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Abstract. In this paper we study two orthogonal extensions of the classical data
mining problem of mining association rules, and show how they naturally inter-
act. The first is the extension from a propositional representation to datalog, and
the second is the condensed representation of frequent itemsets by means of For-
mal Concept Analysis (FCA). We combine the notion offrequent datalog queries
with iceberg concept lattices (also calledclosed itemsets) of FCA and introduce
two kinds oficeberg query lattices as condensed representations of frequent dat-
alog queries. We demonstrate that iceberg query lattices provide a natural way to
visualize relational association rules in a non-redundant way.

1 Introduction

Mining association rules is a popular knowledge discovery problem. Since the prob-
lem was stated [1], various approaches have been proposed for an increased efficiency
of rule discovery in very large databases [2, 6, 8, 23, 24]. In parallel, researchers have
extended the original problem to knowledge representations that are either related to
and/or more expressive than the original representation in propositional logic of item-
sets. These include for instance generalized association rules [28], or frequent patterns
within time series [3].

In this paper, we consider the extension to first order logic as introduced by L. de
Haspe and H. Toivonen in [10] and [11]. Instead of considering rules of the form� �
� where� and� are sets of attributes (items; e. g., products of a supermarket) which
may or may not apply to objects (e. g., to transactions), they consider� and� to
be datalog queries. This allows specifically to consider relations between objects, and
thus enhances the expressiveness of the association rules which can be discovered. The
resultingrelational association rules, however, suffer to an even larger extent the main
problem of classical association rule mining: even for a small dataset, the number of
resulting rules is very high, and there are many uninteresting and even redundant rules
in the result.

In the classical scenario, several solutions (for instance measures of “usefulness”
[7]) have been proposed. These approaches can also be applied to relational association
rules, but they all have in common that they lose some information.

A complementary approach is based onFormal Concept Analysis (FCA) [37, 15].
Its simplest data structure, a ‘formal context’, fits exactly the scenario of classical as-
sociation rule mining. It turned out that the concepts of the concept lattice provide a
condensed representation for frequent itemsets.



This observation was independently made by three research groups around 1997/98:
L. Lakhal and his database group in Clermont–Ferrand [22], M. Zaki in Troy, NY [39],
and the author in Darmstadt [31]. The first algorithm based on this idea was Close [24],
followed by A-Close [23], ChARM [40], PASCAL [5], Closet [26], TITANIC [33, 35],
and others, each having its own way to exploit the closure system which is hidden in
the data. Then different researchers started working on ‘condensed representations’ of
frequent itemsets and association rules: closed sets, free sets,�-free sets, etc. Some of
them were well-known in FCA for quite a while, (e. g., closed sets as concept intents —
see for instance [14] — and free sets as minimal generators), others (for instance�-free
sets) truly extended the set of condensed representations.

In this paper, we discuss how these representations can be applied to datalog queries
and to relational association rules. Our approach is as follows: first we re-formulate
the problem of mining relational association rules in terms of Formal Concept Anal-
ysis. Then we are able to apply in a straightforward manner the full arsenal of FCA-
based condensed representations (closed sets, pseudo-closed sets, free sets) to frequent
queries. From them, we defineiceberg query lattices and show by an example that they
are adequate for visualizing relational association rules.

This paper continues our work on iceberg concept lattices presented in [35]. It is
organized as follows. After giving an introduction to Datalog and describing the prob-
lem of mining relational association rules in Section 2, we recall the basics of mining
(classical) association rules with Formal Concept Analysis in Section 3. In Section 4
we will restate the relational mining problem in terms of FCA and introduceiceberg
query lattices. In Section 5, we discuss their use for visualizing relational association
rules, before we conclude in Section 6.

2 Relational Association Rules

Relational association rules were inspired by adopting the classical task of mining asso-
ciation rules to ILP (Inductive Logic Programming). First we recall the classical prob-
lem, before introducing datalog and relational association rules.

