
On-Line Analytical Processing withConceptual Information SystemsGerd StummeTechnische Universit�at Darmstadt, Fachbereich MathematikSchlo�gartenstr. 7, D{64289 Darmstadt, stumme@mathematik.tu-darmstadt.deAbstract. A Conceptual Information System consists of a database to-gether with conceptual hierarchies. The management system TOSCANAvisualizes arbitrary combinations of conceptual hierarchies by nested line di-agrams and allows an on-line interaction with a database to analyze dataconceptually. The paper describes the conception of Conceptual InformationSystems and discusses the use of their visualization techniques for On-LineAnalytical Processing (OLAP).1 IntroductionA Conceptual Information System consists of a (relational) database together withconceptual hierarchies. These hierarchies, called conceptual scales, are used to sup-port navigation through the data. An important factor for the success of ConceptualInformation Systems is the visualization of conceptual scales by line diagrams. Bycombining conceptual scales in nested line diagrams, a large variety of perspectivescan be generated interactively, in which relationships and dependencies can be in-vestigated. The management system TOSCANA allows an on-line interaction witha database to analyze and explore data conceptually.On-Line Analytical Processing (OLAP) relies on the metaphor of a (high-di-mensional) cube containing the data. For dimensions which are not structured hi-erarchically, the cube metaphor provides a good intuitive understanding of multi-dimensional data. But an essential feature of OLAP dimensions is that they areordered hierarchally: days roll up into months, months into quarters and years,products into product groups and product lines. Often they are trees (simple hier-archies), but they may be any arbitrary partially ordered set (multiple hierarchy).In this setting, the cube metaphor which re
ects the mathematical construction ofa direct product of linear vector spaces is not the most natural way, since the hi-erarchies have to be forced into a 
at linear form. Instead of listing the hierarchieson (one-dimensional) axes, we suggest to visualize them by line diagrams. By usingnested line diagrams, arbitrary dimensions can be combined for ad hoc analysis.2 Conceptual Information SystemsConceptual Information Systems are based on the mathematical theory of FormalConcept Analysis. The aim of Formal Concept Analysis (cf. [11], [2]) is a mathemati-cal formalization of the concept `concept'. It re
ects the philosophical understandingof concepts as units of thought consisting of two parts: the extension containing all
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Fig. 1. Formal context of harps and its concept latticeobjects which belong to the concept and the intension containing the attributesshared by all those objects. This is modeled by formal concepts that are derivedfrom a formal context.De�nition. A (formal) context is a triple K := (G;M; I) where G and M aresets and I is a relation between G and M . The elements of G and M are calledobjects and attributes, respectively, and gIm is read \the object g has the attributem". Now a (formal) concept is a pair (A;B) such that A � G and B � M aremaximal with A � B � I. The set A is called the extent and the set B the intentof the concept. The hierarchical subconcept{superconcept{relation of concepts isformalized by (A;B) � (C;D) :() A � C (() B � D). The set of all conceptsof the context K together with this order relation is a complete lattice that is calledthe concept lattice of K and is denoted by B(K).Example. In Figure 1, a formal context of the Richter Harps produced by HohnerInc. is given. The relation gIm is read as `harp g is available with feature m'. Inthe line diagram, the circles stand for the concepts. A concept is a subconcept ofanother, if there is an ascending path of straight line segments from the former tothe latter. The extent [intent] of each concept contains all objects [attributes] whichcan be reached from the concept on a descending [ascending] path.If we are for example interested in a wooden harp tuned in D major, then we



