
Conceptual Knowledge Discovery with Frequent Concept LatticesGerd StummeTechnische Universit�at Darmstadt, Fachbereich Mathematik,Schlo�gartenstr. 7, D{64289 Darmstadt; stumme@mathematik.tu-darmstadt.deAbstractKnowledge discovery support environments in-clude beside classical data analysis tools alsodata mining tools. For supporting both kindsof tools, a uni�ed knowledge representation isneeded. We show that concept lattices whichare used as knowledge representation in Con-ceptual Information Systems can also be usedfor structuring the results of mining associationrules. Vice versa, we use ideas of associationrules for reducing the complexity of the visual-ization of Conceptual Information Systems.1 IntroductionThe aim of Knowledge Discovery in Databases (KDD) isto support human analysts in the overall process of dis-covering useful information and knowledge in databases.Many real-world knowledge discovery tasks are both toocomplex to be accessible by simply applying a singlelearning or data mining algorithm and too knowledge-intensive to be performed without repeated participationof the domain expert. Therefore, knowledge discovery indatabases is considered an interactive and iterative pro-cess between a human and a database that may stronglyinvolve background knowledge of the analyzing domainexpert. Following [Fayyad et al., 1996], we understandKDD as the overall process of discovering useful knowl-edge from the data while data mining is considered asone step of KDD, namely the application of algorithmsfor extracting patterns from the data. In most applica-tions, classical data analysis and decision support facili-ties (for instance Online Analytical Processing (OLAP)or statistical packages) are already present when datamining tools are added to the knowledge discovery sup-port environment. For supporting the analyst in theoverall process of human-centered knowledge discovery,both decision support and data mining tools should pro-vide a homogeneous environment. In particular, thisshows the need of a uni�ed knowledge representation.In this paper, we use concept lattices as such a uni-�ed knowledge representation for a knowledge discoverysupport environment which integrates Conceptual Infor-mation Systems and mining tools for association rules.

Association rules are statements of the type `37 % ofthe customers buying co�ee also buy milk'. The taskof mining association rules is to determine all rules thathave a certain con�dence (37 % in the example) anda certain support (the percentage of customers buyingco�ee and milk). Mining association rules can nowadaysbe considered as one of the core tasks of KDD.Conceptual Information Systems are based on FormalConcept Analysis. Formal Concept Analysis (FCA) isa mathematical theory formalizing the concept of `con-cept', introduced by Wille [1982]. During the years,FCA grew to a data analysis method [Ganter, Wille,1999] which is now commercially applied by NaviConGesellschaft f�ur Begriffliche Wissensverar-beitung mbH. In the past few years, FCA has been usedby di�erent AI researchers as a knowledge representationmechanism in various �elds (e. g., [Schmitt, Saake, 1997],[Erdmann, 1998]). Stumme [1998] compares ConceptualInformation Systems with OLAP and Stumme, Wille,and Wille [1998] discuss how FCA can support a human-centered knowledge discovery process called ConceptualKnowledge Discovery in Databases (CKDD).Concept lattices are the knowledge representation ofFCA. In Conceptual Information Systems, they are alsoused for visualizing the knowledge. We will show in thispaper that concept lattices can also support the miningof association rules. The bene�t of combining FCA andassociation rules is mutual:1. Knowledge representation by concept lattices has toface the problem of exponential growth of the lattices.This is especially problematic when dealing with largedata tables, for instance in the analysis of basket datafor a supermarket. The management tool TOSCANAfor Conceptual Information Systems [Vogt, Wille, 1994]solves this problem by vertically splitting the databaseand combining only those parts which are of interest forthe actual query. In this paper, we present another ap-proach (which can be combined with TOSCANA) bor-rowed from association rules: We prune horizontally allconcepts with low support and keep only the frequentconcepts.2. Usually the algorithms for mining association rulesreturn long lists of rules where many rules are not ofinterest to the market analyst. Di�erent approaches



