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Germany

http://www.kde.cs.uni-kassel.de

Abstract. Association rules are a popular knowledge discovery tech-
nique for warehouse basket analysis. They indicate which items of the
warehouse are frequently bought together. The problem of association
rule mining has first been stated in 1993. Five years later, several re-
search groups discovered that this problem has a strong connection to
Formal Concept Analysis (FCA). In this survey, we will first introduce
some basic ideas of this connection along a specific algorithm, Titanic,
and show how FCA helps in reducing the number of resulting rules with-
out loss of information, before giving a general overview over the history
and state of the art of applying FCA for association rule mining.

1 Introduction

Knowledge discovery in databases (KDD) is defined as the non-trivial extraction
of valid, implicit, potentially useful and ultimately understandable information
in large databases [23]. For several years, a wide range of applications in various
domains have benefited from KDD techniques and many work has been con-
ducted on this topic. The problem of mining frequent itemsets arose first as a
sub-problem of mining association rules [1], but it then turned out to be present
in a variety of problems [24]: mining sequential patterns [3], episodes [32], associ-
ation rules [2], correlations [12, 43], multi-dimensional patterns [26, 28], maximal
itemsets [7, 54, 29], closed itemsets [47, 37, 38, 41]. Since the complexity of this
problem is exponential in the size of the binary database input relation and
since this relation has to be scanned several times during the process, efficient
algorithms for mining frequent itemsets are required.

In Formal Concept Analysis (FCA), the task of mining frequent itemsets
can be described as follows: Given a set G of objects, a set M of attributes (or
items), a binary relation I ⊆ G×M (where (g, m) ∈ I is read as “object g has
attribute m”), and a threshold minsupp ∈ [0, 1], determine all subsets X of M

(also called itemsets or patterns here) where the support supp(X) := card(X′)
card(G)

(with X ′ := {g ∈ G | ∀m ∈ X: (g, m) ∈ I}) is above the threshold minsupp.



The set of these frequent itemsets itself is usually not considered as final result
of the mining process, but rather as intermediate step. Its most prominent use are
certainly association rules. The task of mining association rules is to determine
all pairs X → Y of subsets of M such that supp(X → Y ) := supp(X ∪ Y ) is
above the threshold minsupp, and the confidence conf(X → Y ) := supp(X∪Y )

supp(X) is
above a given threshold minconf ∈ [0, 1]. Association rules are for instance used
in warehouse basket analysis, where the warehouse management is interested in
learning about products frequently bought together.

Since determining the frequent itemsets is the computationally most expen-
sive part, most research has focused on this aspect. Most algorithms follow the
way of the well-known Apriori algorithm [2]. It is traversing iteratively the set
of all itemsets in a levelwise manner. During each iteration one level is consid-
ered: a subset of candidate itemsets is created by joining the frequent itemsets
discovered during the previous iteration, the supports of all candidate itemsets
are counted, and the infrequent ones are discarded. A variety of modifications
of this algorithm arose [13, 34, 42, 48] in order to improve different efficiency as-
pects. However, all of these algorithms have to determine the supports of all
frequent itemsets and of some infrequent ones in the database.

Other algorithms are based on the extraction of maximal frequent itemsets
(i. e., from which all supersets are infrequent and all subsets are frequent). They
combine a levelwise bottom-up traversal with a top-down traversal in order to
quickly find the maximal frequent itemsets. Then, all frequent itemsets are de-
rived from these ones and one last database scan is carried on to count their
support. The most prominent algorithm using this approach is Max-Miner [7].
Experimental results have shown that this approach is particularly efficient for
extracting maximal frequent itemsets, but when applied to extracting all fre-
quent itemsets, performances drastically decrease because of the cost of the last
scan which requires roughly an inclusion test between each frequent itemset and
each object of the database. As for the first approach, algorithms based on this
approach have to extract the supports of all frequent itemsets from the database.

