
Levelwise Searh of Frequent Patternswith Counting InfereneYves Bastide,1 Ra�k Taouil,1 Niolas Pasquier,1Gerd Stumme,2 Lot� Lakhal11 Laboratoire LIMOS, FRE CNRS 2239, universit�e Blaise Pasal,omplexe sienti�que des C�ezeaux, 24 av. des Landais,63 177 Aubi�ere Cedex, Frane;fbastide,taouil,pasquier,lakhalg�libd2.univ-bplermont.fr2 Tehnishe Universit�at Darmstadt, Fahbereih Mathematik,Shlo�gartenstr. 7, D{64289 Darmstadt, Germany;stumme�mathematik.tu-darmstadt.deAbstratIn this paper, we propose the algorithm Pasal whih introdues a novel op-timization of the well-known algorithm Apriori. Being provided with a givenminsup threshold, Pasal disovers all frequent patterns by performing as fewounting as possible. In order to derive the support of larger patterns withoutaessing the database whenever it is possible, we use the knowledge about thesupport of some of their sub-patterns, the so-alled key patterns. Experimentsomparing Pasal to the three algorithms Apriori, Close and Max-Miner, eahof whih being representative of a frequent patterns disovery strategy, showthat Pasal is the most eÆient algorithm for extrating patterns from stronglyorrelated data. Moreover, its exeution times are equivalent to those of Aprioriand Max-Miner when data is weakly orrelated.Keywords: Data mining, database theory, algorithms, performane analysis.1 IntrodutionKnowledge disovery in databases (KDD) is de�ned as the non-trivial extration ofvalid, impliit, potentially useful and ultimately understandable information in largedatabases. For several years, a wide range of appliations in various domains havebene�ted from KDD tehniques and many work has been onduted on this topi.The problem of mining frequent patterns arose �rst as a sub-problem of miningassoiation rules, but then it turned out that frequent patterns solve a variety ofproblems: mining sequential patterns [AS95℄, episodes [MTV97℄, assoiation rules[AS94℄, orrelations [BMS97, SBM98℄, multi-dimensional patterns [KHC97, LSW97℄,maximal patterns [ZPOL97, LK98℄ and several other important knowledge disoverytasks [HPY00℄. Sine the omplexity of this problem is exponential in the size of thebinary database input relation and sine this relation has to be sanned several timesduring the proess, eÆient algorithms for mining frequent patterns are required.

1.1 Related workThree approahes have been proposed for mining frequent patterns: The �rst istraversing iteratively the set of all patterns in a levelwise manner. During eah iter-ation orresponding to a level, a set of andidate patterns is reated by joining thefrequent patterns disovered during the previous iteration, the supports of all an-didate patterns are ounted and infrequent ones are disarded. The most prominentalgorithm based on this approah is the Apriori algorithm [AS94℄, that is idential tothe algorithm OCD [MTV94℄ proposed onurrently. A variety of modi�ations ofthis algorithm arose [BMUT97, GPW98, PCY95, SON95, Toi96℄ in order to improvedi�erent eÆieny aspets. However, all of these algorithms have to determine thesupports of all frequent patterns and of some infrequent ones in the database.The seond approah is based on the extration of maximal1 frequent patterns,from whih all supersets are infrequent and all subsets are frequent. This approahombines a levelwise bottom-up traversal with a top-down traversal in order toquikly �nd the maximal frequent patterns. Then, all frequent patterns are derivedfrom these ones and one last database san is arried on to ount their support. Themost prominent algorithm using this approah is Max-Miner [Bay98℄. Experimentalresults have shown that this approah is partiularly eÆient for extrating maximalfrequent patterns, but when applied for extrating all frequent patterns performanesdrastially derease beause of the ost of the last san whih requires roughly aninlusion test between eah frequent pattern and eah objet of the database. Asalgorithms based on the �rst approah, algorithms based on this approah have toextrat the supports of all frequent patterns from the database.The third approah, represented by the Close algorithm [PBTL99℄, is basedon the theoretial framework introdued in [PBTL98℄ that uses the losure of theGalois onnetion [GW99℄. In this approah, the frequent losed patterns (and theirsupport) are extrated from the database in a levelwise manner. A losed patternis a pattern that is ommon to a set of objets of the database and eah non-losed pattern has the same properties (same set of objets ontaining it and thussame support) as the smallest losed pattern ontaining it that is its losure. Then,all frequent patterns as well as their support are derived from the frequent losedpatterns and their support without aessing the database. Hene not all patterns areonsidered during the most expensive part of the algorithm (ounting the supportsof the patterns) and the searh spae is drastially redued, espeially for stronglyorrelated data. Experiments have shown that this approah is muh more eÆientthan the two previous ones on suh data.1.2 ContributionIn this paper, we present the Pasal 2 algorithm, introduing a novel, e�etiveand simple optimization of the algorithm Apriori. This optimization is based onpattern ounting inferene that relies on the onept of key patterns. A key patternis a minimal pattern of an equivalene lass gathering all patterns that have the1`Maximal' means `maximal with respet to set inlusion'.2The Frenh mathematiian Blaise Pasal (*Clermont-Ferrand 1623, y 1662 Paris) invented anearly omputing devie. 2