have been made for reducing the list, for instance `meta-mining' the list or de�ning the `surprisingness' of rules.In this paper we show how the list of association rules canbe structured and reduced by using frequent concepts.In the next section, we present the basics of FCA andassociation rules as far as they are needed for this pa-per. For more detailed introductions, refer for instanceto [Ganter, Wille, 1999] and [Agrawal et al., 1996]. InSection 3, frequent concepts are introduced, and in Sec-tion 4, we discuss how they can help structuring andreducing the mining of association rules.2 Basics of Formal Concept Analysisand Association Rules2.1 Formal Concept AnalysisSince concepts are necessary for expressing humanknowledge the knowledge discovering process bene�tsfrom a comprehensive formalization of concepts. FCAo�ers such a formalization by mathematizing conceptsthat are understood as units of thought constituted bytheir extension and intension. This understanding of`concept' is �rst mentioned explicitly in the Logic of PortRoyal [Arnaud, Nicole, 1668] and has been establishedin the German standards DIN 2330 and DIN 2331.To allow a mathematical description of extensions andintensions, FCA starts with a (formal) context de�ned asa triple K := (G;M; I), where G is a set of objects, M isa set of attributes, and I is a binary relation between Gand M (i. e. I � G�M ). (g;m) 2 I is read \the objectg has the attribute m".Figure 1 shows the formal context Kco�ee :=(Gco�ee;Mco�ee; Ico�ee) where the object set Gco�ee com-prises all co�ees sold by a supermarket and the attributeset Mco�ee provides some attributes describing them.For A � G, we de�ne A0 := fm 2 M j 8g 2 A:(g;m) 2 Ig and, for B � M , we de�ne B0 := fg 2 G j8m 2 B: (g;m) 2 Ig. (In Sections 3 and 4, we will usethe fact that B � B00, B0 = B000, and (B1 [ B2)0 =B01 \B02 for all B �M . The same holds for B � G.)A formal concept of a formal context (G;M; I) is de-�ned as a pair (A;B) with A � G, B � M , A0 =B and B0 = A. The sets A and B are called theextent and the intent of the formal concept (A;B).The subconcept{superconcept relation is formalized by(A1; B1) � (A2; B2) :() A1 � A2 (() B1 � B2):The set of all concepts of a context K together with theorder relation � is always a complete lattice,1 called theconcept lattice of K and denoted by B(K). Figure 2shows the concept lattice of the context in Figure 1 bya line diagram.In the line diagram, the name of an object g is alwaysattached to the circle representing the smallest conceptwith g in its extent; dually, the name of an attribute mis always attached to the circle representing the largestconcept with m in its intent. This allows us to read the1I. e., for each subset of concepts, there is always a greatestcommon subconcept and a least common superconcept.
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Figure 1: The formal context Kco�eecontext relation from the diagram because an object ghas an attribute m if and only if there is an ascendingpath from the circle labeled by g to the circle labeledby m. The extent of a concept consists of all objectswhose labels are below in the diagram, and the intentconsists of all attributes attached to concepts above inthe hierarchy. For example, the concept labeled by `<6 DM' has f`Plus Naturmild', `Plus milde Sorte', `PlusGold'g as extent, and f`< 6 DM', `Plus' (the house brandof the supermarket), `< 8 DM'g as intent.For X;Y � M , we say that the implication X ! Yholds in the context, if each object having all attributesin X also has all attributes in Y . For instance, the im-plication fPlus, classicg ! f< 6DMg holds in the co�eecontext. It can be read directly in the line diagram: thelargest concept having both `Plus' and `classic' in its in-tent is below the concept labeled by `< 6DM'.A Conceptual Information System consists of a many-valued context and a set of conceptual scales. Amany-valued context may not only have crosses (i. e.,yes/no) as entries, but attribute-value pairs. Moreprecisely, a many-valued context is a tuple K :=(G;M; (Wm)m2M ; I) where G is a set of objects, M aset