While all techniques mentioned so far count the support of all frequent item-
sets, this is by no means necessary. Using basic results from Formal Concept
Analysis (FCA), it is possible to derive from some known supports the supports
of all other itemsets: it is sufficient to know the support of all frequent concept in-
tents. This observation was independently made by three research groups around
1997/98: the first author and his database group in Clermont–Ferrand [37], M.
Zaki in Troy, NY [52], and the second author in Darmstadt [44].

The use of FCA allows not only an efficient computation, but also to drasti-
cally reduce the number of rules that have to be presented to the user, without
any information loss. We present therefore some ‘bases’ for association rules
which are non-redundant and from which all the others can be derived. Interest-
ingly, up to now most researchers focus on the first aspect of efficiently computing
the set of all frequent concept intents (also called frequent closed sets) and re-
lated condensed representations, but rarely consider condensed representations
of the association rules.
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This survey consists of two parts: In the next four sections, we provide an
introduction to mining association rules using FCA, which mainly follows our
own work,1 before we provide a more general overview over the field in Section 6.
First, we will first briefly relate the notions of Formal Concept Analysis to the
association rule mining problem. Then we discuss how so-called iceberg concept
lattices represent frequent itemsets, and how they can be used for visualizing
the result. In Section 4, we will sketch one specific algorithm, called Titanic,
as an illustrative example for exploiting FCA theory for efficient computation.
The reduction of the set of asociation rules to the relevant ones is the topic of
Section 5. Section 6 gives an overview over the current state of the art.

2 Mining Frequent Itemsets with Formal Concept
Analysis

Consider two itemsets X and Y such that both describe exactly the same set of
objects, i. e., X ′ = Y ′. So if we know the support of one of them, we do not need
to count the support of the other one in the database. In fact, we can introduce
an equivalence relation θ on the powerset P(M) of M by XθY ⇐⇒ X ′ = Y ′.
If we knew the relation from the beginning, it would be sufficient to count the
support of one itemset of each class only — all other supports can then be
derived. Of course one does not know θ in advance, but one can determine it
along the computation. It turns out that one usually has to count the support
of more than one itemset of each class, but normally not of all of them. This
observation leads to a speed-up in computing all frequent itemsets, since counting
the support of an itemset is an expensive operation.

We will see below that it is not really necessary to compute all frequent
itemsets for solving the association rule problem: it will be sufficient to focus on
the frequent concept intents (here also called closed itemsets or closed patterns).
As well known in FCA, each concept intent is exactly the largest itemset of the
equivalence class of θ it belongs to. For any itemset X ⊆ M , the concept intent of
its equivalence class is the set X ′′. The concept intents can hence be considered
as ‘normal forms’ of the (frequent) itemsets. In particular, the concept lattice
contains all information to derive the support of all (frequent) itemsets.

3 Iceberg Concept Lattices

While it is not really informative to study the set of all frequent itemsets, the
situation changes when we consider the closed itemsets among them only. We
call the concepts they belong to frequent concepts, and the set of all frequent
concepts iceberg concept lattice of the context K for the threshold minsupp. We
illustrate this by a small example. Figure 1 shows the iceberg concept lattice of

1 This part summarizes joint work with Yves Bastide, Nicolas Pasquier, and Rafik
Taouil as presented in [5, 40, 45, 46].
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veil type: partial

ring number: one veil color: white

gill attachment: free100 %

92.30 % 97.62 %

97.43 %

97.34 %90.02 %

89.92 %

Fig. 1. Iceberg concept lattice of the mushroom database with minsupp = 85 %

the Mushroom database from the UCI KDD Archive [6] for a minimum support
of 85%.