2.1 Association Rules

The problem of miningassociation rules has been discussed for a decade now. It can
be stated as follows.

Problem 1 (Association rule mining [1]). Let� be a set of items,1 � a set of transac-
tion IDs, and� a binary relation between� and� , indicating which items have been
bought in which transactions. Anassociation rule is a pair� � � of subsets of�
with � � � .2 Its support is the relative frequency of the transactions containing�

1 In the scenario of warehouse basket analysis, the items are products sold by the supermarket.
2 Usually, one requires head and body of the rules to be disjoint, but both statements are equiv-

alent, since� � � and� � � � � have the same support and the same confidence. Our
version of the problem statement is both closer to the way association rules are computed and
more adequate to the problem statement for relational association rules.



among all transactions, and itsconfidence is the relative frequency of all transactions
containing� among those containing� .

The problem of mining association rules is to compute, for given thresholdsminsupp
andminconf � ��� ��, all association rules such that their support and confidence are
above (or equal to) the thresholdsminsupp andminconf , resp.

In a supermarket database, for instance, the rule ‘salmon� white wine (conf =
73 %, supp = 3 %)’ would indicate that 73 % of all customers buying salmon also buy
white wine, and that this combination is bought in 3 % of all transactions.

The standard approach to the problem is to compute first all frequent itemsets�
(i. e., all itemsets with a support above the thresholdminsupp), and then check for each
of them and for each of its subsets� if ���� �� � � � � minconf. The first step is
the expensive one, as it requires (multiple) access(es) to the database. Therefore, most
research in the domain focuses on this first step.

Relational Association Rules have been introduced by L. Dehaspe and H. Toivonen
in [11], following their work on the discovery of frequent datalog patterns [10]. Re-
lational association rules are defined within the framework ofdatalog. This enhances
thus the expressiveness of the rules that can be discovered. The basic idea is to replace
� and� by a datalog database, and� by a set of datalog queries. Before describing
this idea in detail, we recall some basic datalog definitions.

2.2 Datalog

A deductivedatalog database r is a set of definite clauses, i. e., of universally quantified
formulas of the form���	
� � �
� � 	 	 	 � 
�� with 
� being positive literals,� � �, and
�� consisting of all variables appearing in the literals
 �. We abbreviate the clauses by

� � 
�� 	 	 	 � 
�. A clause with� � � which does not contain any variables is called a
fact.

A substitution � is a set���
��� 	 	 	 � ��
��� of bindings of variables�� to terms
��. Theinstance �� of a clause� for a substitution� is obtained from� by replacing
all occurrences of the variables�� by the terms��, resp. If�� is ground (i. e., if it
contains only constants as terms, no variables), then it is calledground instance of �,
and� is agrounding substitution.

A datalog query � is a logical expression of the form�	 
�� 	 	 	 � 
� with � � �,
where the
� areliterals (i. e., predicates or negated predicates). A query� succeeds for
a databaser if there exists a grounding substitution� for � such that the conjunction
�
� � 	 	 	� 
��� holds within the database.� is then calledanswering substitution for �.
The set of all answering substitutions for� in r is denoted byanswerset��� r�.

In order to avoid some logical problems related to negation, we restrict ourselves
to range-restricted queries, i. e., to queries where all variables that occur in negative
literals also occur in at least one positive literal.

Example 1. We illustrate these concepts using an example from [11], which we will
use as running example throughout the paper. The datalog database is shown in Table 1.
It consists of facts only. It could be (and usually is) extended by so-called intensional
relations as, e. g.,grandparent����� � parent���� �� parent��� ��	 which provides
an intensional definition of the predicategrandparent.



