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Abstract A Conceptual Information Systeransists of a database together with conceptual
hierarchies. The visualization of arbitrary combinatiafsconceptual hierar-
chies bynested line diagramallows an on-line interaction with a database to
analyze data conceptually. The chapter describes the pioicef Conceptual
Information Systems and discusses the use of their visiadiz techniques for
On-Line Analytical Processing (OLAP).

1. INTRODUCTION

The conception of Conceptual Information Systems relietherinsight that
concepts are basic units of human thinking, and is foundetdeomathematical
theory of Formal Concept Analysiformal Concept Analysid 6, 2] reflects an
elementary understanding of the concept of ‘concept’ wardse in philosophy
since antiquity [15] and has been established in the Gertaadards DIN 2330
and DIN 2331. Since its foundation in the early 80ies, Foi@micept Analysis
has been used in many applications in data analysis, inf@meetrieval, and
knowledge discovery.

A Conceptual Information Systetonsists of a (relational) database together
with conceptual hierarchies. These hierarchies, caltatteptual scalesare
used to support navigation through the data. Animportamnofdor the success
of Conceptual Information Systems is the visualizationafaeptual scales by
line diagrams By combining conceptual scalesrigsted line diagrams large
variety of perspectives can be generated interactivelyhioh relationships and
dependencies can be investigated. The management systS@ANA allows
an on-line interaction with a database to analyze and exjplata conceptually.
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Actually, there are over 30 implemented Conceptual InfaimnaSystems,
including a flight movement information system at Frankfitport [4], a
library retrieval system [8], and a decision support envinent at a warehouse
company [3].

On-Line Analytical Processing (OLARlies on the metaphor of a (high-di-
mensional) cube containing the data. For dimensions whiglmet structured
hierarchically, the cube metaphor provides a good intitimderstanding of
multi-dimensional data. But an essential feature of OLAfRatisions is that
they are ordered hierarchally: days roll up into months, th®into quarters
and years, products into product groups and product linekenQhey are
trees gimple hierarchieg but they may be any arbitrary partially ordered set
(multiple hierarchy. In this setting, the cube metaphor is not the most natural
approach, because it imitates the mathematical consiruofia direct product
of linear vector spaces which forces the hierarchies to peesented in a
flat linear form. Instead of listing the hierarchies on (ahmensional) axes,
we suggest to visualize them tipe diagramswhich were created in order
to represent hierarchical structures. By usiragted line diagramsarbitrary
dimensions can be combined for ad hoc analysis.

In the next section, we introduce the basics of Formal Cangealysis and
Conceptual Information Systems. In Sections 3 and 4, Cdnakfn-Line
Analytical Processing is discussed. Section 5 reports orimplementation
in a warehouse company and concludes with a discussion oreftgsearch.

2. CONCEPTUAL INFORMATION SYSTEMS

Conceptual Information Systems are based on the mathexhttiory of
Formal Concept Analysis. The aim of Formal Concept Anal{st 2] is a
mathematical formalization of the concept ‘concept’. fieets the philosoph-
ical understanding of concepts as units of thought congjsif two parts: the
extension containing all objects which belong to the coheed the intension
containing the attributes shared by all those objects. iShisodeled byormal
conceptghat are derived from formal context

Definition. A (formal) contexis a tripleK := (G, M, I) whereG and M are
sets and is a relation betwee& andM . The elements aoff and M are called
objectsandattributes respectively, anfy, m) € I is read'the objectg has the
attributemn” . A (formal) concepts a pair(A, B) suchthatd C GandB C M
are maximal withA x B C I. The setA is called theextentand the sefB
theintentof the concept. The hierarchical subconcept—superconadation
of concepts is formalized byA, B) < (C,D) : <= A C C (<= B 2 D).
The set of all concepts of the conteXttogether with this order relation is a
complete lattice that is called tlvencept latticeof K and is denoted b (K).
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Figure 14.1 Formal context of harps and its concept lattice

Example In Figure 14.1, a formal context of the Richter Harps praliby
HOHNER INC. is given. A tuple(g,m) € M is read as ‘harpg is available
with featurem’. In the line diagram, the circles represent the concepts. A
concept is a subconcept of another, if there is an ascenditiggd straight
line segments from the former to the latter. The extent fitjtef each concept
contains all objects [attributes] which can be reached ftbenconcept on a
descending [ascending] path.

If we are for example interested in a wooden harp tuned in mtgjen we
take the largest concept that haisod andD major in its intent. This concept
is represented by the circle just above the lafsabngues. The extent of this
concept containslarine Band SBS, Marine Band, andAuto Valve Harp — SO these
are exactly the harps available in wood and D major. The fra&tinis concept
contains — besid@/ood andD major — the features, F, G, andC major, So the
three harps are available in these tunings also. Sughglitationcorresponds
to a functional dependency in database theory.

