywords: data mining, Galois closure operator, frequent closed itemsets, generators, min-max association
rules, basis for association rules, condensed representation

1. Introduction

The purpose of association rule extraction, introduced in Agrawal et al. (1993), is to discover
significant relations between binary attributes, called items, in large datasets. An example
of association rule extracted from a dataset of supermarket sales is: ‘cereals ∧ sugar →
milk (support = 7%, confidence = 67%)’. This rule states that customers who buy cereals
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and sugar also tend to buy milk. The support measure defines the range of the rule, i.e., the
proportion of customers who bought the three items among all customers. The confidence
measure defines the precision of the rule, i.e., the proportion of customers who bought milk
among those who bought cereals and sugar. Only rules with support and confidence above
some minimal support and confidence thresholds, defined by the analyst according to the
application, are extracted.

Classical approaches for mining association rules operate in two phases:

1. Extracting frequent itemsets and their support from the dataset. Frequent itemsets are
sets of items contained in a proportion of objects above the minimum support threshold.

2. Generating association rules from frequent itemsets and supports. Only rules with con-
fidence above the minimum confidence threshold are generated.

The first phase is the most computationally intensive, since the number of potential fre-
quent itemsets is exponential in the size of the set of items and several dataset scans, very
expensive in execution times, are required to count their supports. Classical approaches can
be classified into three main trends. Approaches in the first trend are based on the levelwise
extraction of frequent itemsets (Agrawal and Srikant, 1994; Mannila et al., 1994). That is
a breadth-first exploration of the search space where all potential frequent itemsets of a
given size are considered simultaneously (Mannila and Toivonen, 1997). These approaches
are efficient for mining association rules from weakly correlated data, such as market bas-
ket data, but performances drastically decrease when data are dense or correlated, such as
statistical data for instance. Approaches in the second trend are based on the extraction of
maximal1 frequent itemsets (Bayardo, 1998; Lin and Kedem, 1998; Zaki et al., 1997) to
improve the efficiency. Once all maximal frequent itemsets are extracted, all frequent item-
sets are derived and their support are counted in the dataset. In the third trend, approaches
are based on the extraction of frequent closed itemsets (Pasquier et al., 1998; Zaki and
Ogihara, 1998) defined using the Galois closure operator. These approaches first extract
all frequent closed itemsets and then, both frequent itemsets and their support are derived
from them, without dataset access. In the case of dense or correlated data, there are much
fewer frequent closed itemsets than frequent itemsets and thus, these approaches improve
the extraction efficiency compared to approaches in the first trend. Compared to approaches
in the second trend, approches based on frequent closed itemsets can be more efficient in
the case of correlated data due to the cost of generating all subsets of the maximal frequent
itemsets and counting their support in the dataset.

Another major research topic in data mining is the problem of relevance and usefulness of
extracted association rules. This problem is related to the number of extracted rules—that is
most often very large—and to the important proportion of redundant rules, i.e. rules bringing
the same information, among them. This problem becomes crucial when data are dense or
correlated, such as statistical data, telecommunication data or nominative market basket
data (Bayardo et al., 2000; Brin et al., 1997; Siverstein et al., 1998). For instance, using a
census dataset sample constituted of 10,000 objects, each one containing values of 73 binary
attributes, more than 2,000,000 association rules with support and confidence above 90%
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Table 1. Redundant association rules.

1) free gills → edible 6) free gills, partial veil → edible, white veil

2) free gills → edible, partial veil 7) free gills, white veil → edible

3) free gills → edible, white veil 8) free gills, white veil → edible, partial veil

4) free gills → edible, partial veil, white veil 9) free gills, partial veil, white veil → edible

5) free gills, partial veil → edible

were extracted. The analyst is then confronted with the following problems: How to handle
such a list of association rules ? Is it possible to reduce its size without losing information?
Moreover, the inspection of extracted association rules shown that redundant rules represent
the majority of them. Their suppression will thus considerably reduce the number of rules
to be handled by the analyst. In the previous example, this suppression reduced the number
of rules to a few thousands. In addition, redundant rules can be misleading as discussed in
Example 1. Thus, the following question arises: How to reduce extracted association rules
to a smaller list containing only non-redundant association rules?

Example 1. To illustrate the problem of redundant association rules, we present nine
rules extracted from the MUSHROOMS dataset describing characteristics of 8 416 mush-
rooms (Blake and Merz, 1998) in Table 1. These rules have identical supports and confi-
dences, of 51 and 54% respectively, and the item “free gills” in the antecedent.

Obviously, rules 1 to 3 and 5 to 9 do not add any information to rule 4 since all these
rules have identical supports and confidences. We thus say that these rules are redundant
compared to rule 4, the most relevant from the analyst’s point of view for it summarizes the
nine rules. This rule has a minimal antecedent (left-hand side) and a maximal consequent
(right-hand side) among the nine rules. Moreover, examining only one of these eight rules,
say for instance rule 9, the analyst will believe that a mushroom has 54% chances to be
edible if it has free gills and a partial white veil. As a matter of fact, it has 54% chances to
be edible and have a partial white veil if it has free gills. Redundant rules can therefore be
misleading and cause misinterpretations of the results. We believe that extracting only rule
4 will improve the result relevance.

In the rest of the paper, we differentiate exact association rules, noted l ⇒ l ′, that
have a 100% confidence, and approximate association rules, noted l → l ′, that have a
confidence lower than 100%. Exact association rules are valid for all objects in the dataset
whereas approximate association rules are valid for a proportion of objects equal to their
confidence.

1.1. Related work

Approaches addressing this issue can be classified into three main trends. Approaches
in the first trend provide mechanisms for filtering extracted association rules. In the two
other trends, approaches “extend” the definition of association rules in order not to extract
“similar” ones.
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Approaches in the first trend allow the analyst to define some templates (Baralis and
Psaila, 1997; Klemettinen et al., 1994), boolean operators (Bayardo et al., 2000; Ng et al.,
1998; Srikant et al., 1997) or SQL-like operators (Meo et al., 1998) in order to select
rules according to his/her preferences. In Bayardo et al. (2000), boolean operators are
coupled with further measures of “usefulness” of the rules. By selecting a subset of all
extracted association rules, these approaches reduce the number of rules to handle during
the visualization, but redundancies are not suppressed.

In the second trend, some approaches use a taxonomy of items to extract generalized
association rules (Han and Fu, 1999; Srikant and Agrawal, 1995), i.e., association rules
between sets of items that belong to different levels of the taxonomy. Some approaches
use statistical measures, such as Pearson’s correlation or χ2 test for instance, instead of
the confidence to determine the precision of the rule (Brin et al., 1997; Morimoto et al.,
1998; Siverstein et al., 1998). Other approaches in this trend allow to extract only rules
with maximal antecedents among those with the same supports and the same consequents
(Srikant and Agrawal, 1996; Toivonen et al., 1995). That is, a rule r will be pruned if
another rule r ′ has the same consequent and an antecedent that is a superset of the one of r .
In Example 1, rules 4, 6, 8 and 9 have maximal antecedents and will be extracted. Finally,
the approach proposed in Bayardo and Agrawal (1999) identifies optimal rules according
to several interestingness metrics (confidence, conviction, lift, Laplace, gain, etc.) and a
partial order on the rules.