same objets. The pattern ounting inferene allows to determine the supports ofsome frequent and infrequent patterns (the key patterns) in the database only. Thesupports of all other frequent patterns are derived from the frequent key patterns.This allows to redue, at eah database pass, the number of patterns onsidered, and,even more important, to redue the number of passes in total. This optimizationis valid sine key patterns have a property that is ompatible with the pruning ofApriori: all subsets of a key pattern are key patterns and all supersets of a non-key pattern are non-key patterns. Then, the ounting inferene is performed in alevelwise manner: If a andidate pattern of size k whih support has to be determinedis a non-key pattern, then its support is equal to the minimal support among thepatterns of size k-1 that are its subsets. In omparison to most other modi�ations ofApriori, this results in a minimal impat on the understandability and simpliity ofimplementation of the algorithm. The important di�erene is to determine as muhsupport ounts as possible without aessing the database by information gatheredin previous passes. As shown by the experiments, the eÆieny gain is up to theorder of a magnitude on orrelated data.1.3 Organization of the paperIn the next setion, we reall the problem of mining frequent patterns. The essentialnotions and the de�nitions of key patterns and pattern ounting inferene are givenin Setion 3. The Pasal algorithm is desribed in Setion 4 and experimentalresults for omparing its eÆieny to those of Apriori, Max-Miner and Close arepresented in Setion 5. A summary of the paper and some perspetives of futurework are given in Setion 6.2 Reall: The Problem of Mining Frequent PatternsDe�nition 1. Let P be a �nite set of items, O a �nite set of objets (e. g., transationids) and R � O�P a binary relation between both (where (o; p) 2 R may for instanebe read as \item p is inluded in transation o"). The triple D = (O ;P;R) is alleddataset.Eah subset P of P is alled a pattern. We say that a pattern P is inludedin an objet o 2 O if (o; p) 2 R for all p 2 P . Let f be the funtion whihassigns to eah pattern P � P the set of all objets whih inlude this pattern:f(P) = fo 2 O j o inludes Pg.The support of a pattern P is given by supp(P) = ard(f(P))ard(O) . For a given thresholdminsup 2 [0; 1℄, a pattern P is alled frequent pattern if supp(P) � minsup.Problem: The task of mining frequent patterns onsists in determining allfrequent patterns together with their supports3 for a given threshold minsup.3There are also appliation where the supports need not be known exatly. We only onsiderthe ase where all supports have to be determined as well.
3