Table 1. Example datalog databaser

customer(allen) parent(allen, bill) buys (allen, wine)
customer(bill) parent(allen, carol) buys (bill, cola)
customer(carol) parent(bill, zoe) buys (bill, pizza)
customer(diana) parent(carol, diana) buys (diana, pizza)

Consider now the query

� �� �	 customer���� parent���� �� buys��� pizza�	

Applied to the databaser, it will return all couples���� ��� of instances such that the
three factscustomer����, parent���� ���, andbuys���� pizza� are all in the database.
The result is thusanswerset��� r� �� ���
allen� �
bill�� ��
carol� �
diana�.

2.3 Relational Association Rules

Although the intuition of ‘datalog association rules’ is quite straightforward, there are
some subtleties to be resolved. For instance, it is not clear from the start what exactly
is to be counted. These aspects have been discussed in [11] and led to the following
definition of the problem.

Definition: A relational association rule (or query extension) is an implication of the
form

�	 
�� 	 	 	 � 
�	 � �	 
�� 	 	 	 � 
�� 
���� 	 	 	 � 
�	

with � 
 � � �, where both parts separately are existentially quantified. The rule may
be abbreviated by

�	 
�� 	 	 	 � 
� � 
���� 	 	 	 � 
�	

�	 
�� 	 	 	 � 
�	 is thebody of the rule, and the subquery
���� 	 	 	 � 
� is thehead of the
rule. Theconclusion of the rule is�	 
�� 	 	 	 � 
�� 
���� 	 	 	 � 
�	We will sometimes write
the rule in the form�� � ��, where�� stands for the body of the rule, and�� for the
conclusion of the rule.

Note that relational association rules consist of two queries, where the second one ex-
tends the first. In the sequel, we will consider the conclusion of the rule as query rather
than the head, as only this guarantees that the scope of the existential quantifier is as it
is intended. Different ways of ‘misinterpreting’ this have been discussed in [11].

In the standard case of association rule mining, transactions are counted to define
support and confidence. The transaction id is a key in the database (modeled as set�
in Problem 1), so that counting becomes unambiguous. For relational association rules,
this has to be simulated. In [11], one of the relations of the datalog database (calledkey)
is taking over this role.

Definition: Let r be a datalog database and� be a query containing an atomkey. Then
thesupport (or relative frequency) of query� with respect to databaser givenkey is

������� r� key� ��
��� � answerset��	 key� r� � �� succeeds w. r. t.r��

�answerset��	 key� r��
	



The support of a relational association rule is given by the support of the conclusion
of the rule. Its confidence is the support of the conclusion of the rule divided by the
support of the body of the rule.

Now we are able to formally state the problem of mining all frequent relational
association rules.

Problem 2 (Relational Association Rule Mining [11]). Let r be a datalog database and
� a set of datalog queries that all contain an atomkey. Let minsupp andminconf be
two (user-defined) thresholds between 0 and 1. The task is then to discover among
the relational association rules which can be built from� all rules with support and
confidence above the given thresholds.

Lemma 1. The standard problem of mining association rules is a special case of this
scenario.

Proof: Let � be a set of items,� a set of transaction IDs, and� � � 
 � . We
introduce a unary predicatekey which holds for all� � �. We consider each item� �
� as a constant, and introduce a binary predicatecontains����� that holds whenever
transaction� contains item�. If the set� contains all relational queries composed of
the literal key��� and any combination of literals of the formcontains�����, then
mining all relational association rules is equivalent to mining all association rules in the
classical sense. �

Example 2. In our running example, we are able to discover for instance the following
rules. In brackets are shown support (as decimal number) and confidence (as fraction).
They are based on thecustomer predicate as key.

� 	 customer���� buys���wine�� parent������ parent����� ��		
� �
��
� 	 customer���� parent������ buys��� cola� ��		
� �
��
� 	 customer���� parent������ buys��� cola�� buys��� pizza� ��		
� �
��

The first rule states that each customer buying wine is also a grandparent. The second
rule states that a third of all customers having a child also have a child buying cola.
(Remark that this statement is different from the following: a third of all children is
buying cola. In the first case, the parents are counted, and in the second the children.)
The last statement says that a third of all customers having a child also have a child
buying cola and pizza.

