
Knowledge Acquisition by Distributive Concept ExplorationGerd StummeTechnische Hochschule Darmstadt, Fachbereich MathematikSchlo�gartenstr. 7, D{64289 Darmstadt, stumme@mathematik.th-darmstadt.de1 IntroductionA variety of quite di�erent approaches to the concept \concept" can be found in philosophy and psychology.Formal Concept Analysis (cf. [12], [3]) is a mathematical approach which reects the philosophical under-standing that a concept can be understood as a unit of thoughts consisting of two parts: the extent containingall objects which belong to the concept and the intent containing the attributes which are shared by all thoseobjects (cf. [11]). In Formal Concept Analysis this is modeled by formal concepts that are derived from aformal context. The subconcept-superconcept-relation is modeled naturally yielding a complete lattice (calledconcept lattice), in which greatest common subconcepts and lowest common superconcepts can be calculated.This approach has become a successful tool in data analysis (cf. [7], [14]).Knowledge acquisition tools of Formal Concept Analysis can be used for exploring type hierarchies forconceptual graphs. They are interactive procedures which acquire knowledge from an expert in an explorationdialogue. These tools determine the concept lattice that is generated by some formal concepts according tothe answers given by the expert.For exploring type hierarchies for conceptual graphs with tools of Formal Concept Analysis we identifytypes with formal concepts, even if there are some di�erences: Formal Concept Analysis starts with the basicnotion of a formal context (sometimes called conceptual universe) which models the underlying domain. Ifthe domain changes, the conceptual universe which models it has to change, too. The restriction to oneuniverse establishes the link between extension and intension; it assures a one-to-one-relation between them.Conceptual graphs on the other side are open for other \possible worlds". This provides more exibility, butit also weakens the link between extension and intension (cf. [9, Theor. 3.2.6]). If one accepts the restrictionto one �xed universe then techniques developed in Formal Concept Analysis provide also useful tools forconceptual graphs.Attribute Exploration (cf. [2]) determines the meet-semilattice which is generated by the starting attributeconcepts. The expert has to answer whether suggested implications between attributes are valid for all objectsor not. When he denies an implication he has to give an object as counterexample. These counterexamplesthen span the resulting lattice. Attribute Exploration corresponds to Aristotelian type hierarchies, wheresubtypes can be derived by a join (followed by a type contraction) (cf. [9, Theor. 3.6.11]). This approachdoes not involve the join-operation, i. e., common supertypes are not considered.Concept Exploration treats joins and meets equally. It determines the lattice that is generated by thestarting concepts (which are also called the basic concepts). The basic idea of Concept Exploration is alreadymentioned in [12]. In [14] and [15] examples are given. U. Klotz and A. Mann worked out the method andimplemented it as an interactive procedure ([6]).Distributive Concept Exploration is a knowledge acquisition tool in Formal Concept Analysis similar tothe more general Concept Exploration. The remaining part of this paper is devoted to the discussion ofthis tool. The main di�erence between Concept Exploration and Distributive Concept Exploration lies inthe treatment of joins. While the meet corresponds in Formal Concept Analysis to the intersection of theconcept extents, the extent of the join may contain additional objects. Depending on \how close one looks",the join may be more or less general. The join of CAT and DOG may for example be CARNIVORE ([9, pg.81]), but it could also be FOUR-LEG-CARNIVORE or something even more speci�c. However the smallestconcept that can be obtained in this way is the one that has as extent exactly the union of the extents. E. g.,the smallest concept that can be understood as CAT _ DOG has exactly all cats and all dogs in its extent.