3 Key Patterns and Pattern Counting InfereneIn this setion, we give the theoretial basis of the new Pasal algorithm. This basisprovides at the same time the proof of orretness of the algorithm. The followingtheorems are turned into pseudo-ode in the Setion 4.As Apriori, Pasal will traverse the powerset of P levelwise: At the kth iteration,the algorithm generates �rst all andidate k-patterns.De�nition 2. A k-pattern P is a subset P of P with ard(P) = k. A andidatek-pattern is a k-pattern where all its proper sub-patterns are frequent.For the andidate k-patterns one database pass is used to determine their sup-port. Then infrequent patterns are pruned. This approah works beause the well-known fat that a pattern annot be frequent if it has an infrequent sub-pattern.3.1 Key PatternsOur approah is based on the observation that frequent patterns an be onsideredas \equivalent" if they are inluded in exatly the same objets. We desribe thisfat by the following equivalene relation � on the frequent patterns.De�nition 3. For frequent patterns P;Q � P, we let P �Q if f(P) = f(Q). The setof patterns whih are equivalent to a pattern P is given by [P ℄ = fQ � P j P �Qg.In the ase of frequent patterns P andQ with P �Q, both patterns have obviouslythe same support:Lemma 1. Let P and Q be frequent patterns.(i) P �Q =) supp(P) = supp(Q)(ii) P � Q ^ supp(P) = supp(Q) =) P �QProof. (i) P �Q () f(P) = f(Q) =) supp(P) = ard(f(P))ard(O) = ard(f(Q))ard(O) =supp(Q).(ii) Sine P � Q and f is monotonous dereasing, we have f(P) � f(Q).supp(P) = supp(Q) is equivalent to ard(f(P)) = ard(f(Q)) whih implies withthe former f(P) = f(Q) and thus P �Q.Hene if we knew the relation � in advane, we would need to ount the supportof only one pattern in eah equivalene lass. Of ourse we do not know the relationin advane, but we an onstrut it step by step.4 Thus, we will in general needto determine the support of more than one pattern in eah lass, but not of all ofthem. If we already have determined the support of a pattern P in the database andpass later a pattern Q 2 [P ℄, then we need not aess the database for it beausewe know that supp(Q) = supp(P).The �rst patterns of an equivalene lass that we reah using a levelwise approahare exatly the minimal5 patterns in the lass:4In the algorithm, the equivalene relation is not expliitly generated, but is { as the algorithmis based on the following theorems { impliitly used.5`Minimal' means `minimal with respet to set inlusion'.4

De�nition 4. A frequent pattern P is a key pattern if P 2 min[P ℄. A andidatekey pattern is a pattern where all its proper sub-patterns are key patterns.Observe that all andidate key patterns are obviously also andidate patterns.3.2 Pattern Counting InfereneIn the algorithm we apply the pruning strategy both for andidate patterns and toandidate key patterns. This is justi�ed by the following theorem.Theorem 2. (i) If Q is a key pattern and P � Q, then P is also a key pattern.(ii) If P is not a key pattern and P � Q, then Q is not a key pattern either.6Proof. (ii) Let P � Q and P be not a key pattern. Then exists P 0 2 min[P ℄with P 0 � P . From f(P 0) = f(P) it follows f(Q) = f(Q n (P n P 0)). Hene Q isnot minimal in [Q℄ and thus by de�nition not a key pattern. (i) is a diret logialonsequene of (ii).The algorithm determines, at eah iteration, the key patterns among the andi-date key patterns by using (ii) of the following theorem:Theorem 3. Let P be a frequent pattern.(i) Let p 2 P . Then P 2 [P n fpg℄ if and only if supp(P) = supp(P n fpg).(ii) P is a key pattern if and only if supp(P) 6= minp2P (supp(P n fpg)).Proof. (i) The \if" part follows from Lemma 1 (ii). The \only if" part is obvious.(ii) From (i) we dedue that P is a key pattern if and only if supp(P) 6= supp(P nfpg), for all p 2 P . Sine supp is a monotonous dereasing funtion, this is equivalentto (ii).Sine all andidate key patterns are also andidate patterns, when generatingall andidate patterns for the next level we an at the same time determine theandidate key patterns among them.If we reah a andidate k-pattern whih is not a andidate key pattern, then wealready passed along at least one of the key patterns in its equivalene lass in anearlier iteration. Hene we already know its support. Using the following theorem,we determine this support without aessing the database:Theorem 4. If P is a non-key pattern, thensupp(P) = minp2P (supp(P n fpg)) :Proof. \�" follows from the fat that supp is a monotonous dereasing funtion.\�": If P is not a key pattern then exists p 2 P with P � Pnfpg. Hene supp(P) =supp(P n fpg) � minq2P (supp(P n fqg).6In mathematial terms, (i) and (ii) state that the set of key patterns is an order ideal (ordown-set) of (2P;�). 5