Approaches in the third trend make use of the closure of the Galois connection to extract
bases, or reduced covers, for association rules. Informally, a basis is a non-redundant set that
is minimal according to some mathematical property and from which all association rules
are deducible, with support and confidence, without accessing the dataset. These bases
are adaptations of the Duquenne-Guigues basis for global implications (Duquenne and
Guigues, 1986; Ganter and Wille, 1999) and the Luxenburger basis for partial implications
(Luxenburger, 1991). They were introduced in Formal Concept Analysis and their adaptation
to the association rule framework is studied in Pasquier et al. (1999c), Taouil et al. (2000),
and Zaki (2000). In the Duquenne-Guigues basis for exact association rules, antecedents of
rules are frequent pseudo-closed itemsets and consequents are frequent closed itemsets. In
the Luxenburger basis for approximate association rules, both antecedents and consequents
are frequent closed itemsets: We select approximate rules with both a maximal antecedent
and a maximal consequent among rules having identical supports and confidences. In Ex-
ample 1, rule 9 will be the only one extracted. The union of the Duquenne-Guigues and the
Luxenburger bases is a basis for all association rules. This basis is minimal with respect to
the number of rules and, since for most data types there are much fewer frequent closed and
pseudo-closed itemsets than there are frequent itemsets, it is very small. However, it does
not contain non-redundant rules with minimal antecedent and maximal consequent.

In previous works about the pruning of redundant implication rules (functional depen-
dencies), such as the canonical and the minimum covers definitions (Beeri and Bernstein,
1979; Maier, 1980), redundant rules are defined according to an inference system based on
Armstrong axioms (Armstrong, 1974). However, these results cannot be directly applied
to the association rule framework since redundant association rules cannot be defined ac-
cording to this system: Supports and confidences are important information that must be
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considered to characterize redundant rules. Such an inference system for association rules
does not exist to our knowledge. The idea behind non-redundant association rules as defined
hereafter is to identify the most relevant rules, each one bringing the same information as
several others.

1.2. Contribution

Our goal is to improve association rules relevance and usefulness by extracting as few rules
as possible without losing information. To achieve this, we propose to generate a condensed
representation (Mannila and Toivonen, 1996) by maximizing the information brought by
each rule. As pointed out in Example 1, we believe that the most relevant association rules
are the most general2 non-redundant rules: Those with minimal antecedent and maximal
consequent. Extracting such rules will improve the result usefulness, while reducing its
size. Therefore, in the following:

– We define non-redundant association rules with minimal antecedent and maximal con-
sequent, called min-max association rules. These rules are defined using the semantic
for association rule extraction based on the Galois closure. Their antecedents and conse-
quents are characterized by frequent closed itemsets and their generators (Pasquier et al.,
1998).

– We show that the min-max association rules constitute a basis, called min-max basis for
association rules. All association rules can be deduced by generating all the sub-rules of
the min-max association rules, considering their supports and confidences.

– We propose efficient algorithms to generate the min-max basis from frequent closed
itemsets and their generators, such as extracted by the CLOSE (Pasquier et al., 1998,
1999b) and the A-CLOSE (Pasquier et al., 1999a) algorithms. We also introduce algorithms
to reconstruct all association rules, or a part of them, from this basis without having to
access the data.

– We present the CLOSE+ algorithm that identifies frequent closed itemsets, their generators
and their supports among frequent itemsets and their supports. This algorithm is simple
and efficient since it does not require any dataset access. It enables the generation of the
min-max basis when an algorithm for extracting all frequent itemsets, such as APRIORI

(Agrawal and Srikant, 1994) for instance, is used.

Extracting min-max association rules minimizes as much as possible the number of rules
while keeping the same information in the result: Only the most general non-overlapping
association rules are extracted and therefore redundant rules are pruned. Since for many
real datasets redundant rules represent the majority of extracted rules, the reduction will
be almost always significant. This reduction will be considerable in the case of dense or
correlated data for which the total number of rules is very large and most are redundant
(Bayardo and Agrawal, 1999; Brin et al., 1997; Siverstein et al., 1998).

With the min-max basis, the analyst is presented a set of rules covering all the attributes
of the dataset: All of the data-space is characterized by the min-max rules, overcoming
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an important deficiency of most reduction methods where large sub-spaces of the data-
space may be poorly characterized or even entirely uncharacterized (Bayardo and Agrawal,
1999). This property helps insuring that rules “surprising” for the analyst, that are important
information (Piatetsky and Matheus, 1994; Silberschatz and Tuzhilin, 1996), will be present.
Moreover, the min-max basis does not represent any information loss for the analyst: all
information brought by the set of all association rules is brought by the min-max basis.
This approach does not suffer of the problem of information loss—from the analyst’s point
of view—that is an important drawback in association rule reduction methods (Liu et al.,
1999). If the analyst so wishes, it is also possible to efficiently deduce all other association
rules, with supports and confidences, from the min-max basis alone.

1.3. Organization

In Section 2, we recall the semantic for association rules based on the Galois connection
and the CLOSE algorithm for extracting frequent closed itemsets and generators. We also
present the CLOSE+ algorithm for efficiently deriving frequent closed itemsets, their genera-
tors and their supports from frequent itemsets and their supports. Min-max association rules
and the min-max basis for association rules are defined in Section 3. Algorithms for gener-
ating this basis are also presented. In Section 4, we present simple methods and algorithms
for deriving all association rules from the min-max basis. Results of experiments conducted
to evaluate the usefulness of this approach are given in Sections 5 and 6 concludes the
paper.

2. Semantic for association rules based on the Galois connection

The association rule extraction is performed from a data mining context,3 that is a triplet
D = (O, I,R), where O and I are finite sets of objects and items respectively, and
R ⊆ O × I is a binary relation. Each couple (o, i) ∈ R denotes the fact that the object
o ∈ O is related to the item i ∈ I. An itemset l is a set of items l ⊆ I, l �= ���.

Example 2. A data mining context D constituted of six objects, each one identified by
its OID, and five items is represented in Table 2. This context is used as support for the
examples in the rest of the paper.

Table 2. Data mining context D.

OID Items

1 A C D

2 B C E

3 A B C E

4 B E

5 A B C E

6 B C E
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The Galois connection of a finite binary relation (Ganter and Wille, 1999) is a couple of
applications (φ, ψ). φ associates with a set of objects O ⊆ O the items related to all objects
o ∈ O and ψ associates with an itemset l ⊆ I the objects related to all items i ∈ l. When
an object o is related to all items i ∈ l, we say that o contains l. We denote minsupp and
minconf the minimal support and confidence thresholds.

Definition 1 (Frequent itemsets). The support of an itemset l is the proportion of objects
in the context containing l: supp(l) = |ψ(l)|/|O|. l is a frequent itemset if supp(l) ≥
minsupp.

Definition 2 (Association rules). An association rule r is an implication between two
frequent itemsets l1, l2 ⊆ I with the form l1 → (l2\l1) where l1 ⊂ l2. The support and
confidence of r are defined by: supp(r ) = supp(l2), conf (r ) = supp(l2)/supp(l1).

The closure operator γ = φ ◦ ψ associates with an itemset l the maximal set of items
common to all the objects containing l: The closure of an itemset is equal to the intersection
of all the objects containing it. Using this closure operator, we define the frequent closed
itemsets.

Definition 3 (Frequent closed itemsets). A frequent itemset l ⊆ I is a frequent closed
itemset iff γ (l) = l. The minimal closed itemset containing an itemset l is its closure γ (l).

The set of frequent closed itemsets and their supports is a minimal non-redundant generating
set for all frequent itemsets and their supports, and thus for all association rules, their
supports and their confidences. This theorem relies on the properties that the support of a
frequent itemset is equal to the support of its closure and that maximal frequent itemsets are
maximal frequent closed itemsets (Pasquier et al., 1998). In order to improve the efficiency of
frequent closed itemset extraction, the CLOSE and A-CLOSE algorithms compute generators
of frequent closed itemsets.

Definition 4 (Generators). An itemset g ⊆ I is a generator of a closed itemset l iff γ (g) = l
and � ∃g′ ⊆ I with g′ ⊂ g such that γ (g′) = l. A generator of cardinality k is a k-generator.

