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Abstract A Conceptual Information Systemconsists of a database together with conceptual
hierarchies. The visualization of arbitrary combinationsof conceptual hierar-
chies bynested line diagramsallows an on-line interaction with a database to
analyze data conceptually. The chapter describes the conception of Conceptual
Information Systems and discusses the use of their visualization techniques for
On-Line Analytical Processing (OLAP).

1. INTRODUCTION

The conception of Conceptual Information Systems relies onthe insight that
concepts are basic units of human thinking, and is founded onthe mathematical
theory of Formal Concept Analysis.Formal Concept Analysis[16, 2] reflects an
elementary understanding of the concept of ‘concept’ whicharose in philosophy
since antiquity [15] and has been established in the German standards DIN 2330
and DIN 2331. Since its foundation in the early 80ies, FormalConcept Analysis
has been used in many applications in data analysis, information retrieval, and
knowledge discovery.

A Conceptual Information Systemconsists of a (relational) database together
with conceptual hierarchies. These hierarchies, calledconceptual scales, are
used to support navigation through the data. An important factor for the success
of Conceptual Information Systems is the visualization of conceptual scales by
line diagrams. By combining conceptual scales innested line diagrams, a large
variety of perspectives can be generated interactively, inwhich relationships and
dependencies can be investigated. The management system TOSCANA allows
an on-line interaction with a database to analyze and explore data conceptually.
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Actually, there are over 30 implemented Conceptual Information Systems,
including a flight movement information system at FrankfurtAirport [4], a
library retrieval system [8], and a decision support environment at a warehouse
company [3].

On-Line Analytical Processing (OLAP)relies on the metaphor of a (high-di-
mensional) cube containing the data. For dimensions which are not structured
hierarchically, the cube metaphor provides a good intuitive understanding of
multi-dimensional data. But an essential feature of OLAP dimensions is that
they are ordered hierarchally: days roll up into months, months into quarters
and years, products into product groups and product lines. Often they are
trees (simple hierarchies), but they may be any arbitrary partially ordered set
(multiple hierarchy). In this setting, the cube metaphor is not the most natural
approach, because it imitates the mathematical construction of a direct product
of linear vector spaces which forces the hierarchies to be represented in a
flat linear form. Instead of listing the hierarchies on (one-dimensional) axes,
we suggest to visualize them byline diagramswhich were created in order
to represent hierarchical structures. By usingnested line diagrams, arbitrary
dimensions can be combined for ad hoc analysis.

In the next section, we introduce the basics of Formal Concept Analysis and
Conceptual Information Systems. In Sections 3 and 4, Conceptual On-Line
Analytical Processing is discussed. Section 5 reports froman implementation
in a warehouse company and concludes with a discussion on future research.

2. CONCEPTUAL INFORMATION SYSTEMS

Conceptual Information Systems are based on the mathematical theory of
Formal Concept Analysis. The aim of Formal Concept Analysis[16, 2] is a
mathematical formalization of the concept ‘concept’. It reflects the philosoph-
ical understanding of concepts as units of thought consisting of two parts: the
extension containing all objects which belong to the concept and the intension
containing the attributes shared by all those objects. Thisis modeled byformal
conceptsthat are derived from aformal context.

Definition. A (formal) contextis a tripleK := (G;M; I) whereG andM are
sets andI is a relation betweenG andM . The elements ofG andM are called
objectsandattributes, respectively, and(g;m) 2 I is read“the objectg has the
attributem” . A (formal) conceptis a pair(A;B) such thatA � G andB �M
are maximal withA � B � I. The setA is called theextentand the setB
the intent of the concept. The hierarchical subconcept–superconcept–relation
of concepts is formalized by(A;B) � (C;D) :() A � C (() B � D).
The set of all concepts of the contextK together with this order relation is a
complete lattice that is called theconcept latticeof K and is denoted byB(K ).
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Figure 14.1 Formal context of harps and its concept lattice

Example. In Figure 14.1, a formal context of the Richter Harps produced byHohner In
. is given. A tuple(g;m) 2 M is read as ‘harpg is available
with featurem’. In the line diagram, the circles represent the concepts. A
concept is a subconcept of another, if there is an ascending path of straight
line segments from the former to the latter. The extent [intent] of each concept
contains all objects [attributes] which can be reached fromthe concept on a
descending [ascending] path.

If we are for example interested in a wooden harp tuned in D major, then we
take the largest concept that hasWood andD major in its intent. This concept
is represented by the circle just above the label28 tongues. The extent of this
concept containsMarine Band SBS, Marine Band, andAuto Valve Harp — so these
are exactly the harps available in wood and D major. The intent of this concept
contains — besideWood andD major — the featuresA, F, G, andC major, so the
three harps are available in these tunings also. Such animplicationcorresponds
to a functional dependency in database theory.