Thus the database pass needs to ount the supports of the andidate key patternsonly. Knowing this, we an summarize Pasal as follows: It works exatly asApriori, but ounts only those supports in the database pass whih annot be derivedfrom supports already omputed. Thus we an, on eah level, restrit the expensiveount in the database to some of the andidates. But even better, from some levelon, all andidate pattern may be known to be non-key patterns. Then all remainingfrequent patterns and their support an be derived without aessing the databaseany more. In the worst ase (i. e., in weakly orrelated data), all andidates patternsare also andidate key patterns. Then the algorithm behaves exatly as Aprioriwithout any overhead.4 The PASCAL algorithmIn this setion, we transform the theorems given in the last setion into an algorithm.The pseudo-ode is given in Algorithm 1. A list of notations is provided in Table 1.We assume that P is linearly ordered, e. g., P = f1; : : : ; ng. This will be used inPasal-Gen. Table 1: Notations used in Pasalk is the ounter whih indiates the urrent iteration. In the kth iteration,all frequent k-patterns and all key patterns among them are determined.Pk ontains after the kth iteration all frequent k-patterns P together withtheir support P:supp, and a boolean variable P:key indiating if P is a(andidate) key pattern.Ck stores the andidate k-patterns together with their support (if known),the boolean variable P:key, and a ounter P:pred supp whih stores theminimum of the supports of all (k � 1)-sub-patterns of P .The algorithm starts with the empty set, whih always has a support of 1 andwhih is (by de�nition) a key pattern (steps 1+2). In step 3, frequent 1-patterns aredetermined. They are marked as key patterns unless their support is 1 (steps 4{6).The main loop is similar to the one in Apriori (steps 7 to 21). First, Pasal-Genis alled to ompute the andidate patterns. The support of key ones is determinedvia a database pass (steps 10{14).Then (steps 15{20) the `traditional' pruning (step 16) is done. At the same time,for all remaining andidate key patterns, it is determined whether they are key ornot (steps 17+18).The way that Pasal-Gen operates is basially known from the generator fun-tion Apriori-Gen whih was introdued in [AS94℄. When alled at the kth iteration,it uses as input the set of frequent (k�1)-patterns Pk�1. Its output is the set of an-didate k-patterns. Additionally to Apriori-Gen's join and prune steps, Pasal-Genmakes the new andidates inherit the fat of being or not a andidate key pattern(step 9) by using Theorem 2; and it determines at the same time the support of allnon key andidate patterns (step 12) by using Theorem 4.6

Algorithm 1 Pasal1) ;:supp 1; ;:key true;2) P0 f;g;3) P1 ffrequent 1-patternsg;4) forall p 2 P1 do begin5) p:pred supp 1; p:key (p:supp 6= 1);6) end;7) for (k = 2; Pk�1 6= ;; k ++) do begin8) Ck Pasal-Gen(Pk�1);9) if 9 2 Ck j :key then10) forall o 2 D do begin11) Co subset(Ck; o);12) forall 2 Cp j :key do13) :supp + +;14) end;15) forall 2 Ck do16) if :supp � minsup then begin17) if :key and :supp = :pred supp then18) :key false;19) Pk Pk [fg;20) end;21) end;22) return Sk Pk.Running example. We illustrate the Pasal algorithm on the following datasetfor minsup = 2=5: ID Items1 A C D F2 B C E F3 A B C E F4 B E F5 A B C E FThe algorithm performs �rst one database pass to ount the support of the 1-patterns. The andidate pattern fDg is pruned beause it is infrequent. As fFghas the same support as the empty set, fFg is marked as a non-key pattern:P1 supp keyfAg 3=5 tfBg 4=5 tfCg 4=5 tfEg 4=5 tfFg 1 fAt the next iteration, all andidate 2-patterns are reated and stored in C2.At the same time, the support of all patterns ontaining fFg as sub-pattern is7