Generators are the minimal itemsets to consider for discovering frequent closed itemsets,
by computing their closures. Based on the following lemma, CLOSE and A-CLOSE perform
a breadth-first search for generators in a levelwise manner.

Lemma 1. All subsets s ⊆ I of a generator g ⊆ I are also generators. The closure of s
is a closed subset of the closure of g: γ (s) ⊂ γ (g).

Proof: See Pasquier et al. (1999b).
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2.1. Extracting frequent closed itemsets and generators with CLOSE

The CLOSE algorithm is an iterative algorithm for extracting generators and frequent closed
itemsets in a levelwise manner. During an iteration k, a list of candidate k-generators is
considered; their closures and their supports are computed from the dataset and infrequent
generators are discarded. Frequent generators are then used to construct candidate (k + 1)-
generators. The closures of frequent generators are the frequent closed itemsets and the
support of a generator is also the support of its closure.

During the kth iteration, a set FCk is considered. Each element of this set consists of
three information: a k-generator, its closure and their support. The algorithm first initializes
the candidate 1-generators in FC1 with the list of 1-itemsets and then carries out some
iterations. During each iteration k:

1. Closures of all candidate k-generators and their supports are computed: The number of
objects containing a generator determines its support and their intersection generates
its closure. Each object is considered once and this phase requires only one scan of the
dataset.

2. Infrequent k-generators, i.e., generators with support lower than minsupp, are removed
from FCk .

3. The set of candidate (k+1)-generators is constructed by joining the frequent k-generators
in FCk as follows.

(a) Two k-generators in FCk that have the same first k−1 items are joined to create a
candidate (k + 1)-generator. For instance, the 3-generators {ABC} and {ABD} will
be joined in order to create the candidate 4-generator {ABCD}.

(b) Candidate (k + 1)-generators that are infrequent or non-minimal are removed. One
of the k-subsets of such a generator is either infrequent or non-minimal and thus
does not belong to the set of frequent k-generators in FCk .

(c) The third phase removes (k + 1)-generators which closures were already computed.
Such a generator g is easily identified as it is included in the closure of a frequent
k-generator g′ in FCk : We have g′ ⊂ g ⊆ γ (g′).

The algorithm stops when no new candidate generator can be created. Then, each set FCk

stores the frequent k-generators, their closures and their supports.

Example 3. Figure 1 shows the execution of the CLOSE algorithm on the context D for
minsupp = 2/6. The set FC1 is initialized with the list of all 1-itemsets. The algorithm com-
putes supports and closures of the 1-generators in FC1 and infrequent ones are discarded.
Then, joining the frequent generators in FC1, six new candidate 2-generators are created:
{AB}, {AC}, {AE}, {BC}, {BE} and {CE} in FC2. The 2-generators {AC} and {BE} are
removed form FC2 because we have {AC} ⊆ γ ({A}) and {BE} ⊆ γ ({B}). The algorithm
determines supports and closures of the remaining 2-generators in FC2 and suppresses
infrequent ones. Then, the candidate 3-generator {ABE} is created by joining the frequent
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Figure 1. Extracting frequent closed itemsets in the context D with CLOSE.

generators in FC2 but is removed because the 2-generator {BE} ⊂ {ABE} is not in FC2

and the algorithm stops.

The A-CLOSE algorithm improves the efficiency of the extraction in case of weakly cor-
related data. It does not compute closures of candidate generators during the iterations, but
during an ultimate scan carried out after the end of these iterations if necessary. Experimen-
tal results show that CLOSE and A-CLOSE are particularly efficient for mining association
rules from dense or correlated data. On such data, CLOSE outperforms A-CLOSE, and they
both outperform algorithms for extracting frequent itemsets and maximal frequent itemsets.
In that case, algorithms for extracting maximal frequent itemsets suffer from the cost of the
frequent itemset supports computation that requires accessing the dataset. On the contrary,
for weakly correlated data, algorithms for extracting maximal frequent itemsets are the most
efficient and algorithms for extracting frequent itemsets, as well as A-CLOSE, outperform
CLOSE.

The CHARM (Zaki and Hsiao, 1999) and CLOSET (Pei et al., 2000) algorithms extract
frequent closed itemsets. However, none of these algorithm extract generators and can be
used to generate the min-max basis for association rules. The PASCAL (Bastide et al., 2000)
algorithm is an optimization of APRIORI based on inference counting and equivalence classes
defined according to itemset supports. It can easily be extended to generate the min-max
basis since generators and closed itemsets are respectively bottom and top patterns of an
equivalence class.

2.2. Deriving frequent closed itemsets and generators from frequent itemsets

The CLOSE+ algorithm identifies frequent closed itemsets and generators among frequent
itemsets without accessing the dataset. It enables the efficient generation of the min-max
basis when an algorithm for extracting frequent itemsets is used. Such an algorithm gives
as result the sets Fk , each set Fk containing all frequent k-itemsets, with k varying from
1 to µ (the size of the longest maximal frequent itemsets). The frequent closed itemsets
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and generators are identified among frequent itemsets using Propositions 1 and 2 that are
derived from the property that an itemset’s support is equal to its closure’s support. The
completeness of the approach is insured by the property that maximal frequent itemsets are
maximal frequent closed itemsets (Pasquier et al., 1998).

Proposition 1. The support of a generator is smaller than the supports of all its subsets.

Proof: Let g be a k-generator and s a (k − 1)-subsets of g. We then have s ⊂ g ⇒
ψ(s) ⊇ ψ(g). If ψ(s) = ψ(g) then γ (s) = γ (g) and g is not a generator: It is not a minimal
itemset whose closure is γ (g). It follows that ψ(s) ⊃ ψ(g) ⇒ supp(g) > supp(s).

Proposition 2. The support of a closed itemset is greater than the supports of all its
supersets.

Proof: Let l be a closed k-itemset and s a superset of l. We then have l ⊂ s ⇒ψ(l) ⊇ ψ(s).
If ψ(l) = ψ(s) then γ (l) = γ (s) ⇒ l = γ (s) ⇒ s ⊆ l (absurd). It follows that ψ(l) ⊃ ψ(s)
⇒ supp(l) > supp(s).

The pseudo-code of the CLOSE+ algorithm is given in figure 2. It examines successively
all frequent itemsets in each set Fk , with k varying from 1 to µ. It generates the sets FCm ,
1 ≤ m ≤ ν, where ν is the size of the longest generators, containing the m-generators,
their closures and their supports. It first determines if a frequent k-itemset is a generator
by examining all its (k − 1)-subsets’ supports; it then determine if it is a closed itemset by
examining all its (k + 1)-supersets’ supports and if so, identifies its generators by exam-
ining all its subsets’ supports. The boolean variables isclosed and isgenerator are used to
determine if an itemset l is a closed itemset or is a generator.

At the beginning of the kth iteration (steps 1 to 21), the set FCk is empty (step 2). In
steps 3 to 20, frequent itemsets in Fk are considered successively. If an itemset l has the
same support as one of its (k − 1)-subset l ′ in Fk−1 (steps 5 to 7), then l is not a generator
(step 6). Otherwise, l and its support are inserted in FCk (step 8). Then, we test if l has
the same support as one of its (k + 1)-superset l” in Fk+1 (steps 10 to 12). If so, we have
l ′ ⊆ γ (l) and then l �= γ (l): l is not closed (step 11). Otherwise, l is a frequent closed
itemset and we determine the generators of l (steps 13 to 19) as follows. For each generator
g of size n, with 1 ≤ n ≤ k, that is a subset of l (steps 14 to 18), if the supports of g and
l are equal then g is a generator of l and l is inserted in FCn as the closure of g (step 16).
Thus, at the end of the algorithm, each set FCk contains all frequent k-generators, their
closures and their supports.