In many applications, attributes are not one-valued asdrptlvious exam-
ple, but allow a range of values. This is modeledrbgny-valued contexts
In order to obtain a concept lattice, many-valued contesdsteanslated’ into
one-valued contexts byonceptual scales
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Definition. A many-valued contexs a tuple(G, M, (W, )menr, I) whereG
and M are sets obbjectsandattributes resp.,W,, is a set ofvaluesfor each
m € M,andI C G x U,,cps({m} x W,,) such that(g, m,w,) € I and
(9.m,ws) € Iimply wy = wy. A conceptual scaléor an attributem € M
is a contexsS,,, := (G, My, I,) With W,,, C Gy,. The context{( G, M,,, J)
with gJn : < FJweW,,: (g9, m,w)el A (w,n)€l,, is called therealized
scalefor the attributemn.

Conceptual Information Systems consist of a many-valuedesd together
with a collection of conceptual scales. The many-valuediedrnis imple-
mented as a relational database. The collection of thessatalledconcep-
tual schemelt is written in the description languaggoNScripT [13]. Beside
the contexts of the conceptual scales, the conceptual schism contains the
layout of their line diagrams. The layout has to be provideddvance, since
experience showed that well readable line diagrams carengeberated fully
automatically in general. For Conceptual Information 8gst, the manage-
ment system TOSCANA [5, 14] has been developed. Based oratadigm of
conceptual landscapes of knowledge [19], TOSCANA suppbgsavigation
through the data by using conceptual scales like maps wheckesigned for
different purposes and in different granularities.

Example Figure 14.2 shows a realized scale of a Conceptual Infaomat
System on pipelines [12]. The many-valued context consiE&961 pipes,
fittings, etc., and of 54 many-valued attributes. It shatimart the engineer by
choosing suitable parts for a projected pipeline systemceSthere are almost
4000 objects, the scale does not display their names, babtitengents only.
One can for instance see, thiat+ ... + 27 = 348 of the 3961 different parts
are flanges (German: Flansche) which are differentiatettiduiaccording to
the German Industrial Standards (DIN). Byoming intahis concept, one can
see the distribution of the 348 flanges according to anotheceaptual scale,
e. g, the inner diameter or the wall thickness.

For the exploration of relationships between differentlaftes, itis desirable
to visualize more than one conceptual scale at a tiested line diagramare
used to show the direct product of the scales. We introdues tin the next
section where we also discuss their role for On-Line AneJtProcessing.

3. CONCEPTUAL ON-LINE ANALYTICAL
PROCESSING

On-Line Analytical Processing (OLAP) has become almosibeymous
with multi-dimensional data. OLAP addresses many topike, data prepro-
cessing and efficient data storage for supporting the asglyscess (refer e. g.
to [7]). Here, we focus on the visualization of the data.
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Figure 14.2 Realized scale ‘Part Type’

Definition. A dimensionis a setD, its elements are called itmembers
Let D := {Dy,D,,...,D,} be a set of dimensions. Each tupleXp :=
Dy x Dy x...x D, is called anember combinationlt addresses a single data
point called acell. A variableis a partial function,: XD — V whereV is a set.

v(dy,...,dy) is thevalue of the cell addressed by the member combination
(dy,...,d,). The setD together with one or more variables is called tlaa
cube

Example Our example is about sales data of a (fictitious) soft-dvitiolesale
company. Suppose that we want to examine the sales of bevierdgpendence
of time, region and type of product. Thus we have three dild@8SREGION,
PRODUCT, andTIME. Let's say that they consist of the membérg..on :=
{TOTAL, EUROPE, AMERICA, NORTH AMERICA, SOUTH AMERICA, ASIA},
Drovuer := {TOTAL, MINERAL WATER, JUICE, ORANGE JUICE, APPLE
JUICE, COLA}, Dipy = {1996, 1ST QUARTER 1996, 2ND QUARTER
1996, 3RD QUARTER 1996, 4TH QUARTER 1996, 1997, 1ST QUARTER
1997, 2ND QUARTER 1997, 3RD QUARTER 1997, 4TH QUARTER 1997}.
In a real application, there will of course be more dimensj@md a much finer
granularity, for instance down to city or shop level ferGcioN, or to day
(or even hour) level forimEe. The sales (in million gallons) are represented
by a functionSALES: Dypeion X Dpropuer X Done — RT. We can imagine
the sales as stored in a three-dimensional cube, where tf&s ede labeled
with the members oREGION, PRODUCT, andTIME, resp. Most OLAP tools
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Total Europe America North South Asia
MineralWater |1997 | 837 442 268 174 94 127

1Q7 | 191 99 63 41 22 29
2Q7 | 201 102 66 43 23 33
3Q7 | 274 141 82 51 31 51
4Q7 | 171 100 57 39 18 14
Cola 1997 | 1523 432 673 375 298 418