Algorithm 2 Pasal-GenInput: Pk�1, the set of frequent (k � 1)-patterns p with their support p:supp andthe p:key ag.Output: Ck, the set of andidate k-patterns eah with the ag :key, the value:pred supp, and the support :supp if is not a key pattern.1) insert into Ckselet p:item1, p:item2, : : : , p:itemk�1, q:itemk�1from Pk�1 p, Pk�1 qwhere p:item1 = q:item1, : : : , p:itemk�2 = q:itemk�2, p:itemk�1 < q:itemk�1;2) forall 2 Ck do begin3) :key true; :pred supp +1;4) forall (k � 1)-subsets s of do begin5) if s =2 Pk�1 then6) delete from Ck;7) else begin8) :pred supp min(:pred supp; s:supp);9) if not s:key then :key false;10) end;11) end;12) if not :key then :supp :pred supp;13) end;14) return Ck.omputed. Then a database pass is performed to determine the supports of theremaining six andidate patterns:C2 pred supp key suppfABg 3=5 t ?fACg 3=5 t ?fAEg 4=5 t ?fAFg 3=5 f 3=5fBCg 4=5 t ?fBEg 4=5 t ?fBFg 4=5 f 4=5fCEg 4=5 t ?fCFg 4=5 f 4=5fEFg 4=5 f 4=5
P2 supp keyfABg 2=5 tfACg 3=5 ffAEg 2=5 tfAFg 3=5 ffBCg 3=5 tfBEg 4=5 ffBFg 4=5 ffCEg 3=5 tfCFg 4=5 ffEFg 4=5 fAt the third iteration, it turns out in Pasal-Gen that eah newly generatedandidate pattern ontains at least one sub-pattern whih is not a key pattern.Hene all new andidate patterns are no andidate key patterns. All their supportsare determined diretly in Pasal-Gen. From that moment on, the database willnot be aessed any more. 8

C3 pred supp key suppfABFg 2=5 f 2=5fABCg 2=5 f 2=5fABEg 2=5 f 2=5fACEg 2=5 f 3=5fACFg 3=5 f 3=5fAEFg 2=5 f 2=5fBCEg 3=5 f 3=5fBCFg 3=5 f 3=5fBEFg 4=5 f 4=5fCEFg 3=5 f 3=5
P3 supp keyfABFg 2=5 ffABCg 2=5 ffABEg 2=5 ffACEg 2=5 ffACFg 3=5 ffAEFg 2=5 ffBCEg 3=5 ffBCFg 3=5 ffBEFg 4=5 ffCEFg 3=5 fIn the fourth and �fth iteration, all supports are determined diretly in Pasal-Gen. In the sixth iteration, Pasal-Gen generates no new andidate patterns,thus no frequent 6-patterns are omputed and the algorithm stops:C4 pred supp key suppfABCEg 2=5 f 2=5fABCFg 2=5 f 2=5fABEFg 2=5 f 2=5fACEFg 2=5 f 3=5fBCEFg 3=5 f 3=5
P4 supp keyfABCEg 2=5 ffABCFg 2=5 ffABEFg 2=5 ffACEFg 2=5 ffBCEFg 3=5 fC5 pred supp key suppfABCEFg 2=5 f 2=5 P5 supp keyfABCEFg 2=5 fHene Pasal needs two database passes in whih the algorithm ounted thesupports of 6+6 = 12 patterns. Apriori would have needed �ve database passes forounting the supports of 6+10+10+5+1 = 32 patterns for the same dataset. Allother urrent algorithms (with the only exeption of Close) may need less then �vepasses, but they all have to perform the 32 ounts.5 Experimental EvaluationWe evaluated Pasal against three algorithms, eah representative of one frequentpatterns disovery strategy: Apriori, Close, and Max-Miner. This Max-Miner im-plementation was kindly provided by Roberto Bayardo, and retrieving the frequentpatterns' support from the maximal frequent ones was done using a brute-foremethod7. Pasal, Apriori, Close and this �nal step to Max-Miner all shared thesame data strutures and general organization. Optimizations suh as speial han-dling of pass two were disabled.Charateristis of the datasets used are given in Table 2. These datasets arethe C20D10K and C73D10K ensus datasets from the PUMS sample �le8, theT20I6D100K, T25I10D10K and T25I20D100K9 syntheti dataset that mimis mar-7In the following tables, we distinguished the time spent by Max-Miner itself and the supportretrieval step.8ftp://ftp2..ukans.edu/pub/ippbr/ensus/pums/pums90ks.zip9http://www.almaden.ibm.om/s/quest/syndata.html9