In many applications, attributes are not one-valued as in the previous exam-
ple, but allow a range of values. This is modeled bymany-valued contexts.
In order to obtain a concept lattice, many-valued contexts are ‘translated’ into
one-valued contexts byconceptual scales.
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Definition. A many-valued contextis a tuple(G;M; (Wm)m2M ; I) whereG
andM are sets ofobjectsandattributes, resp.,Wm is a set ofvaluesfor eachm 2 M , andI � G � Sm2M (fmg �Wm) such that(g;m;w1) 2 I and(g;m;w2) 2 I imply w1 = w2. A conceptual scalefor an attributem 2 M
is a contextSm := (Gm;Mm; Im) with Wm � Gm. The context(G;Mm; J)
with gJn : () 9w2Wm: (g;m;w)2I ^ (w;n)2Im is called therealized
scalefor the attributem.

Conceptual Information Systems consist of a many-valued context together
with a collection of conceptual scales. The many-valued context is imple-
mented as a relational database. The collection of the scales is calledconcep-
tual scheme. It is written in the description languageConS
ript [13]. Beside
the contexts of the conceptual scales, the conceptual scheme also contains the
layout of their line diagrams. The layout has to be provided in advance, since
experience showed that well readable line diagrams cannot be generated fully
automatically in general. For Conceptual Information Systems, the manage-
ment system TOSCANA [5, 14] has been developed. Based on the paradigm of
conceptual landscapes of knowledge [19], TOSCANA supportsthe navigation
through the data by using conceptual scales like maps which are designed for
different purposes and in different granularities.

Example. Figure 14.2 shows a realized scale of a Conceptual Information
System on pipelines [12]. The many-valued context consistsof 3961 pipes,
fittings, etc., and of 54 many-valued attributes. It shall support the engineer by
choosing suitable parts for a projected pipeline system. Since there are almost
4000 objects, the scale does not display their names, but thecontingents only.
One can for instance see, that52 + : : : + 27 = 348 of the 3961 different parts
are flanges (German: Flansche) which are differentiated further according to
the German Industrial Standards (DIN). Byzooming intothis concept, one can
see the distribution of the 348 flanges according to another conceptual scale,
e. g, the inner diameter or the wall thickness.

For the exploration of relationships between different attributes, it is desirable
to visualize more than one conceptual scale at a time.Nested line diagramsare
used to show the direct product of the scales. We introduce them in the next
section where we also discuss their role for On-Line Analytical Processing.

3. CONCEPTUAL ON-LINE ANALYTICAL
PROCESSING

On-Line Analytical Processing (OLAP) has become almost synonymous
with multi-dimensional data. OLAP addresses many topics, like data prepro-
cessing and efficient data storage for supporting the analysis process (refer e. g.
to [7]). Here, we focus on the visualization of the data.



Conceptual On-Line Analytical Processing 195

RohreDIN:2605-1

DIN:2605-2 T-Stücke

Reduzierstücke

DIN:2631

DIN:2641 DIN:2632

DIN:2642

DIN:2633

DIN:2634

DIN:2635

DIN:2636

DIN:2637

DIN:2638

Rohrbogen

Nd6 Nd10

Flansche

1215 240 560 385 30 72 15 48 33 36 271213 52 305

Figure 14.2 Realized scale ‘Part Type’

Definition. A dimensionis a setD, its elements are called itsmembers.
Let D := fD1;D2; : : : ;Dng be a set of dimensions. Each tuple ofXD :=D1�D2� : : :�Dn is called amember combination. It addresses a single data
point called acell. A variableis a partial function�:XD ! V whereV is a set.�(d1; : : : ; dn) is thevalue of the cell addressed by the member combination(d1; : : : ; dn). The setD together with one or more variables is called thedata
cube.

Example. Our example is about sales data of a (fictitious) soft-drinkwholesale
company. Suppose that we want to examine the sales of beverage in dependence
of time, region and type of product. Thus we have three dimensions: region,produ
t, andtime. Let’s say that they consist of the membersDregion :=ftotal, europe, ameri
a, north ameri
a, south ameri
a, asiag,Dprodu
t := ftotal, mineral water, jui
e, orange jui
e, applejui
e, 
olag, Dtime := f1996, 1st quarter 1996, 2nd quarter1996, 3rd quarter 1996, 4th quarter 1996, 1997, 1st quarter1997, 2nd quarter 1997, 3rd quarter 1997, 4th quarter 1997g.
In a real application, there will of course be more dimensions, and a much finer
granularity, for instance down to city or shop level forregion, or to day
(or even hour) level fortime. The sales (in million gallons) are represented
by a functionSales:Dregion � Dprodu
t � Dtime ! R+ . We can imagine
the sales as stored in a three-dimensional cube, where the edges are labeled
with the members ofregion, produ
t, andtime, resp. Most OLAP tools
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Total Europe America North South Asia
MineralWater 1997 837 442 268 174 94 127

