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Abstract

In this paper we discuss Conceptual Knowledge Discovery in Data-
bases (CKDD) as it is developing in the field of Conceptual Knowledge
Processing. Conceptual Knowledge Processing is based on the mathemat-
ical theory of Formal Concept Analysis which has become a successful
theory for data analysis during the last two decades. CKDD aims to
support a human-centered process of discovering knowledge from data by
visualizing and analyzing the conceptual structure of the data. We dicuss
how the management system TOSCANA for conceptual information sys-
tems supports CKDD, and illustrate it by two applications in database
marketing and flight movement analysis. Finally, we present a new tool
for conceptual deviation discovery, Chianti.

1 Introduction

Knowledge Discovery in Databases (KDD) is aimed at the development of meth-
ods, techniques, and tools that support human analysts in the overall process
of discovering useful information and knowledge in databases. Many real-world
knowledge discovery tasks are both too complex to be accessible by simply ap-
plying a single learning or data mining algorithm and too knowledge-intensive
to be performed without repeated participation of the domain expert. There-
fore, knowledge discovery in databases is considered an interactive and iterative
process between a human and a database that may strongly involve background
knowledge of the analyzing domain expert. This process-centered view of KDD
is the overall theme and contribution of the volume “Advances in Knowledge
Discovery and Data Mining” [FPSU96].

Conceptual Knowledge Discovery in Databases (CKDD) has been developed
in the field of Conceptual Knowledge Processing. Based on the mathemat-
ical theory of Formal Concept Analysis, CKDD aims to support a human-
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centered process of discovering knowledge from data by visualizing and ana-
lyzing the conceptual structure of the data. Implementing the basic meth-
ods of Formal Concept Analysis, the management system TOSCANA has been
used as a knowledge discovery tool in various research and commercial projects
(cf. [Wi97, SW00]). To show its capabilities for CKDD, we address the funda-
mental requirements for a knowledge discovery support environment stated by
R. Brachman in [BS+93, BA96]. They will be discussed using as example an
information system implemented for Frankfurt Airport. Then a typical analysis
process will be presented by a data warehousing system established for a Swiss
department store. This project is also used to discuss a new tool for conceptual
deviation analysis, called Chianti.

This article consolidates elements of work presented previously in the con-
ference papers [SWW98] and [HSWW00].

Organization of the Paper

After the introduction of some basic notions and ideas of Formal Concept Analy-
sis and conceptual information systems in the next section, we discuss human-
centered knowledge discovery and provide Brachman’s list of requirements for
knowledge discovery support environments in Section 3. In Section 4, we illus-
trate CKDD by a flight movement analysis, and discuss along this example how
CKDD matches Brachman’s requirements. An inter-active knowledge discovery
process performed in the context of a data warehouse is presented in Section 5,
followed by a presentation of Chianti in Section 6. After a discussion of related
work in Section 7, the paper concludes with Section 8.

2 Formal Concept Analysis and Conceptual In-
formation Systems

Concepts are necessary for expressing human knowledge. Therefore, the process
of discovering knowledge in databases benefits from a comprehensive formaliza-
tion of concepts which can be activated to communicatively represent knowledge
coded in databases. Formal Concept Analysis ([Wi82, Wi92a, GW99]) offers
such a formalization by mathematizing concepts that are understood as units
of thought constituted by their extension and intension.

To allow a mathematical description of extensions and intensions, Formal
Concept Analysis always starts with a formal context defined as a triple (G,M, I),
where G is a set of (formal) objects, M is a set of (formal) attributes, and I is
a binary relation between G and M (i. e., I ⊆ G×M). (g, m) ∈ I is read “the
object g has the attribute m”.

In Figure 1, a formal context is given. The object set G contains all gates of
Terminal 1 at Frankfurt Airport, and the attribute set M contains certain gate
types. The cross table represents the binary relation I between the objects and
the attributes.
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A1, B2, C1
A2-5, A8, A9, B1, B3-9
A10-21, A23
A22
B10
B11-16, B30-35, B90, B91, C3, C10, C21-23
B20, B22-28, B41-48, C4-9
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Figure 1: A formal context about terminal gates at Frankfurt Airport
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Terminal Gate
Bus Gate

Domestic Gate International Gate

A10−21, A23 A22

A1, B2, C1

A2−5, A8, A9, B1, B3−9

B10

C2

B11−16, B30−35, B90, B91, C3, C10, C21−23

B20, B22−28, B41−48, C4−9

Figure 2: The concept lattice of the context in Figure 1

A formal concept of a formal context (G,M, I) is defined as a pair (A,B) with
A ⊆ G and B ⊆ M such that (A,B) is maximal with the property A×B ⊆ I; the
sets A and B are called the extent and the intent of the formal concept (A,B).
The subconcept–superconcept relation is formalized by (A1, B1) ≤ (A2, B2) :⇐⇒
A1 ⊆ A2 (⇐⇒ B1 ⊇ B2). The set of all concepts of a context (G,M, I)
together with the order relation ≤ is always a complete lattice, called the concept
lattice of (G,M, I) and denoted by B(G,M, I).