ket basket data, and the Mushrooms10 dataset desribing mushrooms harater-istis [UCI99℄. In all experiments, we attempted to hoose signi�ant minimumsupport threshold values: we observed threshold values used in other papers forexperiments on similar data types.Name Number of objets Average size of objets Number of itemsC20D10K 10,000 20 386C73D10K 10,000 73 2,178Mushrooms 8,416 23 128T20I6D100K 100,000 20 1,000T25I10D10K 10,000 25 1,000T25I20D100K 100,000 25 10,000Table 2: Datasets.C20D10KSupport # frequents Pasal Apriori Close Max-Miner20.0 20,239 9.44 57.15 14.36 0.17 77.4015.0 36,359 12.31 85.35 18.99 0.26 113.2210.0 89,883 19.29 164.81 29.58 0.34 201.337.5 153,163 23.53 232.40 36.02 0.35 268.805.0 352,611 33.06 395.32 50.46 0.48 428.652.5 1,160,363 55.33 754.64 78.63 0.81 775.56

0

100

200

300

400

500

600

700

800

900

5101520

T
im

e
(s

)

Minimum Support (%)

Pascal
Apriori
Close

Max-Miner+

10ftp://ftp.is.ui.edu/pub/mahine-learning-databases/mushroom/agarius-lepiota.data

10

0

10

20

30

40

50

60

70

80

90

5101520

T
im

e
(s

)

Minimum Support (%)

Pascal
Close

C73D10KSupport # frequents Pasal Apriori Close Max-Miner80 109,159 177.49 3,661.27 241.91 0.87 3,717.9975 235,271 392.80 7,653.58 549.27 1.06 7,730.3670 572,087 786.49 17,465.10 1,112.42 2.28 17,618.4060 4,355,543 3,972.10 109,204.00 5,604.91 7.72

0

20000

40000

60000

80000

100000

120000

6065707580

T
im

e
(s

)

Minimum Support (%)

Pascal
Apriori
Close

Max-Miner+

11

0

1000

2000

3000

4000

5000

6000

6065707580

T
im

e
(s

)

Minimum Support (%)

Pascal
Close

On these two databases, Pasal and Close outperform Apriori and Max-Minerby a wide margin. On C73D10K with minsup = 60%, for instane, they bothmake 13 passes while the largest frequent patterns are of size 19.T20I6D100KSupport # frequents Pasal Apriori Close Max-Miner1.00 1,534 13.14 13.51 25.91 2.60 5.030.75 4,710 20.41 20.67 35.29 4.44 11.060.50 26,950 44.00 44.38 67.82 6.87 35.370.25 155,673 117.97 117.79 182.95 15.64 109.14