The Mushroom database consists of 8,416 objects (mushrooms) and 22
(nominally valued) attributes. We obtain a formal context by creating one (Boo-
lean) attribute for each of the 80 possible values of the 22 database attributes.
The resulting formal context has thus 8,416 objects and 80 attributes. For a
minimum support of 85 %, this dataset has 16 frequent itemsets, namely all 24

possible combinations of the attributes ‘veil type: partial’, ‘veil color: white’, ‘gill
attachment: free’, and ‘ring number: one’. Only seven of them are closed. The
seven frequent concepts are shown in Figure 1.

In the diagram, each node stands for formal concept. The intent of each
concept (i. e., each frequent closed itemset) consists of the attributes labeled at
or above the concept. The number shows its support. One can clearly see that all
mushrooms in the database have the attribute ‘veil type: partial’. Furthermore
the diagram tells us that the three next-frequent attributes are: ‘veil color: white’
(with 97.62 % support), ‘gill attachment: free’ (97.43 %), and ‘ring number: one’
(92.30%). There is no other attribute having a support higher than 85 %. But
even the combination of all these four concepts is frequent (with respect to our
threshold of 85 %): 89.92 % of all mushrooms in our database have one ring, a
white partial veil, and free gills. This concept with a quite complex description
contains more objects than the concept described by the fifth-most attribute,
which has a support below our threshold of 85%, since it is not displayed in the
diagram.

In the diagram, we can detect the implication

{ring number: one, veil color: white}⇒ {gill attachment: free} .

It is indicated by the fact that there is no concept having ‘ring number: one’
and ‘veil color: white’ (and ‘veil type: partial’) in its intent, but not ‘gill attach-
ment: free’. This implication has a support of 89.92 % and is globally valid in
the database (i. e., it has a confidence of 100%).
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veil type: partial
ring number: one

veil color: white

gill attachment: free

gill spacing: close

100 %

92.30 % 97.62 %97.43 %

81.08 %

76.81 % 78.80 %

97.34 %90.02 %

89.92 %

78.52 %

74.52 %

Fig. 2. Iceberg concept lattice of the mushroom database with minsupp = 70 %

If we want to see more details, we have to decrease the minimum support.
Figure 2 shows the Mushroom iceberg concept lattice for a minimum support
of 70 %. Its 12 concepts represent all information about the 32 frequent itemsets
for this threshold. One observes that, of course, its top-most part is just the
iceberg lattice for minsupp = 85%. Additionally, we obtain five new concepts,
having the possible combinations of the next-frequent attribute ‘gill spacing:
close’ (having support 81.08 %) with the previous four attributes. The fact that
the combination {veil type: partial, gill attachment: free, gill spacing: close} is
not realized as a concept intent indicates another implication:

{gill attachment: free, gill spacing: close} ⇒ {veil color: white} (*)

This implication has 78.52 % support (the support of the most general con-
cept having all three attributes in its intent) and — being an implication —
100% confidence.

By further decreasing the minimum support, we discover more and more
details. Figure 3 shows the Mushrooms iceberg concept lattice for a minimum
support of 55 %. It shows four more partial copies of the 85 % iceberg lattice,
and three new, single concepts.

The Mushrooms example shows that iceberg concept lattices are suitable es-
pecially for strongly correlated data. In Table 1, the size of the iceberg concept
lattice (i. e., the number of all frequent closed itemsets) is compared with the
number of all frequent itemsets. It shows for instance, that, for the minimum
support of 55 %, only 32 frequent closed itemsets are needed to provide all infor-
mation about the support of all 116 frequent itemsets one obtains for the same
threshold.
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veil type: partial
ring number: one

veil color: white

stalk surface below ring: smoothstalk surface above ring: smooth

gill attachment: free

gill size: broad

gill spacing: close

stalk shape: tapering

stalk color below ring: white

stalk color above ring: white

no bruises

100 %

92.30 % 97.62 %

60.31 %

55.09 %

63.17 %

57.94 %

97.43 %69.87 %

62.17 % 67.59 %

81.08 %

76.81 % 78.80 %

97.34 %90.02 %

89.92 %

57.79 %

55.13 %

56.37 %

58.03 %60.88 %

55.66 %

67.30 %

59.89 %

78.52 %

74.52 %

59.89 %

55.70 % 57.51 %57.32 %

57.22 %

Fig. 3. Iceberg concept lattice of the mushroom database with minsupp = 55 %

Table 1. Number of frequent closed itemsets and frequent itemsets for the Mushrooms
example