Correctness. The correctness of the computation of sets FCk for 1 ≤ k ≤ µ relies on
Propositions 1 and 2. Using the first one, we determine if a frequent k-itemset l is a generator
of a closed itemset by comparing its support and the supports of the frequent (k−1)-itemsets
included in l. The second proposition enables to determine if a frequent k-itemset l is closed
by comparing its support and the supports of the frequent (k + 1)-itemsets in which l is
included. Since a generator has the same support as its closure, the determination of the
generators of a closed itemset is correct.
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Figure 2. CLOSE+ algorithm for deriving frequent closed itemsets and generators.

Example 4. Figure 3 shows the execution of the CLOSE+ algorithm using the sets F1 to
F4 of frequent itemsets extracted from the context D with minsupp = 2/6. All frequent
1-itemsets are frequent 1-generators since none of their subsets is a frequent itemset: The
empty set is not considered as a frequent itemset. The 1-itemset {C} is also its own closure
since all its supersets in F2 have a smaller support. In F2, the 2-itemsets {AC} and {BE}
are not generators since they have the same support as itemsets {A} and, {B} and {E}
respectively. These two itemsets are closed since their support is lower than those of all
their supersets in F3; {AC} is the closure of {A} and {BE} is the closure of {B} and {E}.
No frequent 3-itemset in F3 is a generator and {BCE}, that has the same support as {BC}
and {CE} and a greater support than {ABCE} in FC4, is the closure of {BC} and {CE} in
FC2. Finally, the 4-itemset {ABCE} is closed since it is a maximal frequent itemset is the
closure of {AB} and {AE}, and is inserted in FC2.

Remark. As a simple optimization, the algorithm can stop testing if frequent k-itemsets
are generators after the first iteration n during which no frequent n-itemset examined is a
generator. In Example 4, the algorithm will not test if 4-itemsets in F4 are generators since
no 3-itemset is a generator (FC3 is empty at the end of the third iteration).
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Figure 3. Deriving frequent closed itemsets and generators with CLOSE+.
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3. Min-max basis for association rules

We first define min-max association rules: The most general non-redundant association
rules according to their semantic. Informally, an association rule is redundant if it brings the
same information or less information than is brought by another rule of same support and
confidence. Then, the min-max association rules are the non-redundant association rules
having minimal antecedent and maximal consequent: r is a min-max association rule if no
other association rule r ′ has the same support and confidence, an antecedent that is a subset
of the antecedent of r and a consequent that is a superset of the consequent of r .

Definition 5 (Min-max association rules). LetAR be the set of association rules extracted.
An association rule r : l1 → l2 ∈ AR is a min-max association rule iff � ∃ r ′ : l ′1 → l ′2 ∈ AR
with supp(r ′) = supp(r ), conf(r ′) = conf(r ), l ′1 ⊆ l1 and l2 ⊆ l ′2.

Based on this definition, we characterize exact and approximate min-max association rules
that constitute respectively the min-max exact basis and the min-max approximate basis in
the two following sections.

3.1. Exact min-max association rules

First, notice that exact association rules, with the form r : l1 ⇒ (l2\l1), are rules between
two frequent itemsets l1 ⊂ l2 having the same closure: γ (l1) = γ (l2). Since conf (r ) = 1
we have supp(l1) = supp(l2), and as l1 ⊂ l2 we see that γ (l1) = γ (l2). We define min-max
association rules among these exact rules.

Let g be the generator of γ (l1) = γ (l2) such that g ⊆ l1. Since g is minimal, we
have g ⊆ l1 ⊂ l2 ⊆ γ (l2). Furthermore, all itemsets in the interval [g, γ (l2)], defined by
inclusion,4 have the same closure γ (l2) and thus the same support. The min-max association
rule among all rules with the form r : l1 ⇒ (l2\l1) with l1, l2 ∈ [g, γ (l2)] is the rule
g ⇒ (γ (l2)\g). This rule has a minimal antecedent, g, and a maximal consequent, γ (l2),
among all these rules that have the same support.

We generalize this definition to all generators of the frequent closed itemset γ (l2). Let
Genγ (l2) be the set of these generators. All exact min-max association rules constructed
with γ (l2) are rules with the form g ⇒ (γ (l2)\g) with g ∈ Genγ (l2). The extension of this
property to all frequent closed itemsets defines the min-max exact basis containing all exact
min-max association rules characterized in Definition 5.

Definition 6 (Min-max exact basis). Let Closed be the set of frequent closed itemsets
extracted from the context and, for each frequent closed itemset f , let’s denote Gen f the
set of generators of f . The min-max exact basis is:

MinMaxExact = {r : g ⇒ ( f \g) | f ∈ Closed ∧ g ∈ Gen f ∧ g �= f }.
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Figure 4. Algorithm for generating the min-max exact basis.

The condition g �= f discards rules with the form g ⇒ ���; it is equivalent to the condition
l1 ⊂ l2 in the definition of association rules. We state in the following proposition that the
min-max exact basis does not lead to information loss.

The pseudo-code of the algorithm for constructing the min-max exact basis using frequent
closed itemsets and their generators is presented in figure 4. Each element of a set FCk

contains three fields: a k-generator generator, its closure closure and their support supp.
The algorithm returns the set MinMaxExact containing the exact min-max rules.

First, MinMaxExact is initialized with the empty set (step 1). Then, each set FCk is
examined in increasing order of k values (steps 2 to 7). For each k-generator g ∈ FCk of
the frequent closed itemset γ (g) (steps 3 to 6), if g is different from its closure γ (g) (step 4),
the rule r : g ⇒ (γ (g)\g), which support is equal to the support of g and γ (g), is inserted
into MinMaxExact (step 5). Finally, the algorithm returns the set MinMaxExact containing
all exact min-max association rules between generators and their closures (step 8).

Example 5. The min-max exact basis extracted from context D for minsupp = 2/6 is
presented in Table 3. It contains seven rules whereas the set of all exact association rules,
presented in Table 4, contains fourteen rules.

Proposition 3. (i) All exact association rules and their supports can be deduced from
the min-max exact basis. (ii) All rules in the min-max exact basis are min-max association
rules.

Proof: (i) Let r : l1 ⇒ (l2\l1) be an exact association rule between two frequent itemsets
with l1 ⊂ l2. Since conf (r ) = 1, we have supp(l1) = supp(l2) and as an itemset’s support
is equal to its closure’s support, we deduce that supp(γ (l1)) = supp(γ (l2)) which implies
that γ (l1) = γ (l2) = f . The itemset f is a frequent closed itemset f ∈ FC and, obviously,
there exists a rule r ′ : g ⇒ ( f \g) ∈ MinMaxExact such that g is a generator of f with
g ⊆ l1 and g ⊂ l2. We show now that the rule r and its support can be deduced from
the rule r ′ and its support. Since g ⊆ l1 ⊂ l2 ⊆ f , rule r ’s antecedent and consequent
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Table 3. Min-max exact basis extracted from D.

Generator Closure Exact rule Supp

{A} {AC} A ⇒ C 3/6

{B} {BE} B ⇒ E 5/6

{C} {C}
{E} {BE} E ⇒ B 5/6

{AB} {ABCE} AB ⇒ CE 2/6

{AE} {ABCE} AE ⇒ BC 2/6

{BC} {BCE} BC ⇒ E 4/6

{CE} {BCE} CE ⇒ B 4/6

Table 4. Exact association rules extracted from D.