In this example, the intents of the formal context are exactly all the subsets
of its attribute set; hence its concept lattice is a 16-element Boolean lattice.
The concept lattice is visualized in Figure 2 by a (labeled) line diagram.

In a line diagram of a concept lattice, the name of an object g is always
attached to the node representing the smallest concept with g in its extent
(denoted by γg); dually, the name of an attribute m is always attached to the
node representing the largest concept with m in its intent (denoted by µm).
This labeling allows us to read the context relation from the diagram because
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G13 Runway [RWY]
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Figure 3: The query structure Runway

(g,m) ∈ I ⇐⇒ γg ≤ µm, in words: the object g has the attribute m if and only if
there is an ascending path from the node representing γg to the node representing
γm. The extent and intent of each concept (A,B) can also be recognized because
A = {g ∈ G | γg ≤ (A,B)} and B = {m ∈ M | (A,B) ≤ µm}.

For example, the node in the line diagram of Figure 2 labeled “A2–5, . . . ”
represents the concept with the extent {A1, A2, A3, A4, A5, A8, A9, A22, B1, B2,
B3, B4, B5, B6, B7, B8, B9, C1} and the intent {Domestic Gate, Bus Gate}. A
typical information one can obtain from such a diagram is the fact that gates A10
to A23 provide the flexibility of being used either as Domestic or International
Gate, but that with the exception of bus gate A22 they all are terminal gates
only.

Graphically represented concept lattices have proven to be extremely useful
in discovering and understanding conceptual relationships in given data. There-
fore a theory of ‘conceptual information systems’ has been developed to activate
concept lattices as query structures for databases. A conceptual information
system consists of a (relational) database and a collection of formal contexts,
called conceptual scales, together with line diagrams of their concept lattices;
such systems can be implemented with the management system TOSCANA (see
[SS+93, VW95]). For a chosen conceptual scale, TOSCANA presents a line di-
agram of the corresponding concept lattice indicating all objects stored in the
database in their relationships to the attributes of the scale. For instance, as re-
sult of a TOSCANA query, Figure 3 shows the concept lattice of the conceptual
scale Runway indicating as objects 18939 takeoffs at Frankfurt Airport (during
one specific month). These objects are classified according to the runways used
for take-off, which are taken as attributes of the scale.
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3 Human-Centered Knowledge Discovery

According to R. S. Brachman and T. Anand [BA96], much attention and effort
in the field of KDD has been focused on the development of data-mining tech-
niques, but only a minor effort has been devoted to the development of tools
that support the analyst in the overall discovery task. They see a clear need to
emphasize the process-orientation of KDD tasks and argue in favor of a more
human-centered approach for a successful development of knowledge-discovery
support tools (see also [Ut96], p. 564). All in all, human-centered KDD refers to
the constitutive character of human interpretation for the discovery of knowl-
edge, and stresses the complex, interactive process of KDD as being lead by
human thought.

Real-world knowledge-discovery applications obviously vary in terms of un-
derlying data, complexity, the amount of human involvement required, and their
degree of possible automation of parts of the discovery process. In most applica-
tions, however, an indispensable part of the discovery process is that the analyst
explores the data and sifts through the raw data to become familiar with it and
to get a feel for what the data may cover. Often an explicit specification of
what one is looking for only arises during an interactive process of data explo-
ration, analysis, and segmentation. R. S. Brachman et al. introduced the notion
of Data Archaeology for KDD tasks in which a precise specification of the dis-
covery strategy, the crucial questions, and the basic goals of the task have to
be elaborated during such an unpredictable interactive exploration of the data
[BS+93]. Data Archaeology can be considered a highly human-centered process
of asking, exploring, analyzing, interpreting, and learning in interaction with
the underlying database.