minsupp # frequent closed itemsets # frequent itemsets

85% 7 16
70% 12 32
55% 32 116
0% 32.086 280

4 Computing the Iceberg Concept Lattice with Titanic

For illustrating the principles underlying the algorithms for mining frequent
(closed) itemsets using FCA, we sketch one representative called Titanic. For
a more detailed discussion of the algorithm, we refer to [45].

Titanic is counting the support of so-called key itemsets (and of some can-
didates for key itemsets) only: A key itemset (or minimal generator) is every
minimal itemset in an equivalence class of θ. Titanic makes use of the fact
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End

i ¬ 1

Ci ¬ {patterns with cardinality 1}

Determine support for all C Î Ci

Determine closure for all C Î Ci - 1

Prune non-key patterns fromCi

i ¬ i + 1

Ci ¬ Generate_Candidates(Ci - 1 )

Ci empty?
no

yes

count in database

X‘‘ = X È { xÎ M \ X | supp(X) = supp(X È {x}) }

à la Apriori

iff supp < minsupp or

$ x ÎX: supp(X) = supp(X \ {x})

à la Apriori

1

5

4

3

2

At the end, all supports are known:

• by count for the candidates

• by  calculation for all other patterns:

supp(X) = min { supp(K) | K Í X , K key pattern}

Fig. 4. The Titanic algorithm

that the set of all key itemsets has the same property as the set of all frequent
itemsets: it is an order ideal in the powerset of M . This means that each subset
of a key itemset is a key itemset, and no superset of a non-key itemset is a key
itemset. Thus we can reuse the pruning approach of Apriori for computing the
supports of all frequent key itemsets. Once we have computed them, we have
computed the support of at least one itemset in each equivalence class of θ,
and we know the relation θ completely. Hence we can deduce the support of all
frequent itemsets without accessing the database any more.

Figure 4 shows the principle of Titanic. Its basic idea is as the original Apri-
ori algorithm: At the ith iteration, we consider only itemsets with cardinality i
(called i–itemsets for short), starting with i = 1 (step 1). In step 2, the support
of all candidates is counted. For i = 1, the candidates are all 1–itemsets, later
they are all i–itemsets which are potential key itemsets.

Once we know the support of all i–candidates, we have enough information
to compute for all (i−1)–key itemsets their closure, i. e., the concept intent of
their equivalence class. This is done in step 3, using the equation X ′′ = X∪{x ∈
M \X | supp(X) = supp(X ∪ {x}).

In step 4, all itemsets which are either not frequent or non-key are pruned.
For the latter we use a characterization of key itemsets saying that a itemset is

7



a key itemset iff its support is different from the support of all its immediate
subsets. In strongly correlated data, this additional condition helps pruning a
significant number of itemsets.

At the end of each iteration, the candidates for the next iteration are gener-
ated in step 5. The generation procedure is basically the same as for Apriori: An
(i+1)–itemset is a candidate iff all its i–subitemsets are key itemsets. As long as
new candidates are generated, the next iteration starts. Otherwise the algorithm
terminates.

It is important to note that — especially in strongly correlated data —
the number of frequent key itemsets is small compared to the number of all
frequent itemsets. Even more important, the cardinality of the largest frequent
key itemset is normally smaller than the one of the largest frequent itemset. This
means that the algorithm has to perform fewer iterations, and thus fewer scans
of the database. This is especially important when the database is too large for
main memory, as each disk access significantly increases computation time. A
theoretical and experimental analysis of this behavior is given in [45], further
experimental results are provided in [40].