The declarative language bias used in this example restricts the construction of
queries in the following way:3 Variable� is bound by thecustomer predicate, and
may serve as input in the first position ofparent and/orbuys. Theparent predicate may
be iterated, whilebuys is forced to have one of the constantscola, pizza, or wine at the

3 In WARMODE format, this is stated as “warmodekey(customer(-)). warmode(parent(+,-)).
warmode(buys(+, cola)). warmode(buys(+,pizza)). warmode(buys(+,wine)).” ‘-’ indicates that
the variable is bound by the atom, and ‘+’ means that the variable is bound before the atom is
called.



second position. This prohibits for instance queries like ‘return all customers buying the
same item as one of their children’. This bias allows to fine-tune the trade-off between
the size of the set of rules and the expressive power of the rules.

As in the classical case, this problem is naturally split in two sub-problems: first
compute all frequent queries�	 
�� 	 	 	 � 
�	, and then check the support of all rules of
the form�	 
�� 	 	 	 � 
� � 
���� 	 	 	 � 
�	 by considering all possible partitions of the set
of literals. In this paper, we focus on the first step.

In [11], an algorithm for computing frequent queries, called WARMR, is presented,
which basically is a first order variant of the well known Apriori algorithm [2]. In order
to reduce the resulting rules to a set of ‘useful rules’, WARMR makes additional use of
a declarative language bias as known from Inductive Logic Programming (ILP). The
basic idea is to fix the order in which the variables are bound. Details can be found
in[11].

As in the case of classic association rule mining, a major problem for mining re-
lational association rules is the high number of resulting rules. (In fact, the problem is
much larger in the new scenario.) In the classical case, a number of additional measures
for ‘interestingness’ have been introduced to reduce further the number of rules (see
for instance [7]). These measures can of course also be applied to relational association
rules. In [11], Dehaspe and Toivonen additionally discuss the statistical significance of
the confidence, and the declarative language bias discussed above to further reduce the
number of rules. All of these approaches reduce the number of rules, but for the price
of loosing some information.

In the next section, we will discuss how quite a number of frequent queries — and
subsequently of rules — can be prunedwithout loosing any information. Only if our
pruning does not sufficiently reduce the number of rules, then additional means are
needed to continue pruning (with loss of information).

The basic idea of our approach is based on the observation that some rules talk
about exactly the same set of instances (and thus with exactly the same support and the
same confidence) , but on different levels of detail. In that case, the more specific rule
can be pruned without loss of information. In Example 2, for instance, the second rule
is comprised by the third, and both rules are talking about exactly the same instance,
namelyallen. Hence it is sufficient to present the third rule to the user; the second can be
pruned without loosing any information.4 In the next section, we discuss the theoretical
background for this kind of pruning.

3 Formal Concepts and Association Rules

Consider again the classical problem of mining association rules (Problem 1). Assume
that there are two itemsets which both describe exactly the same set of transactions. So
if we know the support of one of them, we do not need to count the support of the other
one in the database. In fact, we can introduce an equivalence relation� on the set of
itemsets. Two itemsets are said to beequivalent with respect to a database if and only if

4 More precisely, the second rule can derived from the third rule together with the exact rules
discussed in Section 5.



they are contained in exactly the same set of transactions. If we knew the relation from
the beginning, it would be sufficient to count the support of one itemset of each class
only — all other supports can then be derived.

Of course one does not know the equivalence relation in advance, but one can de-
termine it along the computation. It turns out that one usually has to count the support
of more than one query of each class, but normally not of all of them. The percentage
of queries to be considered depends on how correlated the data are: the more correlated
the data are, the fewer counts have to be performed.