Exact rule Supp Exact rule Supp

A ⇒ C 3/6 BC ⇒ E 4/6

B ⇒ E 5/6 CE ⇒ B 4/6

E ⇒ B 5/6 AB ⇒ CE 2/6

AB ⇒ C 2/6 AE ⇒ BC 2/6

AB ⇒ E 2/6 ABC ⇒ E 2/6

AE ⇒ B 2/6 ABE ⇒ C 2/6

AE ⇒ C 2/6 ACE ⇒ B 2/6

can be derived from those of rule r ′. From γ (l1) = γ (l2) = f , we deduce that supp(r ) =
supp(l2) = supp(γ (l2)) = supp( f ) = supp(r ′).

(ii) Let r : g ⇒ ( f \g) ∈ MinMaxExact. According to Definition 6, we have g ∈ Gen f and
f ∈ Closed. We demonstrate that there is no other rule r ′ : l ′1 ⇒ (l ′2\l ′1) ∈ MinMaxExact,
such as supp(r ′) = supp(r ), conf(r ′) = conf(r ), l ′1 ⊆ g and f ⊆ l ′2. If l ′1 ⊂ g then, according
to Definition 4, we have γ (l ′1) ⊂ γ (g) = f =⇒ l1 �∈ Gen f and then r ′ �∈ MinMaxExact.
If f ⊂ l ′2 and according to Definition 3, we have f = γ ( f ) = γ (g) ⊂ l ′2 = γ (l ′2). From
Definition 4 we deduce g �∈ Genl ′2 and we conclude that r ′ �∈ MinMaxExact.

3.2. Approximate min-max association rules

Approximate association rules, with the form r : l1 → (l2\l1), are rules between two frequent
itemsets l1 ⊂ l2 such that γ (l1) ⊂ γ (l2). Since conf (r ) < 1 we have supp(l1) > supp(l2)
and we deduce that γ (l1) ⊂ γ (l2).

We deduce the definition of approximate min-max association rules. Let g1 be a generator
of the frequent closed itemset f1 and g2 be a generator of the frequent closed itemset f2

such that f1 ⊂ g2 ⊆ l2 ⊆ f2. All rules with the form r : l1 → (l2\l1) where l1 ∈ [g1, f1]
and l2 ∈ [g2, f2] have the same confidence and the same support since g1, l1 and f1 have
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Figure 5. Algorithm for generating the min-max approximate basis.

the same support as well as g2, l2 and f2. We then deduce that the min-max association rule
among all these rules is g1 → ( f2\g1). Indeed, g1 is the minimal itemset in [g1, f1] and f2

is the maximal itemset in [g2, f2].
The generalization of this property to all couples of frequent itemsets l1 and l2 such

that l1 ⊂ l2 and supp(l1) �= supp(l2) defines the min-max approximate basis containing all
approximate min-max association rules characterized in Definition 5.

Definition 7 (Min-max approximate basis). We denote Gen the set of generators of the
frequent closed itemsets in Closed. The min-max approximate basis is:

MinMaxApprox = {r : g → ( f \g) | f ∈ Closed ∧ g ∈ Gen ∧ γ (g) ⊂ f }.

The pseudo code of the algorithm for generating the set MinMaxApprox of approxi-
mate min-max rules using frequent closed itemsets and their generators is presented in
figure 5.

The algorithm examines the sets FCk in increasing order of k values (steps 2 to 9). For
each k-generator g ∈ FCk (steps 3 to 8), it considers all closed supersets f of the closure
of g (steps 4 to 7). It computes the confidence of the rule r : g → ( f \g) (step 5) and inserts
r in MinMaxReduc if it is above the minconf threshold (step 6).

Example 6. The min-max approximate basis extracted from context D for minsupp =
2/6 and minconf = 2/5 is presented in Table 5. It contains ten rules whereas the set of all
approximate association rules, presented in Table 6, contains thirty-six rules.

Proposition 4. (i) All approximate association rules can be deduced, with their sup-
ports and confidences, from the min-max approximate basis. (ii) All rules in the min-max
approximate basis are min-max association rules.
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Table 5. Min-max approximate basis extracted from D.

Generator Closure Closed superset Approximate rule Supp Conf

{A} {AC} {ABCE} A → BCE 2/6 2/3

{B} {BE} {BCE} B → CE 4/6 4/5

{B} {BE} {ABCE} B → ACE 2/6 2/5

{C} {C} {AC} C → A 3/6 3/5

{C} {C} {BCE} C → BE 4/6 4/5

{C} {C} {ABCE} C → ABE 2/6 2/5

{E} {BE} {BCE} E → BC 4/6 4/5

{E} {BE} {ABCE} E → ABC 2/6 2/5

{AB} {ABCE}
{AE} {ABCE}
{BC} {BCE} {ABCE} BC → AE 2/6 2/4

{CE} {BCE} {ABCE} CE → AB 2/6 2/4

Table 6. Approximate association rules extracted from D.

Approximate rule Supp Conf Approximate rule Supp Conf Approximate rule Supp Conf

BCE → A 2/6 2/4 B → ACE 2/6 2/5 B → CE 4/6 4/5

AC → BE 2/6 2/3 C → ABE 2/6 2/5 C → BE 4/6 4/5

BC → AE 2/6 2/4 E → ABC 2/6 2/5 E → BC 4/6 4/5

BE → AC 2/6 2/5 A → BC 2/6 2/3 A → B 2/6 2/3

CE → AB 2/6 2/4 B → AC 2/6 2/5 B → A 2/6 2/5

AC → B 2/6 2/3 C → AB 2/6 2/5 C → A 3/6 3/5

BC → A 2/6 2/4 A → BE 2/6 2/3 A → E 2/6 2/3

BE → A 2/6 2/5 B → AE 2/6 2/5 E → A 2/6 2/5

AC → E 2/6 2/3 E → AB 2/6 2/5 B → C 4/6 4/5

CE → A 2/6 2/4 A → CE 2/6 2/3 C → B 4/6 4/5

BE → C 4/6 4/5 C → AE 2/6 2/5 C → E 4/6 4/5

A → BCE 2/6 2/3 E → AC 2/6 2/5 E → C 4/6 4/5

Proof: (i) Let r : l1 → (l2\l1) be an association rule between two frequent itemsets with
l1 ⊂ l2. Since conf (r ) < 1 we also have γ (l1) ⊂ γ (l2). For any frequent itemsets l1 and
l2, there is a generator g1 such that g1 ⊂ l1 ⊆ γ (l1) = γ (g1) and a generator g2 such that
g2 ⊂ l2 ⊆ γ (l2) = γ (g2). Since l1 ⊂ l2, we have l1 ⊆ γ (g1) ⊂ l2 ⊆ γ (g2) and the rule
r ′ : g1 → (γ (g2)\g1) is in the min-max approximate basis. We show that the rule r , its
support and its confidence can be deduced from the rule r ′, its support and its confidence.
Since g1 ⊂ l1 ⊆ γ (g1) ⊂ g2 ⊂ l2 ⊆ γ (g2), the antecedent and the consequent of r can
be rebuilt starting from the rule r ′. Moreover, we have γ (l2) = γ (g2) and thus supp(r ) =



46 PASQUIER ET AL.

supp(l2) = supp(γ (g2)) = supp(r ′). Since g1 ⊂ l1 ⊆ γ (g1), we have supp(g1) = supp(l1)
and we thus deduce that: conf (r ) = supp(l1)/supp(l2) = supp(g1)/supp(γ (g2)) = conf (r ′).

(ii) Let r : g ⇒ ( f \g) ∈ MinMaxExact. According to Definition 7, we have f ∈ Closed,
g ∈ Gen f ′ and f ′ ⊂ f . We demonstrate that there is no other rule r ′ : l ′1 ⇒ (l ′2\l ′1) ∈
MinMaxApprox, such as supp(r ′) = supp(r ), conf(r ′) = conf(r ), l ′1 ⊆ g and f ⊆ l ′2. If
l ′1 ⊂ g then, according to Definition 4, we have γ (l ′1) ⊂ γ (g) = f ′ and then l1 �∈ Gen f ′ . We
deduce that supp(l ′1) > supp(g) and then conf (r ′) < conf (r ). If f ⊂ l ′2 then, according to
Definition 3, we have f =γ ( f ) ⊂ l ′2 = γ (l ′2). We deduce that supp( f ) > supp(l ′2) and we
conclude that conf (r ) > conf (r ′).