In Formal Concept Analysis the join in a concept lattice is exactly this \canonical join" if the set ofattributes is closed under disjunction. Concept (resp. type) lattices with this join are distributive. Thishas (beside an easier understanding of the join operation) the advantage of a richer mathematical theory.Distributive lattices are more regularly structured than arbitrary ones. The knowledge of this structurereduces the complexity of the exploration dialogue.Distributive Concept Exploration allows the user to examine interactively a list of concepts (called thebasic concepts) which are only given by their names. The result of the exploration is a concept lattice thatreects the hierarchical subconcept{superconcept{relation between these concepts and a list of objects andattributes which separate the concepts. The algorithm of Distributive Concept Exploration follows the freegenerating process of distributive lattices by using the tensor product of lattices. During the exploration theuser is asked questions in order to determine congruence relations describing the subconcept{superconcept{relation. These questions are of the form \Is s a subconcept of t?", here s and t are lattice terms built withthe basic concepts. If the user replies \No", he must justify his answer by an object and an attribute whichseparate these concepts.In the next section the basic notions of Formal Concept Analysis are introduced. The algorithm ofDistributive Concept Exploration will be presented in Sect. 3 and explained by an example in Sect. 4.2 Formal Concept AnalysisBoth congruence relations on lattices and tensor products of lattices can adequately be described in termsof Formal Concept Analysis. We briey recall the basic de�nitions of Formal Concept Analysis:A (formal) context is a triple K := (G;M; I) where G and M are sets and I is a relation between Gand M . The elements of G and M are called objects and attributes, respectively, and gIm is read \theobject g has the attribute m". For A � G and B � M we de�ne A0 := fm2M j 8g2A : gImg and duallyB0 := fg2G j 8m2B : gImg. Now a (formal) concept is a pair (A;B) with A � G, B � M , A0 = B andB0 = A. The set A is called the extent and the set B the intent of the concept.The hierarchical subconcept{superconcept{relation of concepts is formalized by (A;B) � (C;D) : ()A � C (() B � D). The set of all concepts of the context K together with this order relation is a completelattice that is called the concept lattice of K and is denoted by B(K). In the concept lattice, suprema andin�ma are calculated as follows: t̂2T(At; Bt) = (\t2T At; ([t2T Bt)00)_t2T(At; Bt) = (([t2T At)00;\t2T Bt)Every complete lattice can be viewed as a concept lattice: The Basic Theorem of Formal Concept Analysis(cf. [12]) shows that a complete lattice L is isomorphic to the concept lattice B(L;L;�).Example. In Fig. 1 a formal context of the National State Park Areas in California is given. Its objects arethe National State Park Areas that are situated in California. The attributes are activities, and the relationI indicates if an activity is possible in a park ([1]).The corresponding concept lattice is shown in Fig. 2. In the line diagram we label for every object g 2 Gits object concept g := (fgg00; fgg0) with the name of the object and for every attribute m 2M its attributeconcept �m := (fmg0; fmg00) with the name of the attribute. This labeling allows to determine for everyconcept its extent and its intent: The extent (resp. intent) of a concept contains all objects (resp. attributes)whose object concepts (resp. attribute concepts) are linked to the concept with a descending (resp. ascending)path of straight line segments.If we are e. g. interested in riding bike and swimming then we take the in�mum of �(Bicycle Trail)and �(Swimming); this concept is represented by the circle labeled by \Death Valley". The extent of thisconcept contains Death Valley Natl. Mon., Golden Gate Natl. Recreation Area, Point Reyes Natl. Seashore,and Yosemite Natl. Park | so these are exactly the National Park Areas in California in which Bicycle Trails