of attributes, Wm the set of possible values for theattribute m 2 M , and the relation I � G � f(m;w) jm 2M;w 2 Wmg [with (g;m;w1) 2 I; (g;m;w2) 2 I )w1 = w2] indicates if an object g 2 G has value w 2Wmfor attribute m 2 M . A conceptual scale for a subsetB � M of attributes is a (one-valued) formal contextSB := (GB;MB ; IB) with GB ��m2BWm. (The ideais to replace the attribute values in Wm which are oftentoo speci�c by more general attributes which are pro-vided in MB . For an example, see below.)For a basket data analysis of a supermarket, we con-sider as set Gtrx of a many-valued context Ktrx the setof all transactions of the supermarket (more precisely,their IDs); and as set Mtrx of attributes the set of all
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time > 17.59Figure 3: The conceptual scale Stimeeveningg have been chosen because the analyst is usu-ally not interested in seeing the exact time of the trans-actions, but is thinking in more general terms. Whenthe analyst chooses the scale Stime in the managementsystem TOSCANA, then the diagram in Figure 3 is dis-played, but instead of the where-clauses of SQL queries(e. g., time in [12.00, 13.59]) the numbers of transactionswhich ful�ll the queries are shown. (This is the derived

context for S = fStimeg as de�ned below.)For B = fDallmayr Prodomo, : : : , Kaisers Ka�eeAuslese Mildg, the formal context Kco�ee cannot be useddirectly as a conceptual scale. The context we need musthave the powerset P(Gco�ee) as set of objects, not theset Gco�ee itself, because customers can buy arbitrarycombinations of co�ee. This is provided by the con-ceptual scale Sco�ee := (P(Gco�ee);Mco�ee; Jco�ee) with(A;m) 2 Jco�ee :() 9g 2 A: (g;m) 2 Ico�ee.Now letS be the set of conceptual scales for the many-valued context K := (G;M; (Wm)m2M ; I). For any sub-set S � S of scales, we can now translate the many-valued context into a one-valued one: The derived con-text KS is de�ned by KS := �G;SSB2S MB ; IS� with(g; n) 2 IS if there is a scale SB 2 S with m 2 MB andw 2 Wm with (g;m;w) 2 I and (g; n) 2 IB. For in-stance, if S = fStimeg, and (TID0815, time, 11.17am)2I, then we have (TID0815, morning), (TID0815, before2pm)2 IS [because (time < 12.00, morning)2 Itime and(time < 12.00, before 2pm)2 Itime as one can see in Fig-ure 3].One can hence derive from each many-valued contextK one large one-valued context KS , for which the con-cept lattice could be computed. However, this approachis not feasible because the resulting lattice is usuallymuch too large, and nobody wants to see it as a whole.Instead, the system TOSCANA allows to combine thediagrams of two (or more) conceptual scales in a nestedline diagram: In each concept of the �rst scale, the sec-ond scale is inserted.22 This works well because the lattice of the whole derivedcontext can always be embedded (as a join-semilattice) in thedirect product of all the scales. Because of space limitation,



For instance, by combining Stime and Sco�ee, the an-alyst can see how the types of co�ee purchased changeduring the day: Is classical co�ee bought more often inthe morning, and light co�ee in the evening? Hence if theanalyst already guesses that there is some relationshipbetween the time of the purchase and the type of cof-fee purchased, then the Conceptual Information Systemsupports him in analyzing the situation in more detail.Supporting the user in �nding such hypotheses is thetask of mining association rules.2.2 Association RulesWe can describe association rules in terms of FormalConcept Analysis: Consider again the context Ktrx . Forthe moment, we restrict the set M of attributes to theitems sold by the supermarket (and ignore the many-valued attributes time and date). Then we can see therestricted context K�trx as a one-valued context. Eachsubset X ofM is called an itemset. The support of X isde�ned by supp(X) := jX0jjGj (where jGj is the cardinalityof G).An association rule X ! Y consists of two subsets Xand Y of M . We say that the rule X ! Y holds withsupport supp(X ! Y ) := j(X[Y )0jjGj and with con�denceconf(X ! Y ) := supp(X[Y )supp(X) (in short: X s;c�! Y withs := supp(X ! Y ) and c := conf(X ! Y )). (An impli-cation is hence an association rule with con�dence 1 andarbitrary support.)Rules that hold only with a certain con�dence havebeen investigated