A human-centered approach to KDD that supports the overall KDD process
should be based on a comprehensive notion of knowledge as a part of human
thought rather than on a restrictive formalization as it is used for the evalu-
ation of automated knowledge-discovery or data-mining findings (for example
[FPS96], p. 8). The landscape paradigm of knowledge underlying Conceptual
Knowledge Processing as described in [Wi97] provides such a comprehensive
and human-centered notion of knowledge. Although there is some similarity
with the archaeology metaphor, the landscape paradigm places more empha-
sizes on the intersubjective character of knowledge. Following Peirce’s prag-
matic philosophy, knowledge is understood as always being incomplete, formed
and continuously assured by human argumentation within an intersubjective
community of communication (cf. [Wi97, Wi01]).

Knowledge discovery based on such an understanding of knowledge should
support knowledge communication as a part of the KDD process, both with
respect to the dialog between user and system and also as a part of human
communication and argumentation. This presupposes a high transparency of
the discovery process and a representation of its (interim) findings that support
human argumentation to establish intersubjectively assured knowledge. Further
fundamental requirements for human-centered KDD support tools have been
stated by R. S. Brachman and T. Anand (see [BA96], p. 53). In addition to tools
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that support the individual phases of the KDD process, they basically demand
support for the coupling of the overall process, for exploratory Data Archaeology,
and some help in deciding what discovery techniques to choose. Most of the
content of these claims is covered by the more explicit and detailed requirements
formulated already in [BS+93]. Requirements 1 to 5 of the subsequent list
are explicitely stated in [BS+93, p. 164], while the remaining requirements are
implicit in [BA96] and [BS+93].

1. The system should represent and present to the user the underlying do-
main in a natural and appropriate fashion. Objects from the domain
should be easily incorporated into queries.

2. The domain representation should be extendible by the addition of new
categories formed from queries. These categories (and their representative
individuals) must be usable in subsequent queries.

3. It should be easy to form tentative segmentations of data, to investigate
the segments, and to re-segment quickly and easily. There should be a
powerful repertoire of viewing and analysis methods, and these methods
should be applicable to segments.

4. Analysts should be supported in recognizing and abstracting common
analysis (segmenting and viewing) patterns. These patterns must be easy
to apply and modify.

5. There should be facilities for monitoring changes in classes or categories
over time.

6. The system should increase the transparency of the KDD process, and
document its different stages.

7. Analysis tools should take advantage of explicitly represented background
knowledge of domain experts, but should also activate the implicit knowl-
edge of experts.

8. The system should allow highly flexible processes of knowledge discovery
respecting the open and procedural nature of productive human thinking.
This means in particular the support of intersubjective communication
and argumentation.

Conceptual Knowledge Discovery provides means to satisfy these requirements,
as we will argue in the next section along a system for analyzing flight move-
ments.

4 Conceptual Knowledge Discovery in Databases

Conceptual information systems using the management system TOSCANA can
be considered as knowledge discovery support environments that promote human-
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centered discovery processes and representations of their findings. As illustrat-
ing example, we use a conceptual information system established by U. Kauf-
mann [Ka96] for exploring data of the information system INFO-80 of the
‘Flughafen Frankfurt Main AG’. This information system supports planning,
realization, and control of business transactions related to flight movements at
Frankfurt Airport.

In a conceptual information system, the objects of the underlying domain are
stored in a relational database so that they can be activated by SQL-statements
for establishing conceptual scales. The objects are presented to the user in line
diagrams of the concept lattices of conceptual scales as already demonstrated in
Figure 3. In general, the objects are first listed in quantities describing the size
of the extents of the represented concepts. For instance, in Figure 3 the number
8331 attached to the node labelled “18W” informs that there were 8331 takeoffs
on Runway 18 West. If one wants more specific information about objects, one
can obtain the object names for an extent by clicking on the attached number,
or even more information about a single object by clicking on its name. Of
course, larger numbers as in Figure 3 first have to be differentiated by further
scales before considering single objects. But the distribution of the quantities
may be already informative: in our example the number 8331 indicates that
more than 40% of all takeoffs are from Runway 18 West; this high proportion
is interesting because there was a strong controversy about the construction of
this runway regarding noise pollution.

Our discussion shows that the first requirement of appropriate object rep-
resentations is fulfilled in conceptual information systems. The second require-
ment of extendibility of categorical structures is already realized by the large
flexibility in forming conceptual scales; even during the discovery process new
insights may give rise to further conceptual scales. The third requirement of
meaningful data segmentations is also fulfilled because the conceptual scales
and their combinations yield an almost unlimited multitude of conceptual seg-
mentations and with that a powerful repertoire of different views for exploring
and analyzing data. This flexible repertoire supports analysts in recognizing and
abstracting the interpretable patterns for which the fourth requirement asks.