take the largest concept that has Wood and D major in its intent. This concept isrepresented by the circle just above the label 28 tongues. The extent of this conceptcontains Marine Band SBS,Marine Band, and Auto Valve Harp| so these are exactlythe harps available in wood and D major. The intent of this concept contains |beside Wood and D major | the features A, F, G, and C Major, so the three harpsare available in these tunings also. This corresponds to a functional dependency indatabase theory.In many applications, attributes are not one-valued as in the previous example,but allow a range of values. This is modelled by many-valued contexts. In orderto obtain a concept lattice, many-valued contexts are `translated' into one-valuedcontexts by conceptual scales.De�nition.A many-valued context is a tuple (G;M; (Wm)m2M ; I) where G andMare sets of objects and attributes, resp., Wm is a set of values for each m 2M , andI � G�Sm2M (fmg�Wm) such that (g;m;w1) 2 I and (g;m;w2) 2 I imply w1 =w2. A conceptual scale for an attribute m 2 M is a context Sm := (Gm;Mm; Im)with Wm � Gm. The context (G;Mm; J) with gJn : () 9w2Wm: (g;m;w)2I ^(w; n)2Im is called the realized scale for the attribute m.Conceptual Information Systems consist of a many-valued context together witha collection of conceptual scales. The many-valued context is implemented as a rela-tional database. The collection of the scales is called conceptual scheme. It is writtenin the description language ConScript ([9]). Beside the contexts of the conceptualscales, the conceptual scheme also contains the layout of their line diagrams. Thelayout has to be provided in advance, since experience showed that well readable linediagrams in general cannot be generated fully automatically. For Conceptual Infor-mation Systems, the management system TOSCANA ([3], [10]) has been developed.Based on the paradigm of conceptual landscapes of knowledge ([14]), TOSCANAsupports the navigation through the data by using the conceptual scales like mapswhich are designed for di�erent purposes and in di�erent granularities.Example. Figure 2 shows a realized scale of a Conceptual Information System onpipelines ([8]). The many-valued context consists of 3961 pipes, �ttings, etc., and of54 many-valued attributes. It shall support the engineer by choosing suitable partsfor a projected pipeline system. Since there are almost 4000 objects, the scale doesnot display their names, but the contingents only. One can for instance see, that52+ : : :+27 = 348 of the 3961 di�erent parts are 
anges (German: Flansche) whichare di�erentiated further according to the German Industrial Standards (DIN). Byzooming into this concept, one can see the distribution of the 348 
anges accordingto another conceptual scale, e. g, the inner diameter or the wall thickness.For the exploration of relationships between di�erent attributes, it is desirable tovisualize more than one conceptual scale at a time.Nested line diagrams are used toshow the direct product of the scales. We introduce them in the next section wherewe also discuss their role for On-Line Analytical Processing.3 On-Line Analytical ProcessingOn-Line Analytical Processing (OLAP) has become almost synomous with multi-dimensional data. OLAP adresses many topics, like data preprocessing and e�cient
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1215 240 560 385 30 72 15 48 33 36 271213 52 305Fig. 2. Realized scale `Part Type'data storage for supporting the analysis process (cf., e. g., [5]). Here, we focus onthe visualization of the data.De�nition. A dimension is a set D, its elements are called its members. Let D :=fD1; D2; : : : ; Dng be a set of dimensions. Each tuple of XD := D1 �D2 � : : :�Dnis called a member combination. It addresses a single data point called a cell. Avariable is a partial function �:XD ! V where V is a set. �(d1; : : : ; dn) is the valueof the cell addressed by the member combination (d1; : : : ; dn). The set D togetherwith one or more variables is called the data cube.Example. Our example is about sales data of a (�ctitious) soft-drink wholesale com-pany. Suppose that we want to examine the sales of beverage in dependence of time,region and type of product. Thus we have three dimensions: region, product,and time. Let's say that they consist of the members Dregion := ftotal, europe,america, north america, south america, asiag, Dproduct := ftotal, min-eral water, juice, orange juice, apple juice, colag, Dtime := f1996, 1stquarter 1996, 2nd quarter 1996, 3rd quarter 1996, 4th quarter 1996,1997, 1st quarter 1997, 2nd quarter 1997, 3rd quarter 1997, 4th quar-ter 1997g. In a real application, there will of course be more dimensions, and amuch �ner granularity, for instance down to city or shop level for region, or today (or even hour) level for time. The sales (in million gallons) are representedby a function sales:Dregion �Dproduct � Dtime ! R+. We can imagine the salesas stored in a three-dimensional cube, where the edges are labeled with the mem-bers of region, product, and time, resp. Most OLAP tools display the data ina spreadsheet as in Fig. 3. For instance, we see that sales(cola;north america;