3.1 Formal Concept Analysis

Condensed representations of frequent itemsets (e. g., free or closed sets) were inspired
by the theory of Formal Concept Analyis [22, 39, 31]. We assume the reader to be famil-
iar with the basic notions ofFormal Concept Analysis (FCA) and refer to [15] otherwise.
For keeping notations consistent, however, we recall the most important definitions.

Definition: A (formal) context � �� ����� �� consists of a set� of objects, a set�
of attributes, and a binary relation� � �
� .

The mapping������� � ���� is given by�� �� �� � � � �� � �� ����� �
�� 	 The mapping������� � ���� is defined dually by�� �� �� � � � �� �
�� ����� � �� 	 If it is clear from the context whether the first or the second mapping
is meant, then we abbreviate both�� and�� just by��. In particular,� �� stands for�����.

A (formal) concept is a pair����� with � � �, � �� , �� � � and�� � �. �
is calledextent and� is calledintent of the concept. The set��� � of all concepts of
a formal context� together with the partial order���� ��� 
 ���� ��� �� �� � ��

(which is equivalent to�� � ��) is calledconcept lattice of � .

3.2 Mining association rules with FCA

Obviously, a formal context is just the right data structure for describing the problem
of classical association rule mining (Problem 1), and FCA provides indeed a natural
framework for the task of mining association rules. The equivalence relation� men-
tioned above is formalized as follows: for��� � ����, let ��� if and only if
� � � � �. It turns out that each concept intent is exactly the largest itemset of its
equivalence class. The concept intents are also calledclosed itemsets, as they are ex-
actly the closed sets of the canonical closure operator� �� � �� on����. For any
itemset� � ����, its closure is the set���, which is just the concept intent of
its equivalence class. Note that in particular holds, for any�� � ���� with �� ��,
����� ��� � ������� � ���������. The (frequent) concept intents/closed itemsets can
hence be considered as ‘normal forms’ of the (frequent) itemsets.

Thesupport of a formal concept����� of � is the support of the itemset� (which
is equal to the ratio���

��� ). The concepts with a support above or equal to a user-defined
thresholdminsupp � ��� �� are calledfrequent concepts, and the set of all frequent
concepts is callediceberg concept lattice [35]. While it is not of particular interest
to study the set of all frequent (closed and non-closed) itemsets, the iceberg lattice



provides interesting insights into the data. In [4, 34, 25], we showed how the number of
association rules can be reduced by using the iceberg concept lattice, and how the latter
can be used for visualizing the rules.

In particular, the iceberg concept lattice contains all information needed to derive
the support of all (frequent) itemsets. This observation has been exploited first in the
Close algorithm [22] to improve the efficiency of algorithms for mining frequent item-
sets. Instead of using the maximal elements of the equivalence classes, one can also use
their minimal generators (which are now calledfree sets or key sets in data mining) [4,
34]. They can be computed, together with the closed sets, e. g., with the algorithm TI-
TANIC [35]. Rather than recalling these results here, we directly apply them to the task
of relational association rule mining.

4 Iceberg Concept Lattices for Datalog Queries

Let us now come back to the problem of mining frequent datalog queries.

Example 3. Figure 1 shows all 32 queries which follow the declarative language bias
introduced above, and which have at least one answering substitution.5 Each node in
the diagram stands for one query, which consists of all literals that are attached at the
node itself, or at some node above (following straight lines only). A query succeeds in
our example database with all answering substitutions which are attached to the node
of the query itself or to any node below in the hierarchy. If parts of the query are logi-
cally redundant, then only the relevant part of the answering substitution is given. The
numbers in the nodes indicate the support as discussed in Section 4.2. For the moment,
we just ignore them.

For instance, the right-most lower node stands for the query

�	 customer���� parent������ parent������ buys��� cola�� buys��� pizza�	

In this case, the literalparent����� is logically redundant, and may be removed. It is
needed on the left side of the diagram, though, where we have to distinguish between
the different grandchildren ofallen.