0

50

100

150

200

0.250.50.751

T
im

e
(s

)

Minimum Support (%)

Pascal
Apriori
Close

Max-Miner+

This T20I6D100K database is a typial ase where all frequents patterns are key.Here, Pasal, Apriori and Max-Miner are on a par, while Close spends muh timeomputing intersetions.
12

T25I10D10KSupport # frequents Pasal Apriori Close Max-Miner1.00 3,300 3.24 3.62 6.67 0.63 1.050.75 17,583 5.17 6.95 9.38 1.09 3.830.50 331,280 17.82 41.06 26.43 2.76 35.530.25 2,270,573 70.37 187.92 86.08 6.99 154.89

0

50

100

150

200

0.250.50.751

T
im

e
(s

)

Minimum Support (%)

Pascal
Apriori
Close

Max-Miner+

T25I10D10K is a basket market database with lots of non key patterns: hene,Pasal is faster than Close, Apriori and Max-Miner.T25I20D100KSupport # frequents Pasal Apriori Close Max-Miner1.00 583 5.15 5.76 11.15 1.24 1.30.75 1,155 9.73 11.13 35.67 1.99 1.770.50 1,279,254 968.64 935.14 2,151.34 24.94 879.85

0

500

1000

1500

2000

2500

0.50.751

T
im

e
(s

)

Minimum Support (%)

Pascal
Apriori
Close

Max-Miner+

T25I20D100K is like T20I6D100K: Nearly all frequent patterns are key, thusPasal su�ers a slight performane loss over Max-Miner and Apriori while Close isby far the worst performer. 13

MushroomsSupport # frequents Pasal Apriori Close Max-Miner20.0 53,337 6.48 115.82 9.63 0.31 134.3115.0 99,079 9.81 190.94 14.57 0.50 218.9310.0 600,817 23.12 724.35 29.83 0.89 745.727.5 936,247 32.08 1,023.24 41.05 1.25 1,035.485.0 4,140,453 97.12 2,763.42 98.81 1.99 2,752.05

0

500

1000

1500

2000

2500

3000

5101520

T
im

e
(s

)

Minimum Support (%)

Pascal
Apriori
Close

0

20

40

60

80

100

5101520

T
im

e
(s

)

Minimum Support (%)

Pascal
Close

On the Mushrooms database, as the ensus databases, Pasal and Close arean order of magnitude faster than the two other algorithms.6 ConlusionWe presented a new algorithm, alled Pasal, for eÆiently extrating frequentpatterns in large databases. This algorithm is a novel, e�etive and simple opti-mization of the Apriori algorithm, thus easy to implement or to integrate in anexisting implementation based on the Apriori approah. This optimization is basedon the notion of key patterns of equivalene lasses of patterns. Using these key14