for a long time by many researchers.For instance, in the framework of FCA, Luxenburger[1991] has called them partial implications. The notionof association rules (which additionally have high sup-port) and their application to large databases was intro-duced by [Agrawal et al., 1993]. They stated the follow-ing problem and provided a �rst algorithm: Compute,for given smin; cmin 2 [0; 1], all association rules X s;c�! Ywith s � smin and c � cmin.There are now several algorithms for mining associ-ation rules in the literature. All algorithms work intwo steps. First they determine the set F of all fre-quent itemsets, i. e., F := fY 2 M j supp(Y ) � sming.Then they determine, for each Y 2 F , all X � Y withconf(X ! Y ) � cmin. The expensive step is the �rstone. Hence almost all research e�ort is focussed on thatstep. In this paper, we focus on structural aspects ofassociation rules, and discuss algorithms only briey.Generalized association rules have been introduced in[Srikant, Agrawal, 1995] because the association rulesobtained by mining directly the large context K�trx withall items as attributes returns rules which are often toospeci�c, for instance `37% of customers buying JacobsMeisterr�ostung also buy B�arenmarke Ka�eemilch 0.25 l',instead of `39% of customers buying classically roastedco�ee also buy co�ee milk'.we refer to [Vogt, Wille, 1994] for an example.

For generalized association rules, one considers addi-tionally a taxonomy on the set M�trx of items. The tax-onomy is a partially ordered set (T ;�) (in which usuallythe items (i. e., the elements in M�trx) are considered asthe minimal elements). All other elements are calledgeneralized items. We say that transaction g 2 G�trxcontains the generalized item t 2 T if there is a (non-generalized) item m 2 M�trx with (g;m) 2 I and m � tin (T ;�). For instance, if `Plus Schonka�ee' � `lightco�ee' in the taxonomy, then each transaction contain-ing `Plus Schonka�ee' also contains the generalized item`light co�ee'. For mining generalized association rules,one could �rst add all generalized items to the context,and then mine that as a at table. But this approachis quite ine�cient, and all existing algorithms try to usethe taxonomy to support pruning. Weber [1998] givesan overview over algorithms for mining association rulesand generalized association rules.Up to now, we have stated the basics of both FormalConcept Analysis and association rules. Now let us seehow both theories can enrich each other.3 Frequent Concept LatticesConcept lattices provide exactly the same informationthan the formal context they are derived from. Whilethis is a big advantage over other data analysis tech-niques in many applications, it is a serious handicap forlarge datasets. As mentioned before, this problem is usu-ally faced by vertically splitting the database by usingconceptual scales and displaying only a part by combin-ing two or more scales in nested line diagrams. Here weconsider a horizontal pruning of the concept lattice. Aswe will see later, both approaches can be combined.For a given smin 2 [0; 1], we de�ne the frequent con-cepts of K := (G;M; I) as the concepts (A;B) 2 B(K)with jAjjGj � smin. The lattice Bsmin(K) := f(A;B) 2B(K) j jAjjGj � sming [ f(M 0;M )g is called the frequentconcept lattice of the context K.3By �xing a suitable threshold smin, we can now consid-erably reduce the concept latticeB(K�trx ) to the frequentconcept lattice Bsmin(K�trx ). The latter contains still allrelevant information for the basket data analysis.4 Thefrequent concept lattice is usually still too large to bedisplayed as a whole. But now, we can combine this hor-izontal pruning of the lattice with the vertical splitting ofthe data table: For each conceptual scale SB (i. e., each`slice' of the context K�trx ) we only display its frequentconcept lattice Bsmin(SB). The frequent concept latticeBsmin(K) of the total context K can then be embedded3We have to add the smallest concept of B(K), (M 0;M),in order to obtain a lattice again. This is more a technicaldetail; see Footnote 5.4Observe that the restriction to the frequent concepts isnot suitable for other kinds of applications. For instance,in Conceptual Information Systems used for Information Re-trieval, one is especially interested in the concepts with lowsupport.