Note that we do not talk about sets of queries (as we would talk about sets of items
in the classical case), but only about single queries. This stems from the fact that (un-
like in the classical situation where the combination of items is not an item itself) the
combination of queries is again a query, since the set of datalog queries is closed under
conjunction. We can henceidentify any finite set of queries with the conjunction of its
queries.6 Therefore, we assume in the sequel that the set� of datalog queries that we
consider is always closed under conjunction.

5 Remark that [11] lists only 26 of these frequent queries; all queries where bothparent�����
andparent����� are required are omitted. The reason seems to be that WARMR prunes logi-
cally redundant queries immediately when it passes them, even though they may be needed for
building up more specific queries, as, e. g., the query represented by the left-most lower node.

6 Eventually variable renaming has to be performed (in the usual first order logic way) before
the conjunction is computed; in order to respect the range of the existential quantifiers of the
individual queries.
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Fig. 1. All queries following the declarative language bias which have at least one answering
substitution.

While it is not really informative to study the set of all frequent queries, the situation
changes when we consider theclosed queries among them only. In order to define
them formally, we first have to bring together the notions of datalog and FCA. We will
consider two formal contexts that canonically arise from our scenario. Both definitions
give rise to different understandings of ‘closed queries’. They are discussed in the two
following subsections, resp.

4.1 Iceberg Query Lattices of Datalog Databases

Definition: Let r be a datalog database and� a set of datalog queries. Theformal
context associated to r and � is defined by� r�� �� ��r����r��� �r��� where�r�� ��
�� � � is a grounding substitution for all� � ��, �r�� �� �, and����� � �r�� if and
only if � � answerset��� r�.

From this formal context, one can compute the concept lattice as usual. As discussed
above, we may identify the intent of a formal concept����� of this lattice with the
query

�
�, which stands for the conjunction of all queries contained in�. Such a

query is also calledclosed query with respect to r and �, as it is related to the closed set
�. Like in the classical scenario, one can introduce an equivalence relation� r on the
set of queries. Two queries�� and�� are said to beequivalent with respect to database



r if and only if answerset���� r� � answerset���� r�. The most specific query of each
equivalence class is then just the closed query which is assigned to the corresponding
formal concept of the context� r��.

Definition: Let r be a datalog database and� a set of datalog queries. Theiceberg
query lattice of r and � for minsupp � ��� �� is given by��r��� �� ��� � � �
� is closed with respect tor and�� and the corresponding concept is frequent�� ���,
where�� is the usual logical implication.

Example 4. Figure 2 shows all frequent closed queries of our running example, where
‘frequent’ means support strictly larger than 0. The diagram is read in the same way as
in the previous figure: a node represents the query which consists of all literals labeled
at it and at all higher nodes. As in Figure 1, the diagram shows the relevant parts of
the answering substitutions for each query. The bold nodes are discussed in the next
subsection.

In Figure 1, the nine frequent closed queries are exactly those which are labeled by
an answering substitution. Each of the 32 frequent queries belongs to the same equiv-
alence class of�r as the highest closed query which is below it (i. e., to its most gen-
eral closed specialization). The right-most upper query�	customer���� buys��� cola��
buys��� pizza�	, for instance, is in the same class as the closed query which is just below
it (and which has as additional literalparent�����).

Without any loss of information, the diagram in Figure 2 gives a much better insight
into the database. It shows for instance that being grandparent and buying wine is equiv-
alent in our example, sincebuys���wine� andparent����� generate the same node. It
also shows that anycustomer buying cola also buyspizza and isparent of someone.
This implication (or exact association rule) is indicated by the fact that the node la-
beled bybuys��� cola� is below the nodes labeled byparent����� andbuys��� pizza�,
resp., in the diagram. This is the general way implications are read in concept lattices.