1Q7 191 99 63 41 22 29
2Q7 201 102 66 43 23 33
3Q7 274 141 82 51 31 51
4Q7 171 100 57 39 18 14

Cola 1997 1523 432 673 375 298 418
1Q7 364 99 160 89 71 105
2Q7 378 103 171 91 80 104
3Q7 405 120 189 103 86 96
4Q7 376 110 153 92 61 113

Juice 1997 816 360 257 170 87 199
1Q7 189 81 62 41 21 46
2Q7 200 85 63 42 21 52
3Q7 223 99 68 44 24 56
4Q7 204 95 64 43 21 45

Total 1997 3176 1234 1198 719 479 744
1Q7 744 279 285 171 114 180
2Q7 779 290 300 176 124 189
3Q7 902 360 339 198 141 203
4Q7 751 305 274 174 100 172

Figure 14.3 Visualization of the data cube in a spreadsheet (nested diagram)

display the data in a spreadsheet as in Figure 14.3. For instance, we see thatSales(
ola;north ameri
a; 1st quarter 1997) = 89.

Definition. A hierarchy on a dimensionD is a partially ordered setH :=(D;�). It is called simple hierarchy, if it is a tree. Otherwise it is called
multiple hierarchy (within the dimension D).

Typically, aggregation follows the hierarchy from bottom to top. The type of
aggregation depends on the type of variable. For most variables (e. g.,Budget
or Sales) the values will be summed up. But other ways of aggregation are
in use as well. For instance, for share prices or inventory numbers, usually the
average is computed.

Example. The hierarchies of the three dimensionsprodu
t, region, andtime are shown in Figure 14.4. They are all simple hierarchies (trees). The
sales are aggregated by summation in all dimensions.Orange jui
e andapple jui
e roll up to jui
e, andjui
e, mineral water and
ola roll
up tototal.

In OLAP terminology, diagrams as in Figure 14.3 are callednested dia-
grams. In this section, we examine hownested linediagramsof Conceptual
Information Systems can be used as an alternative method of data visualization.

Figure 14.5 shows how the data cube is composed as direct product of the
dimensions, where the members of each dimension are orderedin a linear way.
Many tools indicate the hierarchies on the dimensions additionally like a PC
file manager displays the folder/subfolder hierarchy. But the basically linear
arrangement is essential for the cube metaphor. Since the hierarchies model
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the basic understanding of the conceptual view of the analyst on the data, they
should play a prominent role in the visualization. Indeed, they are often used
for displaying one single hierarchy, as in Figure 14.4. But if two or more
hierarchies occur simultaneously, then this visualization technique is dropped.

In Conceptual Information Systems, nested line diagrams are used for dis-
playing line diagrams of large partially ordered sets (especially conceptual
scales). Hierarchical dimensions roughly correspond to conceptual scales, so
OLAP analysis tools can roughly be seen as special Conceptual Information
Systems. Nested line diagrams can be used for drawing directproducts of
the dimensions. In contrast to nested diagrams, they do not only provide all
member combinations, but also reflect the derived order:

Definition. LetHi := (Di;�i), i = 1; : : : n, be hierarchies. Then thederived
order on the direct productH := (D;�) with D := D1 �D2 � : : : �Dn is
defined by(d1; : : : ; dn) � (e1; : : : ; en) :() 8i 2 f1; : : : ; ng: di �i ei.
Example. The nested line diagram of the direct product of the three dimen-
sionsregion, produ
t, andtime (see Figure 14.5) is displayed in Fig-
ure 14.6. The derived order can be read by following ascending paths. Hereby
the lines of the outer two levels have to be replaced by sheaves of 4 and5� 4 = 20 parallel lines, resp., linking corresponding elements. For instance,(south ameri
a, 3rd quarter, mineral water) � (ameri
a, to-tal, mineral water), since the cell addressed by the latter member com-
bination can be reached by an ascending path from the former one. For finding
out how much Cola was sold in North America in the first quarterof 1997, we
have a look in the lower left ellipse (labeled withnorth) in Figure 14.6. In
the leftmost ellipse (1. Q.), we find the entry 89 in the right box (
ola).
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Figure 14.5 The direct product of (linear) dimensions vs. the direct product of partially ordered
sets. The result of the latter is shown in Figure 14.6.