Let us demonstrate some of the discussed abilities of conceptual information
systems by continuing the investigation of Runway 18 West. In Figure 3 we
zoom into the concept node labeled ‘18W’ with the conceptual scale Wingspan
Code and Position Size. Then we can study the sizes of the 8331 planes that
took off from 18 West in the line diagram shown in Figure 4. Position sizes
indicate, in increasing order, the size of the docking position of the plane prior
to takeoff, while the wingspan codes decrease by increasing wingspan (Code 0
stands for ‘helicopter’). The cardinality of the extents are now described by
percentages rather than by absolute cardinalities. From the diagram we obtain
that most of the machines that took off from Runway 18 West had position size
4 or 5, hence are rather large. This might lead to the hypothesis that those
machines contribute over-proportionally to the noise pollution. We test this
hypothesis by zooming into the two concept nodes labeled Posgr 4 and Posgr
5 with the scale Noise Class of the Plane by ICAO-Annex 16. The two line
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G24 Spannweitencode und Positionsgrößen [SWC]

0
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Posgr 5
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Posgr 4
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Posgr 3
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Posgr 2
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Posgr 1

15

100,00

1,879,71

1,98 1,74 3,48 0,43 2,08

15,66

3,13 4,20 8,33

66,50

22,45 9,33 34,73

6,25

1,85 0,026,25

Figure 4: The query structure Wingspan Code and Position Size

diagrams in Figure 5 indicate that for both position sizes more than 95% of
the planes that took off from Runway 18 West are quite silent (as classified by
Chapter 3 of the Chicago Treaty). Hence the hypothesis is not supported by the
data. Summarizing our investigation, we can conclude that the planes taking
off from Runway 18 West are over-proportionally large, but that more than 95%
of them are categorized as silent.

Conceptual information systems offer also facilities for fulfilling the other
requirements listed. Changes in classes or categories over time may be doc-
umented in specific scales so that they can be easily monitored. Processes of
knowledge discovery are developing in a network of conceptual scales that yields
increasing transparency of the process and can be used for documenting the dif-
ferent phases of the process. K. Mackensen and U. Wille have even shown in
[MW97] how such processes may be understood as procedures of qualitative
theory building (see also [SWW01]). Background knowledge of domain experts
enters the process of knowledge discovery via conceptual scales in which ex-
perts have explicitly coded formal aspects of their knowledge in structurally
representing a certain theme, thereby also making connections to their implicit
knowledge. Overall, conceptual information systems offer conceptually shaped
landscapes of structurally coded knowledge allowing diverse excursions, during
which a learning process yields an increasingly better understanding of what
to collect and where to continue (cf. [Wi97]). The graphical representation of
interesting parts of the landscape, in particular, supports intersubjective com-
munication and argumentation.
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G26 Lärmklasse des Flugzeuges nach ICAO-Annex 16 [A16]
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G26 Lärmklasse des Flugzeuges nach ICAO-Annex 16 [A16]
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7
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Figure 5: The query structure Noise Class of the Plane by ICAO-Annex 16 with
respect to position sizes P4 (left) and P5

5 Conceptual Knowledge Discovery and Data
Warehousing

In this section, we present a second application of Conceptual Knowledge Dis-
covery. In a joint research project of Darmstadt University of Technology and a
Swiss department store, the integration of procedures of Formal Concept Analy-
sis and Data Warehousing has been investigated. The resulting conceptual in-
formation system is in daily use in the database marketing of the department
store. The implementation of this system led to new research topics, which re-
sulted in a new analysis tool, Chianti, which will be presented in the following
section.

The department store and its business partners provide a special credit card
to their customers. If customers purchase products at the department store
or one of its partners, they collect bonus points, which allow for reductions on
special occasions. The credit card transactions are stored in a central database
and allow the Database Marketing department to analyze the behaviour of their
customers and to improve the personalization of marketing mailings, e. g., offer-
ing specific products the individual customers are more likely to be interested
in. The database used at time of implementation contained data from more
than nine million transactions and more than forty thousand customers. About
160 conceptual scales have been established within the conceptual information
system for analyzing the data.