5 Bases of Association Rules

One problem in mining association rules is the large number of rules which are
usually returned. But in fact not all rules are necessary to present the informa-
tion. Similar to the representation of all frequent itemsets by the frequent closed
itemsets, one can represent all valid association rules by certain subsets, so-called
bases. The computation of the bases does not require all frequent itemsets, but
only the closed ones.

Here we will show by an example (taken from [46]), how these bases look
like. A general overview is given in the next section.

We have already discussed how implications (i. e., association rules with 100 %
confidence) can be read from the line diagram. The Luxenburger basis for approx-
imate association rules (i. e., association rules with less than 100% confidence)
can also be visualized directly in the line diagram of an iceberg concept lattice. It
makes use of results of [30] and contains only those rules B1 → B2 where B1 and
B2 are frequent concept intents and where the concept (B′

1, B1) is an immediate
subconcept of (B′

2, B2). Hence there corresponds to each approximate rule in
the Luxenburger base exactly one edge in the line diagram. Figure 5 visualizes
all rules in the Luxenburger basis for minsupp =70 % and minconf = 95 %. For
instance, the rightmost arrow stands for the association rule {veil color: white,
gill spacing: close} → {gill attachment: free}, which holds with a confidence of
99.6%. Its support is the support of the concept the arrow is pointing to: 78.52 %,
as shown in Figure 2. Edges without label indicate that the confidence of the
rule is below the minimum confidence threshold. The visualization technique is
described in more detail in [46]. In comparison with other visualization tech-
niques for association rules (as for instance implemented in the IBM Intelligent
Miner), the visualization of the Luxenburger basis within the iceberg concept
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ring number: one

veil type: partial
gill attachment: free

gill spacing: close

97.0%

99.9% 99.6%

97.2%

97.4%

99.9%

99.7%

97.5%

veil color: white
97.6%

Fig. 5. Visualization of the Luxenburger basis for minsupp = 70 % and minconf= 95%

lattice benefits of the smaller number of rules to be represented (without loss of
information!), and of the presence of a ‘reading direction’ provided by the con-
cept hierarchy. It might be worth to combine this advantage with the large effort
spent in professional data mining tools to adher to human-computer interaction
principles.

6 History and State of the Art in FCA-Based Association
Rule Mining

Within the research area of Formal Concept Analysis, important results have
been achieved for the association mining problem even before it has been stated.
Because of their history, these results obviously did not consider all frequent
itemsets, but rather the closed ones. At that point in time, the frequency was
not used for pruning, i. e., implicitly a minimum frequency of 0 % was assumed.
Early algorithms for computing the concept lattice / all closed itemsets were
developed by Fay [19], Norris [33], Ganter [20], and Bordat [9].

Guigues and Duquenne [18] described a minimal set of implications (exact
rules) from which all rules can be derived, the Duquenne Guigues base or stem
base. In 1984, Ganter developed the Next Closure algorithm ([20], see also [21])
for its computation. Luxenburger was working on bases for partial implications
(approximative rules) [30, 31]. From today’s data mining perspective, all what
these results are missing is the (rather straightforward) incorporation of the
frequency threshold.

Five years after the first statement of the association mining problem in
1993, apparently the time was ripe for the discovery of its connection to Formal
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Concept Analysis — it came up independently in several research groups at
approximately the same moment [37, 52, 44]. Since then, the attention of FCA
has largely increased within the data mining community, and many researchers
joined the field.

Inspired by the observation that the frequent closed itemsets are sufficient
to derive all frequent itemsets and their supports, the search for other con-
densed / concise representations began. The key itemsets as introduced in Sec-
tion 4 serve the same purpose: from them (plus the minimal non-frequent key
itemsets) one can derive the support of any frequent itemset. The key itemsets
are also referred to as minimal generators, and nowadays more often as free sets.