Total Europe America North South Asia
MineralWater 1997 837 442 268 174 94 127

1Q7 191 99 63 41 22 29
2Q7 201 102 66 43 23 33
3Q7 274 141 82 51 31 51
4Q7 171 100 57 39 18 14

Cola 1997 1523 432 673 375 298 418
1Q7 364 99 160 89 71 105
2Q7 378 103 171 91 80 104
3Q7 405 120 189 103 86 96
4Q7 376 110 153 92 61 113

Juice 1997 816 360 257 170 87 199
1Q7 189 81 62 41 21 46
2Q7 200 85 63 42 21 52
3Q7 223 99 68 44 24 56
4Q7 204 95 64 43 21 45

Total 1997 3176 1234 1198 719 479 744
1Q7 744 279 285 171 114 180
2Q7 779 290 300 176 124 189
3Q7 902 360 339 198 141 203
4Q7 751 305 274 174 100 172Fig. 3. Visualization of the data cube in a spreadsheet (nested diagram)1st quarter 1997) = 89.De�nition. A hierarchy on a dimension D is a partially ordered set H := (D;�).It is called simple hierarchy, if it is a tree. Otherwise it is called multiple hierarchy(within the dimension D).Typically, aggregation follows the hierarchy from bottom to top. The type ofaggregation depends on the type of variable. For most variables (like, e. g., budgetor sales) the values will be summed up. But other ways of aggregation are in useas well. For instance, for share prices or inventory numbers, usually the average iscomputed.Example. The hierarchies of the three dimensions product, region, and time areshown in Figure 4. They are all simple hierarchies (trees). The sales are aggregatedby summation in all dimensions. Orange juice and apple juice roll up to juice,and juice, mineral water and cola roll up to total.In OLAP terminology, diagrams as in Fig. 3 are called nested diagrams. In thissection, we examine how nested line diagrams of Conceptual Information Systemscan be used as an alternative method of data visualization.Figure 5 shows how the data cube is composed as direct product of the dimen-sions, where the members of each dimension are ordered in a linear way. Manytools indicate the hierarchies on the dimensions additionally like a PC �le managerdisplays the folder/subfolder hierarchy. But the basically linear arrangement is es-sential for the cube metaphor. Since the hierarchies model the basic understandingof the conceptual view of the analyst on the data, they should play a prominentrole in the visualization. Indeed, they are often used for displaying one single hier-archy, as in Figure 4. But if two or more hierarchies occur simultaneously, then thisvisualization technique is dropped.
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1Q6 Fig. 4. The hierarchiesIn Conceptual Information Systems, nested line diagrams are used for displayingline diagrams of large partially ordered sets (especially conceptual scales). Hierarchi-cal dimensions roughly correspond to conceptual scales, so OLAP analysis tools canroughly be seen as special Conceptual Information Systems. Nested line diagramscan be used for drawing direct products of the dimensions. In contrast to nesteddiagrams, they do not only provide all member combinations, but also re
ect thederived order:De�nition. Let Hi := (Di;�i), i = 1; : : :n, be hierarchies. Then the derived orderon the direct product H := (D;�) with D := D1 � D2 � : : :� Dn is de�ned by(d1; : : : ; dn) � (e1; : : : ; en) :() 8i 2 f1; : : : ; ng: di �i ei.Example. The nested line diagram of the direct product of the three dimensions re-gion, product, and time (see Fig.5) is displayed in Figure 6. The derived order canbe read by following ascending paths. Hereby the lines of the outer two levels haveto be replaced by sheaves of 4 and 5�4 = 20 parallel lines, resp., linking correspond-ing elements. For instance, (south america, 3rd quarter, mineral water) �(america, total, mineral water), since the cell addressed by the former mem-ber combination can be reached by an ascending path from the latter one. For�nding out how much Cola was sold in North America in the �rst quarter of 1997,we have a look in the lower left ellipse (labeled with north) in Fig.6. In the leftmostellipse (1. Q.), we �nd the entry 89 in the right box (cola).Clearly this representation needs more space than the one in Fig. 3. Its advan-tage is the clear structuring along the most important | from the analyst's actualpoint of view | dimension (which is chosen as outermost hierarchy). Figure 6 showsthat displaying a partially ordered set with 120 elements is close to the boundariesof the system. The spreadsheet can display even larger data volumes, and still lookneat at a �rst glance. But, as in typography, the most important aim is not toprovide a neat representation, but one that supports easy reading ([7]). TOSCANAis designed for a more general approach, allowing more complicate scales than the