3.3. Non-transitive approximate min-max association rules

We can further reduce the number of approximate association rules extracted without losing
the ability to deduce all approximate association rules, with support and confidence, by
removing transitive min-max association rules.

A min-max association rules g → ( f \g) with γ (g) ⊂ f is transitive if it exists a
frequent closed itemset f ′ such that γ (g) ⊂ f ′ ⊂ f . Let g′ be the generator of f ′ such that
γ (g) ⊂ g′ ⊆ f ′ ⊂ f . Then, we have the two following approximate min-max association
rules: g → ( f ′\g) and g′ → ( f \g′). The rule g → ( f \g) is the transitive composition of
the two previous rules; its support is equal to the second rule’s support and its confidence
is equal to the product of their confidences.

We generalize this characterization to all triplets consisting of a generators g, its closure
f and a closed superset f ′ of f to define the non-transitive min-max approximate basis, that
is the transitive reduction of the min-max approximate basis. Let’s denote l1 <· l2 when an
itemset l1 is an immediate predecessor of an itemset l2, i.e. � ∃ l3 such that l1 ⊂ l3 ⊂ l2. The
non-transitive min-max approximate rules are of the form g → ( f \g) where f is a frequent
closed itemset and g a frequent generator such that γ (g) is an immediate predecessor
of f .

Definition 8 (Non-transitive min-max approximate basis). The non-transitive min-max
approximate basis is:

MinMaxReduc = {r : g → ( f \g) | f ∈ Closed ∧ g ∈ Gen ∧ γ (g) <· f }.

Remark. This transitive reduction decreases the number of approximate rules extracted,
by selecting the most precise rules, i.e. whith highest confidences, since transitive rules
have lower confidences than non-transitive rules.

The algorithm presented in figure 6 constructs the set MinMaxReduc of non-transitive
approximate min-max rules using frequent closed itemsets and their generators. For each
generator g, it determines all frequent closed itemsets f that are immediate successors of
the closure of g and then, it generates all rules between g and f that have a sufficient
confidence.
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Figure 6. Algorithm for generating the non-transitive min-max approximate basis.

First, MinMaxReduc is initialized with the empty set (step 1) and sets FCk are successively
examined in increasing order of k values (steps 2 to 19). For each k-generator g ∈ FCk

(steps 3 to 18), the set ImSuccg of immediate successors of g closure is initialized with the
empty set (step 4). The sets Sj of frequent closed j-supersets of γ (g) for |γ (g)| < j ≤ µ

are constructed (steps 5 to 7). Then, sets Sj are considered successively in ascending
order of j values (steps 8 to 17). For each itemset f ∈ Sj that is not a superset of an
immediate successor of γ (g) in ImSuccg (step 10), f is inserted in ImSuccg (step 11) and
the confidence of the rule r : g → ( f \g) is computed (step 12). If the confidence of r is above
minconf , the rule r is inserted in MinMaxReduc (steps 13 and 14). When all the generators
of size lower than ν − 1 have been considered, the algorithm returns the set MinMaxReduc
(step 20).

Example 7. The non-redundant min-max approximate basis extracted from context D for
minsupp = 2/6 and minconf = 2/5 is presented in Table 7. It contains only seven rules, that
is three rules less than the approximate min-max basis. These three rules are B → ACE, C
→ BE and E → ABC that have minimal support and confidence measures among the ten
rules of the approximate min-max basis.
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Table 7. Non-transitive min-max approximate basis extracted from D.

Generator Closure Closed superset Approximate rule Supp Conf

{A} {AC} {ABCE} A → BCE 2/6 2/3

{B} {BE} {BCE} B → CE 4/6 4/5

{B} {BE} {ABCE}
{C} {C} {AC} C → A 3/6 3/5

{C} {C} {BCE} C → BE 4/6 4/5

{C} {C} {ABCE}
{E} {BE} {BCE} E → BC 4/6 4/5

{E} {BE} {ABCE}
{AB} {ABCE}
{AE} {ABCE}
{BC} {BCE} {ABCE} BC → AE 2/6 2/4

{CE} {BCE} {ABCE} CE → AB 2/6 2/4

Proposition 5. All approximate association rules, with support and confidence, can be
deduced from the non-transitive min-max approximate basis.

First, we show that all approximate min-max association rules can be derived from the non-
transitive min-max approximate association rules. Then, from Proposition 4 we conclude
that all approximate association rules can also be deduced.

Proof: Let r : g1 → ( fn\g1) be an approximate min-max association rule between a
generator g1 whose closure is f1 and a frequent closed superset fn of f1. If f1 <· fn then r
is non-transitive: r ∈ MinMaxReduc. If f1 �<· fn then r is transitive and there is a sequence
f1, f2, . . . , fn of frequent closed itemsets such that g1 ⊆ f1 <· f2 <· · · · <· fn with n ≥ 3.
Each fi has at least one generator gi such that γ (gi )= fi and since f1 <· f2 <· · · · <· fn , there
is a sequence of rules ri : gi → ( fi+1\gi ) for i ∈ [1, n − 1] that are non-transitive min-
max rules. The antecedent of r is the antecedent g1 of the first rule r1 of the sequence. The
consequent of r is ( fn\g1) = ((( fn\gn−1)∪gn−1)\g1), i.e. the union of rule rn−1’s antecedent
and consequent minus rule r1’s antecedent. We now show that support and confidence of r
can be deduced of those of rules ri . We have supp(r ) = supp(g1 ∪ ( fn\g1)) = supp( fn) =
supp(gn−1∪( fn\gn−1)) = supp(rn−1). The support of r is equal to the support of the last rule
rn−1 of the sequence. We also have: conf (r )=supp( fn)/supp(g1) = supp( fn)/supp(gn−1) ×
supp(gn−1)/supp(g1) = supp( fn)/ supp(gn−1) × supp( fn−1)/supp(gn−2) × · · · ×supp( f2)/
supp(g1) = conf (rn−1) × conf (rn−2) × · · · × conf (r1). The confidence of r is equal to the
product of the confidences of the rules ri for i = 1 to n − 1.

4. Deriving association rules from the min-max bases

We introduce in this section simple techniques and algorithms to reconstruct all exact
association rules, all approximate association rules and all transitive approximate min-max
association rules from the min-max bases.
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4.1. Deriving exact association rules

The graph-oriented representation of the exact and the exact min-max association rules
extracted from context D for minsupp = 2/6 and minconf = 2/5 are given in figures 7 and 8
respectively.

Each vertex vl represents a frequent itemset l that is a subset of the maximal frequent
itemset {ABCE}. Each edge between two vertices va and vc represents the exact association
rule a ⇒ c\a. A closed interval is a sub-graph containing all vertices representing itemsets
of the intervals [gi , f ] where each gi is a generator of the frequent closed itemset f . Since
all itemsets in a closed interval have the same support, all rules in this interval also have the
same support.

In the graph representation, deriving all exact rules means adding all possible edges
between two vertices of the same closed interval. Each edge in figure 8 between two vertices
vg and v f represents a rule between a generator g and its closure f . Then, we add all edges
between two vertices, one representing a superset of g and the other a subset of f .