NPSGuidedTours Hiking HorsebackRiding Swimming Boating Fishing BicycleTrail CrossCountryTrailCabrillo Natl. Mon. � �Channel Islands Natl. Park � � �Death Valley Natl. Mon. � � � � �Devils Postpile Natl. Mon. � � � � �Fort Point Natl. Historic Site � �Golden Gate Natl. Recreation Area � � � � � �John Muir Natl. Historic Site �Joshua Tree Natl. Mon. � � �Kings Canyon Natl. Park � � � � �Lassen Volcanic Natl. Park � � � � � � �Lava Beds Natl. Mon. � �Muir Woods Natl. Mon. �Pinnacles Natl. Mon. �Point Reyes Natl. Seashore � � � � � �Redwood Natl. Park � � � � �Santa Monica Mts. Natl. Recr. Area � � � � � �Sequoia Natl. Park � � � � �Whiskeytown-Shasta-Trinity Natl. Recr. Area � � � � � �Yosemite Natl. Park � � � � � � � �Fig. 1. A formal context of the National Park Areas in Californiaexist and Swimming is possible. The intent of this concept contains | beside Bicycle Trail and Swimming| the activities Horseback Riding, Hiking and NPS Guided Tours, so these activities are possible as well inthe mentioned parks.A context is called reduced if every object concept is W-irreducible and every attribute concept isV-irreducible. It is called distributive if its concept lattice is distributive. For a W{irreducible (resp. V{irreducible) element x of a �nite lattice we write x� (resp. x�) for its unique lower (resp. upper) cover.The tensor product of two complete lattices L1 and L2 is de�ned to be the concept lattice L1 
 L2 :=B(L1 � L2; L1 � L2;r) with (x1; x2)r(y1; y2) : () x1 � y1 or x2 � y2. R. Wille showed in [13] that thetensor product is the free product in the category of completely distributive complete lattices with completehomomorphisms. There exist natural complete embeddings of L1 and L2 in L1 
 L2:"1:L1 ! L1 
 L2; x1 7! ([0; x1]� L2 [ L1 � f0g; [x1; 1]� L2 [ L1 � f1g)"2:L2 ! L1 
 L2; x2 7! (L1 � [0; x2] [ f0g � L2; L1 � [x2; 1][ f1g � L2)For two contexts (G1;M1; I1) and (G2;M2; I2) and objects g2G1 and h2G2 the equality "1(1g) ^"2(2h) = 
(g; h) holds in B(G1;M1; I1)
B(G2;M2; I2). Dually, we have "1(�1m) _ "2(�2n) = �
(m;n)for m2M1 and n2M2.We de�ne the direct product of two contexts K1 := (G1;M1; I1) and K2 := (G2;M2; I2) to be the contextK1 � K2 := (G1 �G2;M1 �M2;r) with the incidence (g1; g2)r(m1;m2) :() (g1;m1)2I1 or (g2;m2)2I2.The tensor product of two concept lattices is (up to isomorphism) just the concept lattice of the direct
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B(K2 ) �=B(K1 �K2). If K1 and K2 are reduced, then K1 �K2is also reduced (cf. [13]).Congruence relations of complete lattices appear in a quite natural way in Formal Concept Analysis. For�nite concept lattices they can always be described by compatible subcontexts: A context (H;N; J) is calleda subcontext of a context (G;M; I) if H � G, N � M and J = I \ (H � N ). It is called compatible if forevery concept (A;B) of (G;M; I) the pair (A \H;B \N ) is also a concept of the subcontext.The subcontext (H;N; J) of (G;M; I) is compatible if and only if the mapping �H;N : (A;B) 7! (A \H;B \ N ) is a surjective complete homomorphism from B(G;M; I) to B(H;N; J). If G and M are �nite,then for every complete congruence relation on B(G;M; I) exists a compatible subcontext, such that thecongruence relation is just the kernel of this homomorphism. If (G;M; I) is reduced, this subcontext isunique. Every subcontext of a reduced context is also reduced (cf. [3]).So factorizing a concept lattice is equivalent to deleting suitable rows and columns in the context. Therows and columns that have to be deleted can be described by using the two relations . and %: For g 2 Gand m 2M we de�ne g . m if g 6Im and if g0 � h0 implies hIm for all h 2 G. We de�ne g % m if g 6Im andif m0 � n0 implies gIn for all n 2M . We write g %. m if g . m and g % m.In a distributive reduced �nite context1 the %.-relation is a bijection between the set of objects and theset of attributes, because the following implications are valid:g % m) g %. m; g %. m; g %. n) m = n;g. m) g%. m; g %. m; h%. m) g = h :In [3] is shown, that a subcontext (H;N; J) of a context (G;M; I) is compatible if and only if h%m; h 2 Himpliesm 2 N and g.n; n 2 N implies g 2 H. Hence, in a distributive reduced �nite context the compatiblesubcontexts are exactly those of the form (H;N; I\(H�N )) with N = fm2M j 9g2H: g%.mg. The followingtheorem describes the correspondence between compatible subcontexts and congruence relations.1 All the contexts needed for Distributive Concept Exploration are of this type



