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In the next setion, we present the theoretial foundation. It is turned into pseudo-ode in Setion 3. We onlude the paper with results of an experimental evaluation.Beause of lak of spae we will not provide proofs, and will not disuss the generaluse of FCA in AI and database theory.2 Computing Conept Lattiesby Using the Support Funtion2.1 Formal Conept AnalysisIn the �rst part of this setion, we briey reall the basi notions of Formal ConeptAnalysis. For a more extensive introdution into Formal Conept Analysis refer to [3℄.De�nition 1 A formal ontext is a triple K := (G;M; I) where G and M are setsand I � G �M is a binary relation. The elements of G are alled objets and theelements of M items. The inlusion (g;m) 2 I is read as \objet g has attribute m".In this paper we assume that all sets are �nite, espeially G and M .For A � G, we de�ne A0 := fm 2 M j 8g 2 A: (g;m) 2 Ig; and for B � M , wede�ne dually B0 := fg 2 G j 8m 2 B: (g;m) 2 Ig. A formal onept is a pair (A;B)with A � G, B � M , A0 = B and B0 = A. A is alled extent and B is alled intentof the onept. The set of all onepts of a formal ontext K together with the partialorder (A1; B1) � (A2; B2) :, A1 � A2 (whih is equivalent to B1 � B2) is a ompletelattie, alled onept lattie of K .
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Figure 1: Formal ontext about o�ee brands sold in a supermarket.Figure 1 shows a formal ontext whih lists all o�ee brands sold in a supermarket.Figure 2 shows the onept lattie of the ontext by a line diagram. In the linediagram, the name of an objet g is always attahed to the irle representing the130
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Figure 2: The onept lattie of the ontext in Figure 1smallest onept with g in its extent; dually, the name of an attribute m is alwaysattahed to the irle representing the largest onept withm in its intent. This allowsus to read the ontext relation from the diagram beause an objet g has an attributem if and only if there is an asending path from the irle labeled by g to the irlelabeled by m. The extent of a onept onsists of all objets whose labels are belowin the diagram, and the intent onsists of all attributes attahed to onepts above inthe hierarhy. For example, the onept labeled by `< 6 DM' has f`Plus Naturmild',`Plus milde Sorte', `Plus Gold'g as extent, and f`< 6 DM', `Plus' [the house brand ofthe supermarket℄, `< 8 DM'g as intent.For X;Y � M , we say that the impliation X ! Y holds in the ontext, if eahobjet having all attributes in X also has all attributes in Y (i. e., an impliation is anassoiation rule with 100% on�dene). For instane, the impliation fPlus, lassig! f< 6DMg holds in the o�ee ontext. Impliations an be read diretly in the linediagram: the largest onept having both `Plus' and `lassi' in its intent is below theonept labeled by `< 6DM'. In [15℄ is shown how also the assoiation rules with lessthan 100% on�dene an by visualized in the line diagram.2.2 Support-Based Computation of the Closure System of all Con-ept IntentsIn the following, we will use the omposed funtion �00:P(M) ! P(M) whih isa losure operator on M (i. e., it is extensive, monotonous, and idempotent). The131



related losure system (i. e., the set of all B � M with B00 = B) is exatly the set ofthe intents of all onepts of the ontext. The struture of the onept lattie is alreadydetermined by this losure system. Hene we restrit ourselves to the omputationof the losure system of all onept intents in the sequel. The omputation makesextensive use of the following support funtion:De�nition 2 The support of X �M is de�ned by supp(X) := jX0jjGj :In the ase of X and Y with X 00 = Y 00, both sets have obviously the same support.On the other hand, omparable attribute sets with the same support also have thesame losures:Lemma 1 Let X;Y �M .