The algorithm receives the set MinMaxExact of exact min-max rules as input and it
returns the set AllExact containing all exact association rules. Its pseudo-code is presented
in figure 9. It considers all exact min-max rules r1 : a1 ⇒ c1 with |c1| > 1 (steps 2 to 8).
For all subset c2 of c1 (steps 3 to 7), it generates all rules with the form r2 : a1 ⇒ c2 and
r3 : a1 ∪ c2 ⇒ c1\c2 (steps 4 and 6). These rules have the same support as r1. Since rule r3

can be generated several times, the algorithm first tests if it has not already been inserted in
AllExact (step 5).

Figure 7. Exact association rules extracted from D.
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Figure 8. Exact min-max association rules extracted from D.

Figure 9. Algorithm for reconstructing all exact association rules.

Example 8. Consider rule AB ⇒ CE represented in figure 4 by the edge between vertices
{AB} and {ABCE}. From this rule we deduce rules AB ⇒ C, AB ⇒ E, ABC ⇒ E and
ABE ⇒ C and from rule AE ⇒ BC, we deduce rules AE ⇒ B, AE ⇒ C, ABE ⇒ C and
ACE ⇒ B. All these rules have the same support.

Remark. For constructing all exact rules using sets FCk of generators and frequent closed
itemsets, we consider each generator g and its closure f . We generate all rules r : g ⇒ l\g
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and r : l ⇒ f \l for l ∈ [g, f [. For instance, from the generator {AB} and its closure
{ABCE}, we generate rules AB ⇒ CE, AB ⇒ C, AB ⇒ E, ABC ⇒ E and ABE ⇒ C.
Their support is equal to the support of g and f , i.e. the support of {AB} and {ABCE}.

4.2. Deriving approximate association rules

Figures 10 and 11 depict the graph-oriented representations of the approximate and the
approximate min-max association rules extracted from context D for minsupp = 2/6 and
minconf = 2/5. Each edge between two vertices va and vc represents the approximate rule
a → c\a.

In figure 11, each edge between two vertices vg and v f represents the min-max approxi-
mate rule g → f \g where g is a generator and f a frequent closed superset of g. That is to
say an edge between a minimal vertex of a closed interval and the maximal vertex of another
closed interval above the first one. For instance, the edge between vertices containing {A}
and {ABCE} represents the rule A → BCE.

To derive all approximate rules, when there is an edge between two vertices of two closed
intervals we create all possible edges between each vertex of the first interval and each vertex
of the second interval. All these rules have the same support and confidence. In figure 11
for instance, we add all edges between vertices of the closed interval {{A}, {AC}} and the
closed interval {{AB}, {AE}, {ABC}, {ABE}, {ACE}, {ABCE}}. These rules have the
same support and confidence as rule A → BCE.

A simple and efficient method to derive all approximate rules is to proceed in two phases.
First, we generate all rules with the form g1 → li\g1 between a generator g1 and all its
frequent supersets li ∈ [gi , fi ] where gi is a generator of fi and g1 ⊂ gi . Second, we

Figure 10. Approximate association rules extracted from D.
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Figure 11. Approximate min-max association rules extracted from D.

“extend” these rules by replacing their antecedent by all itemsets l1 ∈ [g1, f1] where f1 is
the closure of g1.

The input of the algorithm are the sets MinMaxApprox and MinMaxExact of approximate
and exact min-max rules. Its result is the set AllApprox containing all approximate rules.
Its pseudo-code is presented in figure 12.

In the first phase (steps 2 to 10), it considers min-max approximate rules a1 → c1 with
|c1| > 1 in increasing order of their consequent’s size (steps 3 to 9). For each min-max
rule a1 → c1, all rules with the form a1 → c2 with c2 ⊂ c1 are generated if they were
not previously generated and there is no exact rule a1 ⇒ c2 (steps 4 to 8). All these rules
have the same support and confidence. In the second phase(steps 11 to 17), it considers all
approximate rules a1 → c1 and for each min-max exact rule a1 ⇒ c2 (steps 12 to 16),
it generates all rules with the form a1 ∪ c3 → c1\c3 for all subset c3 of c2 (steps 13
to 15).

Example 9. Considering rule A → BCE in figure 11, we deduce rules A → B, A → E,
A → BC, A → BE, A → CE. Rule A → C is not generated since A ⇒ C is an exact
rule, i.e. {A} and {AC} belong to the same closed interval. Then, since we have A ⇒ C,
extending all rules with A as antecedent we obtain rules AC → B, AC → E, AC → BE.

In order to generate all approximate rules using sets FCk of generators and frequent closed
itemsets, we consider each couple of intervals {[g1, f1], [g2, f2]} with γ (g1) = f1 and
γ (g2) = f2 such that g1 ⊂ g2. We generate all rules r : l1 → l2\l1 for l1 ∈ [g1, f1] and l2 ∈
[g2, f2]. The support of these rules is supp( f2) and their confidence is supp( f2)/supp( f1).
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Figure 12. Algorithm for reconstructing approximate min-max association rules.

For instance, from the generator {B} and its closure {BE} and the generator {BC} and its
closure {BCE}, we generate the rules B → C, B → CE and BE → C.

4.3. Deriving transitive approximate min-max association rules

The graph-oriented representation of the non-transitive approximate min-max association
rules extracted from context D for minsupp = 2/6 and minconf = 2/5 is given in figure 13.

Each edge between two vertices vg and v f represents the non-transitive approximate rule
g → f \g where g is a generator and f a frequent closed immediate successor of the closure
of g. That is an edge between a minimal vertex of a closed interval and the maximal vertex
of an immediately above closed interval.

An edge in figure 11 represents a transitive rule if it is an edge between a minimal
vertex of a closed interval and the maximal vertex of another closed interval that is not
immediately above the first one: There is a closed interval “intermediate” between these
two intervals. For instance, the rule C → ABE between the closed intervals {{C}} and
{{AB}, {AE}, {ABC}, {ABE}, {ACE}, {ABCE}} is transitive since we have rules C → A
and A → BCE and the closed interval {{A}, {AC}} is intermediate, i.e., {C} ⊂ {AC} ⊂
{ABCE}. The confidence of C → ABE is equal to the product of rules C → A and A → BCE
confidences.
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Figure 13. Non-transitive approximate min-max association rules extracted from D.

In order to derive all transitive rules, we first add all rules that are compositions of two
non-transitive rules, we then derive from them rules that are compositions of three non-
transitive rules and so on until no new rule can be derived. The three transitive min-max
rules reconstructed are C → ABE, B → ACE and E → ABC. They are all compositions
of two non-transitive rules, that have the form gi → f j\gi with gi ⊆ γ (gi ) = fi <· f j ,
represented in figure 7.

The algorithm presented in figure 14 generates the set MinMaxApprox of approximate
min-max rules using the set MinMaxReduc of non-transitive approximate min-max rules
and the minconf threshold as its input.

The approach is incremental: We iteratively add new transitive min-max rules until no
new rule has been created (steps 3 to 15). During each iteration, the Test set contains all rules
examined to generate new transitive rules and the algorithm stops when Test is empty. This
set is initialized with all non-transitive rules (step 1) and all rules r1 it contains, that have the
form gi → f j\gi , are successively examined (steps 4 to 14). For each non-transitive rule r2

in MinMaxReduc with the form g j → fm\g j such that g j ⊂ f j ⊂ fm (steps 5 and 6 to 12),
the transitive rule r3 with the form gi → fm\gi is generated in MinMaxTrans and Test
(steps 9 and 10) if its confidence is sufficient and it is not already present in MinMaxTrans
(steps 7 and 8). Then, rule r1 is removed from Test (step 13) since it is not needed anymore:
Only transitive rules generates from r1 will be examined in the following iterations.

Example 10. The transitive rule B → ACE is derived from rules B → CE and BC → AE
whose antecedent {BC} is a subset of {B} ∪ {CE} = {BCE}, and {BCE} is itself a subset
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Figure 14. Algorithm for reconstructing transitive approximate min-max association rules.

of {BC} ∪ {AE} = {ABCE}. The rule E → ABC is derived from E → BC and CE → AB.
The rule C → ABE can be derived from rules C → A and A → BCE, or from rules C → BE
and BC → AE or CE → AB.