Clearly this representation needs more space than the one inFigure 14.3.
Its advantage is the clear structuring along the most important — from the
analyst’s actual point of view — dimension (which is chosen as outermost
hierarchy). Figure 14.6 shows that displaying a partially ordered set with
120 elements is close to the boundaries of the system. The spreadsheet can
display even larger data volumes, and still look neat at a first glance. But, as in
typography, the most important aim is not to provide a neat representation, but
one that supports easy reading [11]. TOSCANA is designed fora more general
approach, allowing more complicate scales than the dimensions typically used
in OLAP applications, which often are just trees. In particular, TOSCANA
supports arbitrary partially ordered sets, although (concept) lattices are the
standard. In standard TOSCANA applications, not all elements of the hierarchy
are labeled, but there may be more than one label for each element. Considering
the special features of OLAP data, some improvements on the lay-out are
conceivable. They will be discussed in Section 5.

4. SLICE & DICE

Slicing, pivoting, drill-down, and drill-up are the interactive ways of access-
ing the data stored in a data cube. This section describes them, and presents
the corresponding activities for nested line diagrams. These activities can all
be performed by interacting with the diagrams, no manipulation language is
needed.
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Figure 14.7 Zooming with drill-down

only the left most column (which of course will then be displayed by a two-
dimensional spreadsheet). In nested line diagrams, slicing the cube corresponds
to zoomingin one of the ellipses of the outer level. For instance, the conditionregion=\total" is obtained by zooming into the top element of the outer
hierarchy in Figure 14.6. The result is a two level nested line diagram on full
screen size. This feature is fully supported by TOSCANA. If the user chooses
only some of the hierarchies to be displayed, then this corresponds to zooming
in the top elements of all other hierarchies, hence the most general aggregation
is applied in the corresponding dimensions.

Drill-Down. Restricting the number of dimensions means that one can look
at them in more detail. Instead of only examining the topmostlevels of their
hierarchies, one wants to see a finer granularity. This unfolding of the hierar-
chies is calleddrill-down. Figure 14.7 shows the result of zooming into the top
element of the outer hierarchy in Figure 14.6 (i. e., lettingregion=\total"),
and drilling down theprodu
t hierarchy. Additionally, thetime dimension
has been extended to two years.

At the moment, TOSCANA does not support this way of drill-down very
well. The hierarchies have to be prepared in advance and cannot be changed
on the fly, forced by the unsolved problem of a satisfying automatic lay-out
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Figure 14.8 Pivoting the hierarchies of Figure 14.7

algorithm for partially ordered sets. In the next section, we discuss how this
problem can be encountered. The actual solution is to provide scales with
different levels of granularity between which the analyst can choose.

Another way of drill-down is to refer to external information sources, e. g.,
to databases of the transaction systems or to Internet sites. In TOSCANA, such
references can be attached to each data cell. By mouse-click, a report generated
by the database or a Web browser will be opened.

Pivoting. Different questions request different views on the data. Ina spread-
sheet display, this means that the dimensions listed on the vertical and horizontal
axis are interchanged. This operation is calledpivotingor rotating. For nested
line diagrams, it corresponds to permuting the inner and theouter hierarchies.
The result of pivoting the nested line diagram of Figure 14.7is shown in Fig-
ure 14.8. The diagram in Figure 14.7 can be used to examine thequestion
“How does the composition of sold products change over time?” , while the
pivoted version in Figure 14.8 is more adequate for investigating “How do the
sales evolve in time for each product?”. Pivoting of hierarchies is a standard
feature in TOSCANA.
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5. CONCLUSION AND FURTHER DEVELOPMENTS

During the editing process of this volume, a decision support environment
based on TOSCANA has been implemented in a Swiss warehouse company,
which also makes use of the ideas in this chapter. Being designed for supporting
marketing campaigns, the data cells contain groups of customers who bought
the same items or share similar demographic attributes. This allows e. g. the
targeting of interesting customer groups for mailing campaigns. More details
about the system can be found in [3].

There remain open research issues. Drill-down requires techniques for
extending and pruning hierarchies on the fly. For arbitrary hierarchies (and
even for lattices), the development of fully automatic algorithms providing
satisfying diagrams is an open challenge. But most OLAP hierarchies are
trees, which can be drawn automatically. Beside supportingdrill-down, an
automatic layout routine can solve the problem of efficiently exploiting the
whole screen space.

Data cubes are usually only sparsely populated. Often less than 10% of the
cells contain data. For the visualization this implies thatnot the whole direct
product of the hierarchies needs to be displayed. In this case local scaling[9]
can be used for automatic pruning. Local Scaling and Conceptual On-Line
Analytical Processing are features addressed in the current development ofTos
ana 3.0.

Formal Concept Analysis has been applied independently in different do-
mains related to data analysis, knowledge discovery and decision support. For
instance, Formal Concept Analysis has recently been applied for mining asso-
ciation rules in large databases [6]. However, for supporting managers in their
tasks, data analysis, knowledge discovery, and decision support tools should be
integrated in a homogeneous environment. Our current research is focussed on
the theoretical foundations of this integration, based on the unified knowledge
representation provided by Formal Concept Analysis.
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