The line diagram on the left side in Figure 6 shows the cross-selling behavior
between travel accessories, perfumery, and women’s accessories. In the concept
lattice, the objects are all customers with purchases in at least one of the three
departments, and the attributes are ‘purchased in the department for travel ac-
cessories’, ‘purchased in the perfumery’, and ‘purchased in the department for
women’s accessories’. The diagram shows that there are 1075 customers who
bought in the travel accessories only, 8182 in the perfumery only, and 3964 in the
women’s accessories department only, and in non of the other two departments.
Furthermore, there are 967 customers who bought travel accessories and some-
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TravelTravel Accessoires AcessoiresP Pe er rff uum meer ryy LadiesLadies AcessoiresAccessoires

22994

1 40 37 75 4 181 78 42 723 196 24 770

96 27 816483 2336 2474 8323

1849 1849

Figure 6: Line diagrams showing the cross-selling between travel accessories,
perfumery, and women’s accessories

thing from the perfumery but no women’s accessories, and 1849 customers who
where active in all three departments. Here we are already pointed to a mar-
keting problem, namely, why are there 8182 customers buying perfumery goods
but no accessories although both departments are right next to each other?

Interesting for the mailing select are the 6474 + 1849 = 8323 customers,
because, in general, it is more promising to make active customers to better
customers. The diagram on the right hand side in Figure 6 represents the same
facts as the left one, but the amounts of customers are summed up from the bot-
tom (i. e., to each concept is attached the cardinality of its extent). To study the
group of perfume and women’s accessories buyers in further detail, TOSCANA
allows us to ‘zoom into’ the node in the right diagram representing the 8323
customers that bought perfumery goods and accessories and eventually travel
accessories. Figure 7 shows a segmentation of those customers with respect to
their previous activity in the ladies wear department (formal, business, and ca-
sual wear). In this diagram, the amounts of customers are again summed up
from the bottom; for instance, there are 1777 customers in that group of 8323
who spent more than 400 SFr (Swiss Francs) for women’s clothing (639 spent
more than 1000 SFr and 1138 between 400 and 1000 SFr). Since there is no need
to attract already good customers of the ladies wear department by incentives
advertised in direct mailings, one has to look for high potential customers with
low or no activity in the ladies wear department.

The power of TOSCANA systems lies in the possibility to refine a presented
concept lattice by another one so that one obtains either a nested line diagram
of a combination of both lattices, or a line diagram of the second lattice refin-
ing a single specific concept of the first; the latter may be used for zooming
iteratively, which potentially allows us to navigate through the entire database.
Figure 8 shows how different scales can be combined and represented in a nested
line diagram to visualize dependencies between different ‘dimensions’. It shows
the activity of the 6546 customers with 400 or less SFr expenses for women’s
clothing. The nested line diagram presents two aspects of the activity of those
6546 customers: the line diagram representing the number of departments in
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42337684

3493

1777

6546 3594

2854

639

4830 2456

113817167404090

Figure 7: Line diagram showing the amount customers of perfume and women’s
accessories spent for women’s clothing

which customers shopped (outer part) is combined with the cross-selling line
diagram between houseware and interieur (inner part). The nodes of the first
line diagram have been enlarged so that a copy of the second line diagram could
be drawn in each enlarged node. The nested line diagram can be read like an
non-nested one if we replace the lines between the large circles by parallel lines
between the corresponding nodes of the inner diagrams. For instance, we can
read from the diagram that there are 4720 customers who shopped in five or
more but in at most twelve departments of the store, and that 2001 of those
bought houseware as well as interieur, which seems to be a good target group
for direct mailing.

For examining cross-selling, concepts having many attributes – and hence
only relatively few objects – are of special importance. In those cases, one needs
the whole line diagram for the analysis of how well cross-selling works. But there
are many applications where one is not interested in concepts which differentiate
the population too much – at least not for a first overview. In that situation one
benefits from iceberg concept lattices: by fixing a support threshold minsupp, one
can prune all infrequent concepts of the conceptual scale (cf. [St99b, ST+01b]).
Then only the frequent concepts are displayed. For instance, if we want to have
a first glance at the distribution of the age of the customers, then the conceptual
scale ‘Age’ may be too detailed. By fixing minsupp := 25%, we prune 18 of the
30 concepts of the scale ‘Year of Birth’. The remainder is shown in Figure 9.
One can for instance see that for more than half of the customers the year of
birth is unknown, and that 46.04% of all customers (paying with credit card)
are born before 1973. Hence there are very few customers (of which the year
of birth is known) who are younger than 25 years and having paid with credit
card.
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Figure 8: Nested line diagram combining numbers of visited departments with
the cross-selling between houseware and interieur
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34 0330 61
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Figure 9: Conceptual Scale ‘Year of Birth’ restricted to frequent concepts with
minsupp = 25%