(as a join-semilattice) in the direct product of the fre-quent concept lattices of the conceptual scales (comparewith Footnote 2). Hence one can still use the visualiza-tion method by nested line diagrams as it is implementedin TOSCANA. The use of frequent concept lattices al-lows us to work with conceptual scales which are toolarge to be displayed completely. For instance, the con-ceptual scale Sco�ee which we introduced in Section 2 has99 concepts. But it is only so large in order to cover alleventualities: Each of the 216 = 65536 combinations ofco�ees is considered in the scale. But with a reasonablethreshold smin for the support, we can assume that onlysingle co�ees and very few combinations of two di�erentco�ees are bought together frequently. Then the result-ing lattice is not much larger than the concept lattice inFigure 2 and can be combined with another scale (forinstance Stime) in a nested line diagram. If there are nofrequent combinations of two di�erent co�ees, then thelattices are even identical.For computing the frequent concept lattice of a con-text K, one can apply the Next-Closure-Algorithm(1984) of B. Ganter in [Ganter, Wille, 1999]. It is usuallyused for computing concept lattices, but can be used fordetermining arbitrary closure systems. A closure systemC � P(M ) on a set M is a set of subsets of M suchthat for any subset X � C, TX is a closure again, i. e.,TX 2 C.5 To each closure system is assigned a closureoperator :P(M ) ! P(M ) which maps each subset Xof M to the smallest closure X containing X.We briey recall the Next-Closure-Algorithm. Fora given closure operator, it determines all closures inthe lectic order. For simplicity, we assume that M =f1; : : : ; ng. For X;Y � M , we say that X <i Y ifand only if A \ f1; : : : ; i � 1g = B \ f1; : : : ; i � 1gand i 2 B n A. Then the lectic order is de�ned byX < Y () 9i 2 M :X <i Y . The lectic order isa total order on P(M ), i. e., for X;Y 2 P(M ), we havealways X < Y or X = Y or X > Y .Algorithm: The lectically smallest closure is ;. For agiven set X 2 M , the lectically next closure is deter-mined by: 1. Let i := n.2. While A 6<i (A \ f1; : : : ; i� 1g) [ fig, do i := i� 1.3. Then (A \ f1; : : : ; i� 1g) [ fig is the lectically nextclosure. The last closure is M . �The intents of a concept lattice form a closure system,and can hence be determined by the algorithm with theclosure operator X := X 00. For determining the frequentconcept lattice Bsmin(K), we have to modify the closureoperator: X := X 00 if supp(X) � smin and X :=M else.Since X � Y implies X < Y , the algorithm prunes thenall itemsets which have an infrequent itemset as propersubset.65Remark that M = T ; is always a closure. That is thereason why we had to add (M 0;M) to Bsmin(K).6Prutax [Hipp et al., 1998], a depth-�rst algorithm for

In the next section, we discuss how frequent conceptscan be used for structuring and reducing the results ofmining association rules.4 Structuring Association RulesIn this section we show that it is not necessary to knowall frequent itemsets for computing the relevant associa-tion rules. It is su�cient to consider intents of frequentconcepts.Let us call the intent of a frequent concept frequentintent. I. e., X � M is a frequent intent if and only ifX = X 00 and supp(X) � smin. We will see that insteadof providing all association rules to the market analyst,we can restrict ourself to those rules X s;c�! Y where Xand Y are frequent intents, together with a set of impli-cations, called frequent Duquenne-Guigues-basis, whichdescribes the structure of the frequent concept latticeBsmin(K).The intents of a given context K := (G;M; I) are ex-actly those subsets of M which are closed under all im-plications which hold in K. Hence it is su�cient to knowhow to generate all implications that hold in K. A basisof implications is a set of implications from which onecan derive all implications by using the following threerules [Amstrong, 1974]: (1) X ! X for all X �M . (2)If X ! Y then X [ Z ! X for any Z � M . (3) IfX ! Y and Y [ Z !W , then X [ Z !W .Duquenne and Guigues [1986] have shown