5. Experimental results

We used the four following datasets during these experiments: T10I4D100 K5 is a synthetic
dataset built according to sales data properties. It contains 100,000 objects with an average
object size of 10 items and an average size of potential maximal frequent itemsets of 4
items. The MUSHROOMS dataset describes 23 characteristics (attributes) of 8,416 mush-
rooms (objects): Each object is related to 23 items and we have 127 items on the whole.
The C20D10K and C73D10K (Hettich and Bay, 1999) datasets are samples of the 1990
census in Kansas, each containing 10,000 objects corresponding to the first 10,000 listed
people. Each object is described by 20 attributes (20 items by objects and 386 items on the
whole) in C20D10K and 73 attributes (73 items by objects and 2,178 items on the whole)
in C73D10K.

Running times of the generation of all association rules and of the min-max bases are not
shown since they are insignificant compared to execution times of the itemset extraction.
Indeed, no dataset scan is required for this phase and all computations take place in main
memory. As a data-point, the largest running time obtained was 46.27 seconds for the
generation of the 2,053,936 approximate association rules for C73D10 K on a Pentium II
at 333 MHz with 256 MB of main memory.
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Table 8. Number of exact association rules extracted.

Dataset Minsupp (%) Exact rules Min-max basis

T10I4D100 K 0.5 0 0

MUSHROOMS 30 7,476 543

C20D10K 50 2,277 457

C73D10K 90 52,035 1,369

Number of exact association rules extracted. The total number of exact association rules
and the number of min-max exact association rules are presented in Table 8. No exact
association rule is extracted from T10I4D100 K since, for this minsupp value, all frequent
itemsets are frequent closed itemsets. Thus, they are themselves their own unique generator
and consequently, there is no exact association rule l1 ⇒ (l2\l1) between two frequent
itemsets l1 ⊂ l2 having identical closures γ (l1) = γ (l2). The three other datasets are made
up of correlated data, and the total number of exact rules is important, making it difficult
to discover interesting information. For these datasets, the min-max exact basis reduces the
number of rules by a factor varying from 13 to 50. Since there is no information loss, it
brings a complete summary of relevant information that is easier to exploit for the analyst.

Number of approximate association rules extracted. The total number of approximate
association rules and the number of approximate and non-transitive approximate min-max
rules are presented in Table 9. The number of approximate rules is very significant for the
four datasets, up to more than 2,000,000. Reducing this number is thus essential in order
to make it usable by the analyst. For T10I4D100 K, all frequent itemsets are both closed
and their own generators and the approximate min-max basis is identical to the set of all
rules. The non-transitive basis represents a reduction by a factor of 5 approximately of the
number of rules. For the three other datasets, the total number of approximate rules is much
more important than for the synthetic dataset since they contain dense and correlated data:
The number of frequent itemsets is much more important and thus, it is the same for the

Table 9. Number of approximate association rules extracted.

Dataset Minconf Approximate Approximate Non-transitive
(minsupp) (%) rules min-max basis min-max basis

T10I4D100 K 70 20,419 20,419 4,004

(0.5%) 30 22,952 22,952 4,519

MUSHROOMS 70 37,671 2,961 1,221

(30%) 30 71,412 6,571 1,578

C20D10K 70 89,601 10,116 1,957

(50%) 30 116,791 13,634 1,957

C73D10K 90 2,053,896 43,171 5,718

(90%) 80 2,053,936 43,175 5,718
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number of approximate rules. However, the fraction of frequent itemsets that are closed is
small and the bases reduce considerably the number of rules, by a factor of varying from 10
to 50 for the approximate min-max basis and, from 40 to 500 for the non-transitive basis.

Examining rules generated in the min-max approximate basis and its transitive reduc-
tion for the MUSHROOMS dataset, we verified that rule 4 of Example 1 in Section 1 is
the only one generated among the nine rules. Indeed, the itemsets {free gills} and {free
gills, edible, partial veil, white veil} are frequent closed itemsets and the first is an immedi-
ate predecessor of the second. Moreover, they are the only frequent closed itemsets in the
interval [ ���, {free gills, edible, partial veil, white veil}] and the frequent closed itemset {free
gills} is itself its own unique generator. Thus, rule 4 is the only min-max approximate rule
among the nine rules and is non-transitive.

6. Conclusion

The problem of association rules relevance occurs for most operational datasets. This prob-
lem is related to the huge number of rules generated and the presence of many redundan-
cies. The approach proposed in this paper consists in generating bases for association rules
that minimize as much as possible the number of extracted rules while bringing the same
information to the end-user. Using a semantic based on the Galois connection, we first char-
acterized min-max association rules as the non-redundant rules with minimal antecedent
and maximal consequent. Each min-max rule summarizes several other rules, suggesting
that these rules are the most relevant from the analyst’s point of view. From this charac-
terization, we defined the min-max basis for exact association rules, the min-max basis for
approximate association rules and its transitive reduction—which we believe is more useful
for the analyst as it retains only the most precise rules. The union of the former and one of
the latter of these bases constitutes a min-max basis for association rules that is a generating
set for all association rules, their supports and their confidences.

We presented algorithms for generating these bases from the frequent closed itemsets and
their generators, such as extracted by the CLOSE and A-CLOSE algorithms. When all frequent
itemsets have been mined, the CLOSE+ algorithm identifies frequent closed itemsets and their
generators among frequent itemsets. We also introduced simple methods and algorithms to
derive all exact rules, all approximate rules and all transitive approximate min-max rules
from the bases. None of these algorithms requires accessing the dataset and their execution
times are thus insignificant compared to the running times of the frequent itemsets, or the
frequent closed itemsets, extraction.

Experimental results conducted on both synthetic and operational datasets show that the
extraction of these bases considerably reduces the number of rules, particularly in the case
of dense or correlated data. The result is easier to browse and since redundant—and often
misleading—rules are suppressed, its usefulness is improved. Moreover, all of the data-
space is characterized by the min-max rules and this approach does not suffer from poorly
characterized or uncharacterized sub-spaces of the data-space, an important weakness of
many reduction methods. Another interesting feature of this approach is the possibility to
construct a graph-oriented representation of the min-max bases that is easily understand-
able for the end-user. It provides a natural, simple and clear graphical representation of
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association rules covering all the data-space and from which the deduction of all other rules
is direct.

An interesting perspective of future work is the definition of an inference system for
association rules equivalent to the Armstrong axioms for implications. As pointed out in
Section 1.1, up to now no complete and sound inference system that takes supports and
confidences into consideration has been proposed. Another attractive perspective of future
work is the introduction of the min-max bases in the data analysis and the Formal Concept
Analysis domains. Indeed, the min-max association rule definition is valid within the global
and partial implication rule frameworks. Hence, the definitions of the min-max bases for
exact and approximate association rules are also valid for global and partial implication
rules respectively. Since these bases represent no information loss and are constituted of the
most relevant rules from the analyst’s point of view, we believe that studying their impact
in these domains is also an interesting perpective.

Notes

1. All maximal and minimal sets considered are defined according to the inclusion relation.
2. We say that a rule r : a → c is more general than a rule r ′ : a′ → c′ if they have identical supports and

confidences, the antecedent a of r is a subset of a′ and the consequent c of r is a superset of c′. r ′ is then called
a sub-rule of r , and r a super-rule of r ′.

3. We will use context and dataset interchangeably in the sequel.
4. The interval [l1, l2] contains all the supersets of l1 that are subsets of l2.
5. http://www.almaden.ibm.com/cs/quest/syndata.html
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