(i) X 00 = Y 00 =) supp(X) = supp(Y )(ii) X � Y ^ supp(X) = supp(Y ) =) X 00 = Y 00This lemma allows us to develop the algorithm in a more general setting:De�nition 3 A weight funtion on P(M) is a funtion s:P(M)! P from the pow-erset of M to a partially ordered set (P;�). For a set X � M , s(X) is alled theweight of X. The weight funtion is ompatible with a losure operator h if (i)X � Y =) s(X) � s(Y ),1 (ii) h(X) = h(Y ) =) s(X) = s(Y ), (iii) X � Y ^ s(X) =s(Y ) =) h(X) = h(Y ) :Let h be a losure operator on a �nite set M , and let s be a ompatible weightfuntion. The task is now to determine eÆiently the losure system H := fX �M jh(X) = Xg related to the losure operator h.It is easy to hek, that for a given formal ontext, the support funtion ful�llsthe onditions of De�nition 3 for the losure operator h(X) := X 00 . Another problemwhere suh a weight funtion an be used is the omputation of the losure systemindued by those funtional dependenies whih are valid for the atual data of arelational database (refer to [6℄).We disuss the problem of omputing the losure system by using a weight funtionin three parts:1. How an we ompute the losure of a given set using the weight funtion only,and not the losure operator?2. How an we ompute the losure system by omputing as few losures as possi-ble?3. Sine the weight funtion is usually not stored expliitly, how an we derive theweights of as many sets as possible from the weights already omputed?Questions 2 and 3 are not independent from eah other. Hene we will not providean optimal answer for eah of them, but one whih improves the overall bene�t.1If X � Y =) s(X) � s(Y ) holds instead of (i) (as e. g. for funtional dependenies), then all`min' in the sequel (beside the one in De�nition 6) have to be replaed by `max'.132



2.2.1 Weight-based omputation of losuresWe use the onstraints on the funtion s for determining the losure of a set byomparing its weight with the weights of its immediate supersets.Proposition 2 Let X �M . Thenh(X) = X [ fm 2M nX j s(X) = s(X [ fmg)g :Hene if we know the weights of all sets, then we an ompute the losure operator(! Algorithm 3, steps 3{7).2 In the next subsetion we disuss for whih sets it isneessary to ompute the losure in order to obtain all losed sets. In Subsetion 2.2.3we disuss how the weights needed for those omputations an be determined.2.2.2 A level-wise approah for omputing all losed setsOne an now ompute the losure system H by applying Proposition 2 to all subsetsX of M . But this is not eÆient, sine many losed sets will be determined severaltimes.De�nition 4 We de�ne an equivalene relation � on the powerset P(M) of M by(X;Y ) 2 � : () h(X) = h(Y ), for X;Y � M . The equivalene lass of X is givenby [X℄ := fY �M j (X;Y ) 2 �g.If we knew the equivalene relation � in advane, it would be suÆient to omputethe losure for one set of eah equivalene lass only. But sine we have to determinethe relation during the omputation, we have to onsider more than one element ofeah lass in general. As known from algorithms for mining assoiation rules, we willuse a level-wise approah.De�nition 5 A k-set is a subset X of M with jXj = k. For X � P(M), we de�neXk := fX 2 X j jXj = kg.At the kth iteration, the weights of all k-sets whih remained from the pruningstrategy desribed below are determined; and the losures of all (k � 1)-sets whihpassed the pruning in the (k � 1)th iteration are omputed.The �rst sets of an equivalene lass that we reah using suh a level-wise approahare the minimal sets in the lass:De�nition 6 A set X �M is a key set (or minimal generator) if X 2 min[X℄. Theset of all key sets is denoted by K.Obviously we have H = fh(X) j X 2 Kg.Proposition 3 The set K is an order ideal of (P(M);�) (i. e., X2K; Y�X =)Y 2K).2In this setion, we give some referenes to the algorithms in the following setion. These referenesan be skipped at the �rst reading. 133