patterns we propose a method, alled pattern ounting inferene, that allows to de-termine the support of some frequent patterns, the frequent key patterns, ratherthan ounting the support of all frequent patterns as in algorithms based on thelevelwise extration of frequent patterns or on the extration of maximal frequentpatterns.We onduted performane evaluations to ompare the eÆieny of Pasal withthose of optimized versions of Apriori, Max-Miner and Close, eah one representativeof an approah for extrating frequent patterns. The results showed that Pasalgives response times equivalent to those of Apriori and Max-Miner when extratingall frequent patterns and their support from weakly orrelated, and that it is themost eÆient among the four algorithms when data are orrelated.We think that an important perspetive of future work is the integration ofpattern ounting inferene in Database Management Systems. The integration ofdata mining methods in relational and objet database systems is an importantresearh topi [STA98℄. Implementing the Pasal algorithm in SQL or OQL, wean bene�t from database indexing and query proessing apabilities, parallelizationof the proess (e. g., in a SMP environment) and using support for hekpointingand spae management o�ered by DBMS for instane.Referenes[AIS93℄ R. Agrawal, T. Imielinski, and A. Swami. Mining assoiation rules be-tween sets of items in large databases. Pro. SIGMOD onf., pp 207{216,May 1993.[AS94℄ R. Agrawal and R. Srikant. Fast algorithms for mining assoiation rulesin large databases. Pro. VLDB onf., pp 478{499, September 1994.[AS95℄ R. Agrawal, and R. Srikant. Mining sequential patterns. Pro. ICDEonf., pp 3{14, Marh 1995.[Bay98℄ R. J. Bayardo. EÆiently mining long patterns from databases. Pro.SIGMOD onf., pp 85{93, June 1998.[BMUT97℄ S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynami itemset ount-ing and impliation rules for market basket data. Pro. SIGMOD onf.,pp 255{264, May 1997.[BMS97℄ S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Gener-alizing assoiation rules to orrelation. Pro. SIGMOD onf., pp 265{276,May 1997.[GW99℄ B. Ganter and R. Wille. Formal Conept Analysis: Mathematial foun-dations. Springer, 1999.[GPW98℄ G. Gardarin, P. Puheral, and F. Wu. Bitmap based algorithms formining assoiation rules, Pro. BDA onf., pp 157{175, Otober 1998.[HPY00℄ J. Han, J. Pei, and Y. Yin, Mining frequent patterns without andidategeneration. Pro. SIGMOD onf., May 2000. to appear.15

[KHC97℄ M. Kamber, J. Han, and J.Y. Chiang. Metarule-guided mining of multi-dimensional assoiation rules using data ubes. Pro. KDD onf., pp207{210, August 1997.[LSW97℄ B. Lent, A. Swami, and J. Widom. Clustering assoiation rules. Pro.ICDE onf., pp 220{231, Marh 1997.[LK98℄ D. Lin and Z. M. Kedem. Piner-Searh: A new algorithm for disoveringthe maximum frequent set. Pro. EBDT onf., pp 105{119, Marh 1998.[MTV94℄ H. Mannila, H. Toivonen, and A. I. Verkamo. EÆient algorithms fordisovering assoiation rules. Pro. AAAI KDD workshop, pp 181{192,July 1994.[MTV97℄ H. Mannila, H. Toivonen, and A. I. Verkamo. Disovery of frequentepisodes in event sequenes. Data Mining and Knowledge Disovery,1(3):259{289, September 1997.[PCY95℄ J. S. Park, M.-S. Chen, and P. S. Yu, An eÆient hash based algorithmfor mining assoiation rules. Pro. SIGMOD onf., pp 175{186, May1995.[PBTL98℄ N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Pruning losed itemsetlatties for assoiation rules. Pro. BDA onf., pp 177{196, Otober 1998.[PBTL99℄ N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. EÆient miningof assoiation rules using losed itemset latties. Information Systems,24(1):25{46, Marh 1999.[STA98℄ S. Sarawagi, S. Thomas, R. Agrawal. Integrating Mining with RelationalDatabase Systems: Alternatives and Impliations. Pro. SIGMOD onf.,pp 343-354, May 1998.[SON95℄ A. Savasere, E. Omieinski, and S. Navathe. An eÆient algorithm formining assoiation rules in large databases. Pro. VLDB onf., pp 432-444, September 1995.[SBM98℄ C. Silverstein, S. Brin, and R. Motwani. Beyond market baskets: Gener-alizing assoiation rules to dependene rules. Data Mining and Knowl-edge Disovery, 2(1):39{68, January 1998.[Toi96℄ H. Toivonen. Sampling large databases for assoiation rules, Pro. VLDBonf., pp 134{145, September 1996.[UCI99℄ S. D. Bay. The UCI KDD Arhive [http://kdd.is.ui.edu℄. Irvine,CA: University of California, Department of Information and ComputerSiene.[ZPOL97℄ M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, New algorithmsfor fast disovery of assoiation rules. Pro. KDD onf., pp 283{286,August 1997. 16