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1Q7Fig. 5. The direct product of (linear) dimensions vs. the direct product of partially orderedsets. The result of the latter is shown in Fig. 6.dimensions typically used in OLAP applications, which often are just trees. In par-ticular, TOSCANA supports arbitrary partially ordered sets, although (concept)lattices are the standard. In standard TOSCANA applications, not all elements ofthe hierarchy are labeled, but there may be more than one label for each element.Considering the special features of OLAP data, some improvements on the lay-outare conceivable. They will be discussed in Section 5.4 Slice & DiceSlicing, pivoting, drill-down, and drill-up are the interactive ways of accessing thedata stored in a data cube. This section describes them, and presents the corre-sponding activities for nested line diagrams. These activities can all be performedby interacting with the diagrams, no manipulation language is needed.Slicing. A slice of a data cube is a subset of the data cube, where one or moredimensions are restricted to one single member. For instance, if the analyst is inter-ested in the development of the sales of the di�erent product lines over time, thenonly the data given in the slice determined by the condition region=\total" is ofinterest. In Fig. 3, this turns out to show only the left most column (which of coursewill then be displayed by a two-dimensional spreadsheet). In nested line diagrams,slicing the cube corresponds to zooming in one of the ellipses of the outer level.For instance, the condition region=\total" is obtained by zooming into the topelement of the outer hierarchy in Fig. 6. The result is a two level nested line diagramon full screen size. This feature is fully supported by TOSCANA. If the user choosesonly some of the hierarchies to be displayed, then this corresponds to zooming in thetop elements of all other hierarchies, hence the most general aggregation is appliedin the corresponding dimensions.
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Drill-Down.Restrictingthenumberofdimensionsmeansthatonecanlookat
theminmoredetail.Insteadofonlyexaminingthetopmostlevelsoftheirhierar-
chies,onewantstoseea�nergranularity.Thisunfoldingofthehierarchiesiscalled
drill-down.Figure7showstheresultofzoomingintothetopelementoftheouter
hierarchyinFig.6(i.e.,lettingregion=\total"),anddrillingdowntheproduct
hierarchy.Additionally,thetimedimensionhasbeenextendedtotwoyears.

Atthemoment,TOSCANAdoesnotsupportthiswayofdrill-downverywell.
Thehierarchieshavetobepreparedinadvanceandcannotbechangedonthe

y,forcedbytheunsolvedproblemofasatisfyingautomaticlay-outalgorithm
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Fig. 7. Zooming with drill-downfor partially ordered sets. In the next section, we discuss how this problem canbe encountered. The actual solution is to provide scales with di�erent levels ofgranularity between which the analyst can choose.Another way of drill-down is to refer to external information sources, e. g.,databases of the transaction systems or Internet sites. In TOSCANA, such ref-erences can be attached to each data cell. By mouse-click, a report generated by thedatabase or a Web browser will be opened.Pivoting. Di�erent questions request di�erent views on the data. In a spreadsheetdisplay, this means that the dimensions listed on the vertical and horizontal axisare interchanged. This operation is called pivoting or rotating. For nested line dia-grams, it corresponds to permuting the inner and the outer hierarchies. The diagramin Fig. 7 can be used to examine the question \How does the composition of soldproducts change over time?", while the pivoted version is more adequate for investi-gating \How do the sales evolve in time for each product?". Pivoting of hierarchiesis implemented in TOSCANA.5 Further developmentsHow can TOSCANA be �ne tuned for the speci�c structure of OLAP data? TOS-CANA is originally not designed for OLAP. In its main applications, there are more