It is obvious that the restriction to frequent closed queries gives a much better insight
into the content of the database. One drawback, however, — at least for the association
rule scenario — still exists: the meaning of counting objects is not intuitively clear. As
the size of the ‘relevant part’ of an answering substitution depends on the number of
variables involved, it is not clear what exactly has to be counted. If one requires the user
to provide meaningful values forminsupp andminconf for the mining task, then this
question has to be answered. That is the reason why Dehaspe and Toivonen introduced
an explicitkey predicate in [11]. We discuss their approach in the light of FCA next.

4.2 Iceberg Query Lattices of Datalog Databases with Respect to a Key
Predicate

Again, we first transform the datalog database into a formal context. The difference
to the approach discussed above is that we now consider only the instances of thekey
predicate as objects.

Definition: Let r be a datalog database and� be a set of datalog queries which all
contain an atomkey. The formal context associated to r, �, and key is defined by
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Fig. 2. All frequent closed queries.

� r���key �� ��r���key��r���key� �r���key� where�r���key �� answerset��	 key� r�,
�r���key �� �, and����� � �r���key if and only if there exists a grounding substitu-

tion �� for � with � � ��.
Two queries��� �� � � are equivalent with respect to r and key (denoted

���r�key��) if ��
� � ��

� holds in� r���key. Closed queries of r and � with respect

to key and minsupp � ��� �� are defined as above. Theiceberg query lattice of r, �,
andkey for minsupp is��r��� key� �� ��� � � � � is closed and������� r� key� �
minsupp�� ���.

Example 5. Figure 3 shows all six queries which are frequent according to this defi-
nition for anyminsupp � ��� �		
�. The closed queries displayed here are also closed
queries of the context� r��. In Figure 2, they are the ones marked by filled nodes.
Theorem 1 below shows that this containment holds in general.

As in the previous example, we can read off implications between queries from
the diagram. In particular, we rediscover the implications discussed in Figure 4: being
grandparent and buying wine is equivalent; and anycustomer buying cola also buys
pizza and isparent of someone. But as we have now a coarser look to the data, there are
more equivalences to be discovered in this representation. Indeed, we focus on thecus-
tomers, and do not distinguish explicitly between the different family lines of customer



Fig. 3. All frequent closed queries for thekey predicate ‘customer’.

allen any more: the diagram shows that having a grandchild buyingpizza is equivalent
to having a child buyingcola (who needs not beparent of the grandchild). So by choos-
ing which of the contexts� r�� and� r���key to study, we can decide how close to look
at the relations between the instances.

The numbers in Figure 1 show the support of each query measured in the context
� r���key. If a query�� logically subsumes another query�� (i. e.,�� is below�� in

the diagram) and�������� � �������� holds, then both queries have the same closure
(and are in the same class of�r�key). As the closed queries are the most specific in their
equivalence classes, they are exactly those queries whose support is different from all
supports of the queries which are immediately below it (see [35] for details). In Figure
1, the six queries which are closed with respect tokey predicate ‘customer’ are thus: the
top-most query, the one immediately below it, the queries labeled bybuys��� pizza�,
buys��� pizza�, and the two queries which do not have any lower neighbors.

The following theorem shows the general relationship between the (iceberg) query
lattices of the formal contexts introduced in this and in the previous subsection.

Theorem 1 Let r be a datalog database and� be a set of datalog queries closed under
conjunction where all queries contain an atom key.��r��� key� is a �-sub-semi-lattice
of ��r���. Here, ‘�’ can be read both as join (supremum) in the concept lattice or as
operator returning the most specific common generalization of two queries.

Proof: For� r�� and� r���key, we have�r�� � �r���key. We show that for each� �

�r���key exists a�� � �r�� with ���� � ����� where�� is computed in the corresponding
context, resp. This proves the theorem by Lemma 31 of [15].

Let� � �r���key, and let� be the most specific query in� returning� for key�����

�����.� exists since� is closed under conjunction. Let�� be the answering substitution
for �. Then���� � ����� holds. �

We conclude this section by showing that the definition of the formal context as-
sociated tor, �, andkey is the right way to model Problem 2: this problem is indeed



a specific instance of Problem 1 for the context� r���key. As the confidence of a rule
is always derived from the support of the itemsets/queries involved, it is sufficient to
consider the itemsets/queries rather than the (relational) association rules. The proof of
the following result is straightforward.