1Q7 | 364 99 160 89 71 105
2Q7 | 378 103 171 91 80 104
3Q7 | 405 120 189 103 86 96
4Q7 | 376 110 153 92 61 113

Juice 1997 | 816 360 257 170 87 199
1Q7 | 189 81 62 41 21 46
2Q7 | 200 85 63 42 21 52
3Q7 | 223 99 68 44 24 56
4Q7 | 204 95 64 43 21 45
Total 1997 (3176 1234 1198 719 479 744

1Q7 | 744 279 285 171 114 180
2Q7 | 779 290 300 176 124 189
3Q7 | 902 360 339 198 141 203
4Q7 | 751 305 274 174 100 172

Figure 14.3 Visualization of the data cube in a spreadsheet (nestedaaigg

display the data in a spreadsheet as in Figure 14.3. Fonoestave see that
SALES(COLA, NORTH AMERICA, 1ST QUARTER 1997) = 89.

Definition. A hierarchy on a dimensionD is a partially ordered sell :=
(D,<). ltis calledsimple hierarchy if it is a tree. Otherwise it is called
multiple hierarchy (within the dimension D)

Typically, aggregation follows the hierarchy from bottoortap. The type of
aggregation depends on the type of variable. For most Vasgb. g. BUDGET
or SALES) the values will be summed up. But other ways of aggregatien a
in use as well. For instance, for share prices or inventomibyers, usually the
average is computed.

Example The hierarchies of the three dimensiarsopucT, REGION, and
TIME are shown in Figure 14.4. They are all simple hierarchie=e§). The
sales are aggregated by summation in all dimensi@dDRANGE JUICE and
APPLE JUICE roll up to JUICE, andJUICE, MINERAL WATER andcoLA roll

up tOTOTAL.

In OLAP terminology, diagrams as in Figure 14.3 are caledted dia-
grams In this section, we examine homested linediagramsof Conceptual
Information Systems can be used as an alternative methada¥sualization.

Figure 14.5 shows how the data cube is composed as direaigirofithe
dimensions, where the members of each dimension are orifeadthear way.
Many tools indicate the hierarchies on the dimensions mudilly like a PC
file manager displays the folder/subfolder hierarchy. Betbasically linear
arrangement is essential for the cube metaphor. Since ¢narbihies model
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the basic understanding of the conceptual view of the ahalythe data, they
should play a prominent role in the visualization. Indeéeéytare often used
for displaying one single hierarchy, as in Figure 14.4. Buinvo or more
hierarchies occur simultaneously, then this visualizatechnique is dropped.

In Conceptual Information Systems, nested line diagrarmasised for dis-
playing line diagrams of large partially ordered sets (esdy conceptual
scales). Hierarchical dimensions roughly correspond teptual scales, so
OLAP analysis tools can roughly be seen as special Condepfoamation
Systems. Nested line diagrams can be used for drawing diredtcts of
the dimensions. In contrast to nested diagrams, they domgtpoovide all
member combinations, but also reflect the derived order:

Definition. Let H; := (D;, <;),i = 1,...n, be hierarchies. Then trderived
order on the direct producH := (D, <) with D := Dy X Dy X ... X D, is
defined by(di, ..., d,) < (e1,...,en) : <= Vi€ {1,...,n}k:d; <; e;.

Example The nested line diagram of the direct product of the threeedt
SIONSREGION, PRODUCT, and TIME (see Figure 14.5) is displayed in Fig-
ure 14.6. The derived order can be read by following ascenplths. Hereby
the lines of the outer two levels have to be replaced by siseafel and
5 x 4 = 20 parallel lines, resp., linking corresponding elementg. ikstance,
(SOUTH AMERICA, 3RD QUARTER, MINERAL WATER) < (AMERICA, TO-
TAL, MINERAL WATER), Since the cell addressed by the latter member com-
bination can be reached by an ascending path from the forngerkeor finding
out how much Cola was sold in North America in the first quanfet997, we
have a look in the lower left ellipse (labeled wittorTH) in Figure 14.6. In
the leftmost ellipsel(. Q.), we find the entry 89 in the right box:OLA).
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Figure 14.5 The direct product of (linear) dimensions vs. the directipict of partially ordered
sets. The result of the latter is shown in Figure 14.6.

Clearly this representation needs more space than the drigumne 14.3.
Its advantage is the clear structuring along the most imaport— from the
analyst’s actual point of view — dimension (which is chosenoatermost
hierarchy). Figure 14.6 shows that displaying a partialtgened set with
120 elements is close to the boundaries of the system. Tleadgiteet can
display even larger data volumes, and still look neat at ediesice. But, as in
typography, the most important aim is not to provide a ngatasentation, but
one that supports easy reading [11]. TOSCANA is designed foore general
approach, allowing more complicate scales than the diroragi/pically used
in OLAP applications, which often are just trees. In patacuTOSCANA
supports arbitrary partially ordered sets, although (eptjclattices are the
standard. In standard TOSCANA applications, not all elamsefthe hierarchy
are labeled, but there may be more than one label for eaclertef@onsidering
the special features of OLAP data, some improvements onapeut are
conceivable. They will be discussed in Section 5.