Theorem1. Let (G;M; I) be a distributive reduced �nite context, g 2 G and m 2 M with g %. m. Thenker�Gnfgg;Mnfmg is the congruence relation on B(G;M; I) that is generated by forcing g � �m.Proof. The subcontext (Gnfgg;M nfmg; I\(Gnfgg�M nfmg)) is compatible. The compatible subcontexts(H;N; I \ (H � N )) with g 62 H and m 62 N are exactly those with (g; g ^ �m) 2 ker�H;N , because theequation �H;N (g ^ �m) = �H;N ((g)�) = (g00 \ H; (g00 \ H)0) = �H;N (g) holds if and only if g 62 H.Among these subcontexts, (G n fgg;M n fmg; I \ (G n fgg �M n fmg)) is the largest and induces thereforethe smallest congruence relation containing (g; g ^ �m). ut3 Distributive Concept ExplorationIn this section the algorithm of Distributive Concept Exploration is introduced; in the next it is explainedby an example. For an easier understanding we suggest to switch between the two sections as appropriate.Let b1; b2; : : : ; bn be the list of concepts the user wants to explore. All we assume is that the explorationtakes place in a (somehow �xed) conceptual universe where the set of attributes is closed under disjunction.This yields the \canonical join" as described in Section 1. Distributive Concept Exploration determines aconcept lattice reecting the hierarchical relationship between the basic concepts together with a list ofobjects and attributes which are separating di�erent concepts:De�nition. For two concepts a and b with a not being a subconcept of b, a pair (g;m) is called a separatingpair if g is an object of the concept a and m is an attribute of the concept b such that g does not havethe attribute m. (The existence of such an object and such an attribute is a counterexample against thehypothesis that a is a subconcept of b.)The lattice that we want to determine can be seen as a quotient lattice FBD(b1; : : : ; bn)=� of the freebounded distributive lattice generated by the basic concepts, where � is the congruence relation that reectsthe answers given by the user. We use the fact that FBD(b1; : : : ; bn) �= FBD(b1) 
 : : : 
 FBD(bn) forsplitting the determination of � into smaller parts: For i = 0; : : : ; n, the exploration algorithm subsequentlydetermines the lattice Li that is completely generated by the basic concepts b1; : : : ; bi with respect to theirhierarchical relationships. The lattice Li is obtained from Li�1 by Li �= (Li�1 
 FBD(bi))=�i, where �ireects the hierarchical relationship between bi and the elements of Li�1. The result of the exploration isthen given by the lattice Ln.For every i 2 f0; : : : ; ng, the lattice Li will be determined in two steps: First the tensor product eLi ofLi�1 with FBD(bi) (which is the three element chain ? < bi < >) is calculated. Then the user is askedquestions of the kind \Is s a subconcept of t?" with s and t being lattice terms built with b1; : : : ; bi. Acongruence relation on eLi is deduced from the answers given by the user. The factorization of eLi by thededuced congruence relation yields the lattice Li. The lattice eLi is only used as intermediate step, it is notneeded any longer.The algorithm starts with the determination of L0 out of eL0, which is the complete lattice freely generatedby the empty set. eL0 is the two element chain ? < >, and we understand its elements as representations ofthe concepts nothing and everything (in our �eld of interest), respectively. Any serious user will agree thatthese concepts are distinct in a non-trivial �eld of interest. However (as we will see below) he has to be askedthe question \Is everything a subconcept of nothing?" in order to get the �rst separating pair.In the algorithm the lattice Li will be represented2 by a reduced context Ki := (Gi;Mi; Ii). As thiscontext is the result of a repeated use of the tensor product, its objects and attributes are tuples. They areof the form x := (x0; : : : ; xi) 2 Gi with x0 = > and xk 2 f>; bkg for k = 1; : : : ; n and y := (y0; : : : ; yi) 2Miwith y0 = ? and yk 2 f?; bkg for k = 1; : : : ; n. According to the remarks about the tensor product in Sect.2, the incidence xIiy represents the inequality Vx � Wy with Vx := Vik=0 xi and Wy := Wik=0 yi.2 We say that a complete lattice L is represented by a context K if L is isomorphic to B(K).