that the setof all implications P ! P 00 where P is a pseudo-intentforms a minimal basis. A pseudo-intent is a subset P ofM with P 6= P 00 such that, for each pseudointent Q � Pwith Q 6= P , Q00 � P holds.As we are interested in describing the frequent conceptlattice only, we can prune the Duquenne-Guigues-Basis:We de�ne the frequent Duquenne-Guigues-basis as theset fP ! P 00 j P pseudo-intent; supp(P ) � sming. Thisset generates now all frequent implications, i. e., all as-sociation rules with high support and con�dence 1.The following theorem shows that for determiningthe remaining association rules (those with con�dence6= 1), we can restrict ourselves to those rules where bothpremise and conclusion are frequent intents. The proofis straightforward. For the con�dence, it goes back to[Luxenburger, 1991].Theorem. Let X;Y �M . Then X ! Y and X 00 ! Y 00have the same support and the same con�dence.We can now present the results to the market ana-lyst in two parts: We provide the frequent Duquenne-Guigues-Basis together with the list of all associationrules X s;c�! Y with X = X 00, Y = Y 00, s � smin andc � cmin. From these two lists, we can check whetheran association rule X ! Y holds with support s � sminand con�dence c � cmin in two steps: First we determinethe implication X ! X 00 by applying the implicationsmining generalized association rules, traverses the power setP(M) in the lectic order, too.



from the frequent Duquenne-Guigues-Basis to the set X.Similarly we determine Y 00. Then we can check whetherX00 s;c�! Y 00 is provided in the second list.By using these two lists, we can save the user fromreading redundant association rules. The gain of ourapproach depends on how many frequent itemsets arenot frequent intents. While itemsets with very few itemstend to be intents (because there are transactions whichhave exactly these items in common), the more items anitemset has (and the lower its support is), the higher isthe chance that the itemset is not an intent.The gain is higher when we deal with generalized asso-ciation rules. For instance, the implication f> 8DMg !fclassicg will hold in any case; and it is not unlikely thatthe implication fPlus, classicg ! f< 6DMg will hold aswell.5 OutlookWe have shown in this paper that bringing together For-mal Concept Analysis and association rules can enrichboth theories. Not all questions are solved yet, and fur-ther research is needed. We briey state three interestingquestions:1. Implications can be read directly from the line di-agram, which is more accepted by the users than a longlist of implications. Due to the fact that association rulesare not transitive, their visualization is much more dif-�cult. The modi�cation of line diagrams such that theyalso visualize association rules is one topic of further re-search.2. The Next-Closure-Algorithm is not optimized forcontexts with jGj � jM j, the typical situation in super-market basket data analysis. Further research is neededto adapt existing data mining tools (which are optimizedfor this situation) such that they can compute the fre-quent pseudointents. (The computation of the frequentintents can easily be integrated in the existing algo-rithms, since X � M is an intent if and only if thereis no m 2M nX with supp(X [ fmg) = supp(M ).)3. A promising approach is to consider ConceptualInformation Systems as preprocessing tools for miningassociation rules. Conceptual scales can be used as tax-onomies for generalized association rules; and by select-ing scales one can restrict the data to be mined and thelevel of detail on which the mining shall take place.References[Agrawal et al., 1993] R. Agrawal, T. Imielinski, A.Swami: Mining association rules between sets of itemsin large databases. Proc. ACM SIGMOD, 1993[Agrawal et al., 1996] R. Agrawal, H. Mannila, R.Shrikant, H. Toivonen, A. I. Verkamo: Fast discoveryof association rules. In [Fayyad et al., 1996], 307{328[Amstrong, 1974] W.W. Amstrong: Dependency struc-tures of data base relationships. IFIP Congress,Geneva, Switzerland, 1974, 580{583
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