We will use a pruning strategy given in [1℄. Originally this strategy was presentedas a heuristi for determining all frequent sets only (whih are, in our terminology, allsets with weights above a user-de�ned threshold). We show that this strategy an beapplied to arbitrary order ideals of the powerset of M :De�nition 7 Let I be an order ideal of P(M). A andidate set for I is a subset ofM suh that all its proper subsets are in I.This de�nition is justi�ed by the following lemma:Lemma 4 Let X � Pk(M), and let Y be the set of all andidate (k + 1)-sets for theorder ideal # X (i. e., the order ideal generated by X ).1. For eah subset Z of Y, there exists an order ideal I of P(M) with Ik = X andIk+1 = Z.2. For eah order ideal I of P(M) with Ik = X the inlusion Ik+1 � Y holds.The eÆient generation of the set of all andidate sets for the next level is desribedin the following proposition (! Algorithm 2). We assume that M is linearly ordered,e. g., M = f1; : : : ; ng.Proposition 5 Let X � Pk�1(M). Let eC := ffx1; : : : ; xkg j i < j =) xi < xj;fx1; : : : ; xk�2; xk�1g; fx1; : : : ; xk�2; xkg 2 Xg; and C := fX 2 eC j 8x 2 X:X n fxg 2Xg. Then C = fX 2 Pk(M) j X is andidate set for # Xg.Unlike in the Apriori algorithm, in our appliation the pruning of a set (! Algo-rithm 1, step 8) annot be determined by its properties alone, but properties of itssubsets have to be taken into aount as well. This auses an additional step in thegeneration funtion (! Algorithm 2, step 5) ompared to the original version pre-sented in [1℄. Based on this additional step, at eah iteration the non-key sets amongthe andidate sets are pruned by using (ii) of the following proposition.Proposition 6 Let X �M .(i) Let m 2 X. Then X 2 [X n fmg℄ if and only if s(X) = s(X n fmg).(ii) X is a key set if and only if s(X) 6= minm2X(s(X n fmg)).2.2.3 Deriving weights from already known weightsIf we reah a k-set whih is known not to be a key set, then we already passed alongat least one of the key sets in its equivalene lass in an earlier iteration. Hene wealready know its weight. Using the following proposition, we determine this weightby using only weights already omputed.Proposition 7 If X is not a key set, thens(X) = minfs(K) j K 2 K;K � Xg :Hene it is suÆient to ompute the weights of the andidate sets only (by alling afuntion depending on the spei� implementation! Algorithm 1, step 7). All otherweights an be derived from those weights.134



3 The TITANIC AlgorithmThe pseudo-ode is given in Algorithm 1. A list of notations is provided in Table 1.Algorithm 1 Titani1) ;:s 1;2) K0  f;g;3) k  1;4) forall m 2M do fmg:p s 1;5) C  ffmg j m 2Mg;6) loop begin7) Weigh(C);8) Kk  fX 2 C j X:s 6= X:p sg;9) forall X 2 Kk do X:losure Closure(X);10) if Kk = ; then exit loop ;11) k ++;12) C  Titani-Gen(Kk�1);13) end loop ;14) return Sk�1i=0 fX:losure j X 2 Kig.Table 1: Notations used in Titanik is the ounter whih indiates the urrent iteration. In the kth iter-ation, all key k-sets are determined.Kk ontains after the kth iteration all key k-sets K together with theirweight K:s and their losure K:losure.C stores the andidate k-sets C together with a ounter C:p s whihstores the minimum of the weights of all (k � 1)-subsets of C. Theounter is used in step 8 to prune all non-key sets.The algorithm starts with stating that the empty set is always a key set, and that itsweight is | in the ase of onept latties | always equal to 1 (steps 1+2). Then all1-sets are andidate sets by de�nition (steps 4+5). In later iterations, the andidatek-sets are determined by the funtion Titani-Gen (step 12/Algorithm 2) whih is(exept step 5) a straight-forward implementation of Proposition 5. (The result ofstep 5 will be used in step 8 of Algorithm 1 for pruning the non-key sets.)One the andidate k-sets are determined, the funtion Weigh(X ) is alled toompute, for eah X 2 X , the weight of X and stores it in the variable X:s (step 7).In the ase of onept latties, Weigh determines the weights (i. e., the supports) ofall X 2 X with a single pass of the ontext. This is (together with the fat that onlymaxfjXj j X � M is andidate setg passes are needed) the reason for the eÆienyof Titani. 135