Theorem 2 Let r be a datalog database, � be a set of datalog queries that all contain
an atom key, and let minsupp be a (user-defined) threshold between 0 and 1. Then the
set of frequent queries (in the sense of Problem 2) is equal to the set of frequent items
of � r ���key (in the sense of Problem 1).

5 Visualizations of Relational Association Rules in Iceberg Query
Lattices

In [4, 25]7 and [34], we showed how the number of (classical) association rules can
be reduced without any loss of information by applying FCA. While the first approach
is based on free sets (i. e., the head of a rule is a free set, while the conclusion is a
closed set), the second approach is based on closed sets (i. e., both head and conclusion
are closed sets). In this paper, we transfer the results of [34] to relational association
rules, and show how they can be used for visualizing relational association rules within
iceberg query lattices.

We distinguish between two types of rules.Exact rules (or implications) hold with
100 % confidence, while the confidence ofapproximate rules is strictly lower. In the
following two subsections, we discuss how the two kinds of rules can be visualized in
the same diagram. Because of space restrictions, we can only provide examples here.

5.1 Visualizing the Exact Rules

The visualization of implications in the (iceberg) concept lattice is a powerful tool for
communication, which has been used in FCA all along its twenty-five years history.
It is straightforward to apply it to iceberg query lattices: a relational association rule
�	 
�� 	 	 	 � 
� � 
���� 	 	 	 � 
�	 is an exact rule if and only if the largest node which is
below all nodes labeled by the literals
�, . . . , 
� of the body of the rule is also below
all labels
���, . . . , 
� of the head of the rule.

Example 6. Consider again Figure 3. The first rule from Example 2 holds with confi-
dence 1/1, since the largest node below the two literalscustomer��� andbuys���wine�
is the node labeled byallen, and this node is also below the labelsparent����� and
parent�����. Similarly, the rule

�	 customer���� parent������ buys��� pizza�� buys��� cola�

holds, since the largest node belowcustomer���, parent�����, and buys��� pizza�
is the one labeled bybill, and this node is also below (more precisely: at) the label
buys��� cola�. There is no frequent exact rule having

�	 customer���� parent������ buys��� pizza�� buys��� cola�

as head, as there is no node below these literals.
7 Similar results have been presented independently in [41].
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Fig. 4. All frequent relational association rules for thekey predicate ‘customer’.

5.2 Visualizing the Approximate Rules

In [34], we show that it is sufficient to consider only rules�� � �� where both��

and�� are closed and where�� is an immediate specialization of��. From these, all
other frequent rules can be derived.

By considering only these specific rules, they all correspond to edges in the line
diagram of the iceberg query lattice��r��� key�. Therefore, we can label each such
edge by the confidence of the rule, and each node by the support of the corresponding
query. The support of a rule is then the support labeled at the node the rule is pointing
to.

Example 7. Figure 4 shows the Luxenburger basis for our running example. The arrow
labeled with ‘2/3’, for instance, stands for the rule�	 customer���� parent����� �
buys��� pizza�	, which holds with confidence 2/3 and support 0.5. The third rule of
Example 2 is given by the arrow labeled with ‘1/3’.

Rules can also be composed. For instance, the rule�	customer���� parent������
buys���wine�	 is composed of the two rules pointing to the left. It has thus confidence
	
� � �
	 � �
� and support 0.25.

6 Conclusion

In this paper, we introduced two kinds of iceberg query lattices as different condensed
representations of frequent datalog queries. We argued that by switching between them
one can decide how close to analyze the relations between instances. We also demon-
strated that iceberg query lattices provide a natural way to visualize relational associa-
tion rules in a non-redundant way.
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