4. SLICE & DICE

Slicing, pivoting, drill-down, and drill-up are the intextave ways of access-
ing the data stored in a data cube. This section describes, dued presents
the corresponding activities for nested line diagrams. s€hativities can all
be performed by interacting with the diagrams, no maniputatanguage is
needed.
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Figure 14.7 Zooming with drill-down

only the left most column (which of course will then be disg@d by a two-
dimensional spreadsheet). In nested line diagrams, gliccube corresponds
to zoomingin one of the ellipses of the outer level. For instance, thaditmn
REGION=“TOTAL” is obtained by zooming into the top element of the outer
hierarchy in Figure 14.6. The result is a two level nested dimgram on full
screen size. This feature is fully supported by TOSCANA# tiser chooses
only some of the hierarchies to be displayed, then this spords to zooming

in the top elements of all other hierarchies, hence the marstrgl aggregation

is applied in the corresponding dimensions.

Drill-Down. Restricting the number of dimensions means that one can look
at them in more detail. Instead of only examining the topniesatls of their
hierarchies, one wants to see a finer granularity. This dirfglof the hierar-
chies is calledlrill-down. Figure 14.7 shows the result of zooming into the top
element of the outer hierarchy in Figure 14.6 (i. e., letRmgiiON= “TOTAL"),
and drilling down theeroDpUCT hierarchy. Additionally, therimE dimension
has been extended to two years.

At the moment, TOSCANA does not support this way of drill-adowery
well. The hierarchies have to be prepared in advance andtaenchanged
on the fly, forced by the unsolved problem of a satisfying m#tc lay-out
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Figure 14.8 Pivoting the hierarchies of Figure 14.7

algorithm for partially ordered sets. In the next sectior, discuss how this
problem can be encountered. The actual solution is to peosahles with
different levels of granularity between which the analyst choose.

Another way of drill-down is to refer to external informatigources, €. g.,
to databases of the transaction systems or to Internet kitd© SCANA, such
references can be attached to each data cell. By mouse&liefort generated
by the database or a Web browser will be opened.

Pivoting. Different questions request different views on the data dpread-
sheet display, this means that the dimensions listed oretttieal and horizontal
axis are interchanged. This operation is cafd@ting or rotating. For nested
line diagrams, it corresponds to permuting the inner andther hierarchies.
The result of pivoting the nested line diagram of Figure ig.3hown in Fig-
ure 14.8. The diagram in Figure 14.7 can be used to examinguéstion
“How does the composition of sold products change over timeile the
pivoted version in Figure 14.8 is more adequate for invasitig “How do the
sales evolve in time for each product?Pivoting of hierarchies is a standard
feature in TOSCANA.
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5. CONCLUSION AND FURTHER DEVELOPMENTS

During the editing process of this volume, a decision supeovironment
based on TOSCANA has been implemented in a Swiss warehougeaoy,
which also makes use of the ideas in this chapter. Beingledifpr supporting
marketing campaigns, the data cells contain groups of m&t®who bought
the same items or share similar demographic attributess dllows e. g. the
targeting of interesting customer groups for mailing caigus More details
about the system can be found in [3].

There remain open research issues. Drill-down requirgsnigaes for
extending and pruning hierarchies on the fly. For arbitragranchies (and
even for lattices), the development of fully automatic aidpons providing
satisfying diagrams is an open challenge. But most OLAPahihies are
trees, which can be drawn automatically. Beside suppoditiidown, an
automatic layout routine can solve the problem of efficiemtkploiting the
whole screen space.

Data cubes are usually only sparsely populated. Oftentess10% of the
cells contain data. For the visualization this implies thait the whole direct
product of the hierarchies needs to be displayed. In thisloaal scaling[9]
can be used for automatic pruning. Local Scaling and Coneé@n-Line
Analytical Processing are features addressed in the dudearelopment of
TOSCANA 3.0.

Formal Concept Analysis has been applied independentlyffereht do-
mains related to data analysis, knowledge discovery andidacsupport. For
instance, Formal Concept Analysis has recently been apfadremining asso-
ciation rules in large databases [6]. However, for suppgrthanagers in their
tasks, data analysis, knowledge discovery, and decisijgpostitools should be
integrated in a homogeneous environment. Our currentneséeafocussed on
the theoretical foundations of this integration, basedhenunified knowledge
representation provided by Formal Concept Analysis.
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