A trend which goes beyond the notions discussed above aims at further con-
densing the set of free itemsets. The set of disjunction-free sets [15] / disjunction-
free generators [27] is extending the set of free itemsets. A disjunction-free set is
an itemset I where there do not exist i1 and i2 with supp(I) = supp(I \ {i1}) +
supp(I \ {i2}) − supp(I \ {i1, i2}).2 The frequent disjunction-free sets together
with their support and the minimal non-frequent ones allow to compute the
support of all frequent itemsets. This approach is further extended in [16] to
non-derivable itemsets, where the previous equation is extended from the two
elements i1 and i2 to an arbitrary number of elements.

A second trend is the analysis of approximate representations. One of them
are δ–free sets [11], where an itemset is called δ–free if there are ‘almost no
dependencies’ between its attributes.3 They lead to almost closures [10], where
an attribute m is in the almost–closure of an itemset X iff the supports of X and
X ∪ {m} differ not more than a given threshold. (The usual closure is obtained
with this threshold set to zero). The support of any frequent itemset can then
be computed up to a certain error.

Amazingly, most of the recent work is focussing on condensed representations
of the set of frequent itemsets rather than on condensed representations of the set
of association rules. One reason may be that the former is the computationally
expensive part, and thus considered as the more interesting problem. At least
in the classical association rule setting, however, the analyst is confronted with
a list of rules (and not a list of frequent itemsets), hence ultimately this list has
to be kept small.

In the remainder of this section, we will present some results that have been
obtained in FCA-based association rule mining since the late 1990ies. In the next
subsection, we discuss algorithms for computing frequent closed and frequent key
itemsets. While of course the development of algorithms for computing complete
concept lattices goes on, they are out of the focus of the present survey. In the
second subsection, we address condensed representations of association rules.

2 Free sets are a special case with i1 = i2.
3 A δ-free set is an itemset X such that all non-trivial rules Y → Z with Y, Z ⊆ X

have at least δ exceptions. Free sets are δ–free sets with δ = 0, as there are no
dependencies between their attributes. Because of this property which is known
from database keys, free sets were originally called key sets.
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6.1 Algorithms for Computing Frequent Closed / Key Itemsets

The first set of algorithms that were explicitly designed to compute frequent
closed itemsets were Close [39], Apriori–Close [37] and A-Close [38]. Inspired by
Apriori [2], all these algorithms traverse the database in a level-wise approach.
A-Close follows a two-step approach. In the first step, it performs a level-wise
search for identifying the frequent key sets; in the second step, their closures are
determined. Apriori-Close computes simultaneously the frequent closed and all
frequent itemsets. Close computes first all frequent closed itemsets by computing
the closures of all minimal generators. In a second step, it derives all frequent
(closed or non-closed) itemsets. These algorithms put the emphasis on datasets
which cannot be kept completely in the main memory. Their major concern is
thus to decrease the number of necessary accesses to the hard disk.

ChARM [52] is also following a bottom-up approach. Contrary to A-Close it
performs a depth-first search in the powerset of itemsets. It stores the frequent
itemsets in a prefix tree in main memory. The algorithm traverses both the
itemset and transaction search spaces. As soon as a frequent itemset is generated,
the set of corresponding transactions is compared with those of the other itemsets
having the same parent in the prefix tree. If they are equal, then their nodes
are merged in the prefix tree, as both generate the same closure. The follow-up
CHARM–L [56] of ChARM also computes the covering relation of the iceberg
concept lattice.

Closet [41] and Closet+ [50] also compute the frequent closed sets and their
supports in a depth-first manner, storing the transactions in a tree structure,
called FP–tree, inherited from the FP–Growth algorithm [24]. Each branch of
the FP–tree represents the transactions having the same prefix. They use the
same merging strategy as ChARM.