than one label attached to the nodes in the diagram, but typically, not all nodes arelabeled. TOSCANA usually displays the list of labels beside the nodes. In diagramsas in Fig. 6, this would lead to an over full diagram. But in OLAP applications, eachnode has exactly one label. Hence the label can be written directly in the node. Inthe �gures in this paper, this had to be done manually, since this feature is not yetsupported by TOSCANA. The readability can be improved further by adapting thelayout of the labels to this characteristic.Drill-down requires techniques for extending and pruning hierarchies on the 
y.For arbitrary hierarchies (and even for lattices), the development of fully automaticalgorithms providing satisfying diagrams is an open challenge. But most OLAPhierarchies are trees, which can be drawn automatically. Beside supporting drill-down, an automatic layout routine can solve the problem of e�ciently exploitingthe whole screen space.Data cubes are usually only sparsely populated. Often less than 10% of the cellscontain data. For the visualization this implies that not the whole direct product ofthe hierarchies needs to be displayed. In this case local scaling ([6]) can be used forautomatic pruning. It is considered to be implemented in TOSCANA.References1. E.F. Codd, S. B. Codd, C.T. Salley: Providing OLAP (On-Line Analyti-cal Processing) to User-Analysts: An IT Mandate. www.arborsoft.com/essbase/wht ppr/coddTOC.html2. B. Ganter, R. Wille: Formale Begri�sanalyse: Mathematische Grundlagen. Springer,Heidelberg 1996 (English translation to appear)3. W. Kollewe, M. Skorsky, F. Vogt, R. Wille: TOSCANA { ein Werkzeug zur begrif-
ichen Analyse und Erkundung von Daten. In: R. Wille, M. Zickwol� (eds.): Be-gri�iche Wissensverarbeitung { Grundfragen und Aufgaben. B. I.{Wissenschaftsverlag,Mannheim 19944. OLAP Council: OLAP glossary. 1995. www.olapcouncil.org/research/5. Pilot Software: An introduction to OLAP: Multidimensional terminology and technol-ogy. White Paper, Pilot Software, 1997, www.pilotsw.com/olap/olap.htm6. G. Stumme: Local scaling in conceptual data systems. LNAI 1115, Springer, Heidel-berg 1996, 308{3207. J. Tschichold: Erfreuliche Drucksachen durch gute Typographie: eine Fibel f�ur jeder-mann. Maro-Verlag, Augsburg, 2nd edition 19928. N. Vogel: Ein Begri�iches Erkundungssystem f�ur Rohrleitungen. TH Darmstadt 19959. F. Vogt: Datenstrukturen und Algorithmen zur Formalen Begri�sanalyse: Eine C++{Klassenbibliothek. Springer, Heidelberg 199610. F. Vogt, R. Wille: TOSCANA | A graphical tool for analyzing and exploring data.LNCS 894, Springer, Heidelberg 1995, 226{23311. R. Wille: Restructuring lattice theory: an approach based on hierarchies of concepts.In: I. Rival (ed.): Ordered sets. Reidel, Dordrecht{Boston 1982, 445{47012. R. Wille: Line diagrams of hierarchical concept systems. Int. Classif. 11 (1984), 77{8613. R. Wille: Lattices in data analysis: how to draw them with a computer In: I. Rival(ed.): Algorithms and order. Kluwer, Dordrecht{Boston 1989, 33{5814. R. Wille: Conceptual landscapes of knowledge: A pragmatic paradigm of knowledgeprocessing. In: Proc. KRUSE '98, Vancouver, Canada, 11.{13. 8. 1997, 2{13