Algorithm 2 Titani-GenInput: Kk�1, the set of key (k � 1)-sets K with their weight K:s.Output: C, the set of andidate k-sets Cwith the values C:p s := minfs(C n fmg j m 2 Cg.The variables p s assigned to the sets fp1; : : : ; pkg whih are generated in step 1 areinitialized by fp1; : : : ; pkg:p s 1.1) C  ffp1; : : : ; pkg j i < j =) pi < pj ;fp1; : : : ; pk�2; pk�1g; fp1; : : : ; pk�2; pkg 2 Kk�1g;2) forall X 2 C do begin3) forall (k � 1)-subsets S of X do begin4) if S =2 Kk�1 then begin C  C n fXg; exit forall ; end;5) X:p s min(X:p s; S:s);6) end;7) end;8) return C.Algorithm 3 Closure(X) for X 2 Kk�11) Y  X;2) forall m 2 X do Y  Y [ (X n fmg):losure;3) forall m 2M n Y do begin4) if X [ fmg 2 C then s (X [ fmg):s5) else s minfK:s j K 2 K; K � X [ fmgg;6) if s = X:s then Y  Y [ fmg7) end;8) return Y .In step 8 of Algorithm 1, all andidate k-sets whih are not key sets are prunedaording to Proposition 6 (ii). For the remaining sets (whih are now known to bekey sets) their losures are omputed (step 9). The Closure funtion (Algorithm 3)is a straight-forward implementation of Propositions 3 and 7 (beside an additionaloptimization (step 2)). Algorithm 1 terminates, if there are no key k-sets left (step11+14). Otherwise the next iteration begins (steps 10+12).4 Experimental Evaluation and ConlusionSeveral algorithms have been proposed for omputing onept latties. The mosteÆient at the best of our knowledge is Ganter's Next-Closure algorithm [2℄. Forour experimental evaluation, a version of the Titani algorithm was implemented inC++ together with a rewriting of Ch. Lindig's C version of Next-Closure [7℄. Theomparisons took plae on a Pentium III running at 600MHz, with 512MB of mainmemory, and were performed on the Mushroom (8,416 objets, 80 attributes) and136



Internet (10,000 objets, 141 attributes) databases, both available from the UCIKDD Arhive (http://kdd.is.ui.edu/), with a varying number of objets.The results are listed in Table 2 and visualized in Figure 3. They show that onthe relatively strongly orelatedMushrooms database, Next-Closure is faster for fewattributes, but takes twie the time of Titani for the whole dataset. On the weaklyorelated Internet database, the di�erene is muh larger. This stems from thefat that the development of Titani was inspired by the Apriori algorithm whih isknown to perform well on weakly orelated data.Table 2: Database harateristis and evaluation resultsComputation time (se.)Database # of objets # of attr. # of onepts Next-Closure TitaniMushrooms 2,500 79 5,394 31.13 48.195,000 79 9,064 108.38 75.598,416 80 32,086 527.74 200.73Internet 1,000 141 15,107 16.49 4.332,000 141 31,719 66.32 7.315,000 141 73,026 381.95 14.317,500 141 100,706 803.17 19.1310,000 141 124,574 1431.86 23.46
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Figure 3: Comparison of Titani and Next-Closure on the Mushrooms (left) andInternet databases (right)The problem of omputing onept latties has exponential omplexity. This showsthat one annot expet from any algorithm | however robust it is laimed to be| that it solves the problem in reasonable time in the worst ase. However ourexperimental results show that under normal onditions (and if handled with are) astrong and waterproof algorithm may improve the exploration of unknown regions ofknowledge. 137
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