6 Conceptual Deviation Discovery with Chianti

Up to now, the search and analysis was guided by already present knowledge.
On other occasions, the analyst is looking for new ideas, is trying to gain new
knowledge based on the collected data. To help the human expert in those
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more complex cases, a tool should automatically indicate conceptual scales (or
combinations of conceptual scales) which are expected to provide interesting
information, combined with the freedom of navigating around. The problem
we tackle here is to gain more knowledge about a given sub-population. We do
not necessarily require an explicit description of the behavior. For instance, in
the context of Database Marketing, the user might want to learn (in its literal
meaning) more about how customers spending much money differ from the other
customers in their buying behavior. For this purpose, we have developed the
tool Chianti, based on [St98] and [St99a]. While being an external tool at first,
it is currently becoming an integral feature of the ToscanaJ Project [To01].

Chianti takes as input two sub-populations which are defined by SQL
queries. It returns a list of conceptual scales ranked according to the difference
in the distribution of the two sub-populations. We explain the use of Chianti
by an example.

In the following example, we have divided the customer population in two
parts: those customers who spent more than 1000 SFr and those who spent
less. Chianti then compares the distributions of the two sub-populations in all
scales of the conceptual information system and returns a ranking of all scales.
In the ranking, those scales appear at the top where the distributions differ the
most. The current implementation provides two measures for the similarity of
the distributions: The χ2-measure (hence the name of the program) and the
maximum norm. While the first measure takes the differences in all concepts
into account (the larger ones over proportionally), the second measure only
regards the concept with the largest difference. This approach is useful when
an easy interpretation of the ranking is desired. Chianti does not only work on
contingents (i. e., the set of all objects belonging to the extent of the concept but
not to the extent of any sub-concept), but also on extents, and is thus providing
more possibilities for defining deviation measures on the conceptual scales.

Figure 10 shows the ranking of all scales related to cross-selling for the two
sub-populations mentioned above according to the χ2-measure. The scale at the
top is the scale ‘Cross-selling houseware/interieur’ (which we have already seen
as inner scale in Figure 8). This means that among all cross-selling scales, this
scale differentiates the two groups the most. This scale also appears as topmost
scale in the ranking according to the maximum norm.

By combining the topmost scales of the ranking with the scale ‘Money spent
≤ / > 1000 SFr’, we can then analyze the distribution of the two groups in
more detail. The combination of this scale together with the scale ‘Cross-selling
houseware/interieur’ is shown in Figure 11. In the diagram, we have set the top
element of each inner scale to 100% in order to facilitate comparison. We see that
the customers spending much money buy over-proportionally in the Houseware
(265% more often) and Interieur (322% more often) departments. Furthermore,
for this customer group, the cross-selling between both departments is much
higher than for the rest: The proportion from 36.98% to 60.58% and 50.53% is
much higher than the one from 5.56% to 22.82% and 15.67%.

We emphasize that — unlike many statistical techniques — the final result is
not the ranking of the scales. It provides just a suggestion to the analyst to con-
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Scale Val.
Xselling houseware/interieur 0,0684
Xselling food/wine 0,0570
Xselling travel accessoires/perfumery/ladies accessoir 0,0325
Xselling perfumery/houseware/food 0,0324
Xselling perfumery/ladies fashion 0,0305
Xselling wine/mens fashion/perfumery 0,0275
Xselling ladies fashion/mens fashion/sports 0,0229

0,0
Xselling sports/children/travel accessoires 0,0160
Xselling mens clothing (incl_ underwear) 0, 160
Xselling ladies wear 0,0123
Xselling mens city 0,0009

Figure 10: Ranking of conceptual scales related to cross-selling

<= 1000 sFr > 1000 sFr

houseware interieur
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14,97

60,58 50,53

36,98

22,82 15,67
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Figure 11: Customers of the houseware department differentiated by the amount
of money spent

sider a certain combination of scales for analyzing the situation in more detail.
It is not justified to deduce from the ranking alone that the buying behavior in
the houseware department determines the value of the customer. In particular,
it is not possible to decide automatically if a prominent position in the ranking
indicates a cause for or a consequence of the different distribution. This becomes
clear when one studies the ranking of all scales. The topmost scales are then
all scales related to the amount of money spent. In those scales one will hardly
discover new insights. The next scale is then ‘Active Time (in days)’. This scale
does not provide an interesting insight either, since it is intuitively clear that a
typical customer usually pays less than 1000 SFr in a single transaction; hence
for spending more money, he has to visit the department store more than once.
The next scale then is the scale ‘Cross-selling houseware/interieur’.