Mafia [14] is an algorithm which mainly is intended for computing all maxi-
mal frequent itemsets (which, by basic results from FCA, are all closee). It also
has an option to compute all frequent closed itemsets. Another very early al-
gorithm for computing the maximal frequent itemsets which makes use of FCA
is MaxClosure [17], but it does not provide a significant speed-up compared to
Apriori.

Titanic [45] — as introduced above in detail — continues the tradition
of the Close family. It computes in a level-wise manner all frequent key sets,
and in the same step their closures. Pascal [5] differs from Titanic in that it
additionally produces all frequent itemsets. [4] discusses efficient data structures
for the algorithms Pascal and Titanic.

There are also some approaches which combine the closeness constraint with
other constraints. In [25], an algorithm is presented which determines, for given
natural numbers k and min l, the k most frequent closed itemsets which have
no less than min l elements. In [8], only itemsets within a pre-defined order
interval of the powerset of the set of items are considered; the closure operator is
modified to this scenario (but is no longer a closure operator in the usual sense).
Bamboo [51] is an algorithm for mining closed itemsets following a ‘length-
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decreasing support constraint’, which states that large itemsets need a lower
support to be considered relevant than small ones.

[49] provides an overview over some FCA based algorithms for mining associ-
ation rules and discusses the data structures underlying the implementations. In
particular, they address updates and compositions of the database / the formal
context.

6.2 Bases of association rules

All existing proposals for bases of association rules distinguish between exact
and approximate rules, and present separate bases for each of them. From the
combination of both bases one can derive all frequent association rules — by
some calculus which is not always stated explicitly by the authors.

As mentioned above, Duquenne/Guigues [18] and Luxenburger [30] presented
bases of exact and approximate (frequent or not) association rules rather early.
Their results were rediscovered from the data mining community [36, 53] and
adapted to the frequency constraint [37, 44, 47, 55]. This approach is described
in detail in [46], and sketched above in Section 5. Other approaches comprise
the following:

The min-max basis [35, 40] is an alternative to the couple of Duquenne/Gui-
gues and Luxenburger base. It is based both on free and on closed itemsets. The
min-max base is also divided into two parts. For the exact rules, the set of all
rules of the form A → B with B being a closed set and being A a generator of
B with A 6= B is a basis. For the approximate rules, the set of all rules of the
form A → B with B being a closed set and being A a generator of some closed
set strictly contained in B is a basis. As the min-max basis needs both the free
and the closed sets, Titanic is an appropriate algorithm for its computation.

Depending on the derivation calculus one allows, both the Luxenburger base
(as discussed here) and the min-max base can still be reduced further. In fact,
Luxenburger showed in [31] that it is sufficient to consider a set of rules which is
a spanning tree of the concept lattice. E. g., the rule labeled by 99.7% in Fig. 5
can be deduced from the rest. Since the deduction rules for this computation
turn out to be rather complex for a knowledge discovery application, we decided
in [46] to work with a simpler calculus.

In [22], the non-derivable itemsets [16] as described above are used to define
a set of non-derivable association rules. This set is a lossless subset of the min-
max basis, but the reduction comes with the cost of more complex formulae for
computing support and confidence of the derivable rules by determining upper
and lower bounds, based on set inclusion-exclusion principles.

Based on the disjunction-free generators mentioned above, [27] extends the
notion of bases of association rules to rules where disjunction is allowed in the
premise.

12



7 Conclusion

In this survey, we have shown that Formal Concept Analysis provides a strong
theory for improving both performance and results of association rule mining
algorithms. As the current discussion of ‘condensed representations’ and – more
general – of other applications of Formal Concept Analysis within Knowledge
Discovery (e. g., conceptual clustering or ontology learning) show, there remains
still a huge potential for further exploitation of Formal Concept Analysis for
data mining and knowledge discovery. On the other hand we expect that this
interaction will also stimulate further results within Formal Concept Analysis.
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et Systèmes d’Information et de Décision (INFORSID’2000), May 2000.

36. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Pruning closed itemset lattices
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