The insight that the scale about the active time is not useful for this kind of
analysis can only be gained by refering to the implicit background knowledge
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Figure 12: Nested line diagram of the scales Position of baggage conveyor and
Position of aircraft

of the domain expert. A repository which stores such information explicitly
cannot overcome the general problem. There is an almost boundless number of
possible combinations of conceptual scales in a conceptual information system
which cannot be overviewed in advance. However it is promising for further
research to consider such a repository which ‘learns’ from the behavior of the
analyst which combinations are of interest and which are not.

In this context, a more detailed study of different deviation measures has
been started. We discuss it along the flight movement analysis example. Fig-
ure 12 shows the nested line diagram of the scales ‘Position of baggage conveyor’
and ‘Position of the aircraft’. By a short investigation, some problematic cases
can be found. For instance, there are 180 aircraft at Terminal 1 with baggage
conveyors assigned in Terminal 2. The four aircraft that docked at Terminal 2,
while their assigned baggage conveyors are in Terminal 1, as well as the 7+17
cases in which the aircraft docks at one of the two terminals, while the assigned
conveyor is on the apron, are also considered problematic.

We applied different deviation measures for analyzing in which concep-
tual scales (out of a representative subset of scales) the deviation of the sub-
population of the 180 aircraft compared to the total population is the largest
(cf. [KSK01]). To formally present those measures, we use the following no-
tations: Given the multi-valued context (G,M, W, I), the two sub-populations
used for the comparision are described by the subsets G1, G2 ⊆ G and induce
the sub-contexts Ki := (Gi,M,W, I ∩ (Gi ×M ×W )) with i ∈ {1, 2}.

Let CS be the set of all concepts of a conceptual scale S. For every c ∈ CS, ci

shall be the corresponding concept of the scale S realized over Ki. For a concept
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Figure 13: A comparison of four possible deviation measures

c, the functions extent and contingent return the number of objects in its extent
and contingent respectively.

Using these notations, we can now describe the four deviation measures:

χ2(extent)(S) := 1
|CS|

∑

c∈CS

(
extent(c1)
|G1| − extent(c2)

|G2|
)2

χ2(contingent)(S) := 1
|CS|

∑

c∈CS

(
contingent(c1)

|G1| − contingent(c2)
|G2|

)2

max(extent)(S) := 1
|CS| max

c∈CS

∣∣∣ extent(c1)
|G1| − extent(c2)

|G2|

∣∣∣
max(contingent)(S) := 1

|CS| max
c∈CS

∣∣∣ contingent(c1)
|G1| − contingent(c2)

|G2|

∣∣∣

Our analysis indicates that the deviation measures provide different rank-
ings. According to two of them, the conceptual scale ‘Airline’ was ranked high-
est, while according to the two other, the scale ‘Partner of the airlines’ was
ranked highest. Figure 13 shows the differences between the different deviation
measures. Along the x-axis the scales are listed (ordered by their ranking with
respect to the maximum-measure on the contingents). The y-axis provides the
rank given to the scale by each of the four measures. If all of them would mea-
sure the same information, they would be all close to each other, i. e., all would
be very close to the diagonal. As can be seen in the figure, this is not the case.
Actually, there are conceptual scales that are esteemed important following the
maximum-on-contingents measure but unimportant by the χ2-on-extents mea-
sure – and vice-versa. This indicates the need for more experience in real-world
applications based on judgments of domain experts. This would help to define
ranking functions adapted to the domain of analysis.
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7 Related Work

In this paper, we have presented an overview over some applications of Concep-
tual Knowledge Discovery. Now we briefly discuss some other ways (taken by
ourselves as well as by other authors) of using Formal Concept Analysis to sup-
port the knowledge discovery process. This collection is by no means complete,
but shall provide an insight in the variety of applications of Formal Concept
Analysis for Knowledge Discovery.

A prominent research area in KDD are association rules. Formal Concept
Analysis is used in two ways for computing association rules. Firstly, the lattice
structure is exploited for improving the fiiciency of the algorithms. The first
algorithm of this kind was Close [PBTL99]. [PHM00, BTP+00] present two
more algorithms for efficient computation. Secondly, Formal Concept Analysis
is used to reduce the number of rules presented to the user. The approaches
described in [BPT+00, Za00, ST+01a] allow for rule reduction without loss
of information. Another unsupervised KDD technique where Formal Concept
Analysis was applied is conceptual clustering: [CR93, StW93, MG95, ST+01b]
describe different approaches. B. Ganter and S. Kuznetsov [GK00, GK01] and
E.M. Nguifo and P. Njiwoua [NN01] have applied Formal Concept Analysis for
supervised learning in

In [CES00], an application of CKDD in email collections is discussed.
Conceptual information systems can also be understood as On-Line Analyt-

ical Processing (OLAP) tools. Roughly, the conceptual scales can be regarded
as dimensions of a multi-dimensional data cube. Zooming in one of the concepts
of a scale as described in the previous sections corresponds to ‘slicing’ the data
cube. ‘Rotating’ and ‘drill-down’ are also supported [St00]. The combination of
the conceptual structures of Formal Concept Analysis and the numerical capa-
bilities presented by today’s databases is incorporated in the ToscanaJ project
(cf. [To01]) and will be the base for future applications in this domain.

While the ToscanaJ project is preparing for very large databases, there is also
a need for small and handy analysis tools. For small and ad-hoc qualitative data
analysis, the software tool Cernato from Navicon GmbH1 has been developed.
Cernato is a highly integrated system for data management and interactive
analysis. It includes facilities for building conceptual information systems. The
line diagrams are produced on the fly and are animated.

Further research in Conceptual Knowledge Processing aims at developing
conceptual knowledge systems by extending the functionalities of conceptual
information systems, especially by logic-based components. As Formal Concept
Analysis and Description Logics are closely related and have similar purposes
(see, e. g., [BS+93, SSW96]), first steps in integrating both theories have been
made ([Ba95, Be97, Pr97, St96]). For hybrid knowledge processing, an extension
of conceptual information systems is foreseen by incorporating statistical and
computational components [SWo97]. This indicates a promising development
in terms of extending conceptual information systems toward a wider range of

1http://www.navicon.de

17

http://www.navicon.de�


CKDD applications.
A second line of extending Formal Concept Analysis to Conceptual Knowl-

edge Processing beside CKDD is Contextual Logic [Wi96, Pr00]. It is based
on the elementary doctrines of concepts, judgments, and conclusions as dis-
cussed in traditional philosophical logic. In this framework, Formal Concept
Analysis is considered as a theory for concepts, while Conceptual Graphs [So84]
are used as building blocks for a theory for judgments and conclusions. De-
tails of Contextual Logic and its philosophical foundations are discussed in
[Wi96, Wi97, Pr98, Pr00, Wi00].

8 Conclusion

In this paper, we have discussed the need for a human-centered approach to
Knowledge Discovery. We presented Conceptual Knowledge Discovery as such
an approach, and argued how it fulfills the criteria for a human-oriented knowl-
edge discovery provided by R. Brachman. We illustrated CKDD by two appli-
cations at Frankfurt Airport and at a Swiss warehouse, and presented the new
Chianti tool for conceptual deviation discovery.
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und Wissenschaft. Springer, Berlin–Heidelberg 1999, 328–342

[St99b] G. Stumme: Conceptual Knowledge Discovery with Frequent Con-
cept Lattices. FB 4–Preprint 2043, TU Darmstadt 1999

[St00] G. Stumme: Conceptual On-Line Analytical Processing. In: K.
Tanaka, S. Ghandeharizadeh, Y. Kambayashi (eds.): Information
Organization and Databases. Chpt. 14. Kluwer, Boston–Dordrecht–
London 2000

[ST+01a] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, L. Lakhal: In-
telligent Structuring and Reducing of Association Rules with For-
mal Concept Analysis. In: F. Baader. G. Brewker, T. Eiter (eds.):
KI 2001: Advances in Artificial Intelligence. Proc. KI 2001. LNAI
2174, Springer, Berlin–Heidelberg 2001, 335–350

[ST+01b] G. Stumme, R. Taouil, Y. Bastide, N. Pasqier, L. Lakhal: Comput-
ing Iceberg Concept Lattices with Titanic. J. on Knowledge and
Data Engineering (to appear)

21



[SW00] G. Stumme, R. Wille (eds.): Begriffliche Wissensverarbeitung:
Methoden und Anwendungen. Springer, Berlin–Heidelberg 2000

[SWW98] G. Stumme, R. Wille, U. Wille: Conceptual Knowledge Discov-
ery in Databases Using Formal Concept Analysis Methods. In:
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