As mentioned above, the lattice eLi has to be calculated as intermediate step in the determination ofthe lattice Li. This tensor product of Li�1 with the chain ? < bi < > will be represented by the contexteKi := ( eGi;fMi; eIi) being the direct product of Ki�1 with the context (fbi;>g; f?; big; f(bi; bi)g). The contextKi will then be derived from eKi by deleting suitable rows and columns. This corresponds to �nding a suitablecongruence relation on the tensor product. Theorem 1 indicates the questions needed for determining theserows and columns: For all x 2 eGi and y 2 fMi with x%. y the user is asked: \Is the in�mumof x a subconceptof the supremum of y ?" As we have up to now no (concept) lattice in which supremum and in�mum can becalculated, we have to explain how the in�mum of x resp. the supremum of y shall be understood: Accordingto the Basic Theorem of Formal Concept Analysis, an object belongs to the in�mum of a set of concepts ifand only if it belongs to each of them. As the set of attributes of the conceptual universe is assumed to beclosed under disjunctions, an object belongs to the supremum of a set of concepts if and only if it belongs toat least one of them. This de�nition makes all lattices appearing in the exploration distributive. If the useragrees to the question, the object x and the attribute y will be deleted, otherwise they will be kept in Giand in Mi, respectively.Observe that the %.{relation is inherited and can thus easily be calculated: For x %. y in Ki�1 we have(x;>)%. (y; bi) and (x; bi)%. (y;?) in eKi . Deleting corresponding rows and columns does not change the%.-relation.The algorithm starts with the determination of the context K0 out of the context eK0 := (f>g; f?g; ;).As we have >%.? in eK0 , the �rst question in every exploration is \Is > (everything) a subconcept of ?(nothing)?" Usually, this will be denied (and a separating pair will be given). If however the user agrees,the exploration is terminated because he obtains K0 = (;; ;; ;) which is the absorbing element for the directproduct of contexts.3Separating pairs are used for separating di�erent concepts. This algorithm computes for every Li withi = 0; : : : ; n a minimal list of pairs of objects and attributes, such that for two concepts a and b of Li witha 6� b there is at least one pair in this list which is a separating pair for a and b.De�nition. For two elements u and v of a lattice L, we write u %. v, if u is maximal in L n [v) and v isminimal in L n (u].In a �nite lattice this implies that u is W{irreducible and v is V{irreducible and that u6�v, u��v, and u�v�hold. It should not be confusing that we use %. at the same time as a relation between elements of a latticeand between objects and attributes of a context because g%. m in K is equivalent to g %. �m in B(K).It is su�cient to have a list of separating pairs for elements c and d of Li with c%. d, as for two elementsa and b of Li with a 6� b there always exist such c and d with a � c and d � b, because Li is �nite anddistributive. The separating pair for c and d is also a separating pair for a and b. On the other hand theremust be di�erent separating pairs for di�erent c%. d, so that in fact this list is minimal.During the exploration, the user is asked for separating pairs: Whenever he denies the question \Is thein�mum of x a subconcept of the supremum of y ?", he is prompted for a separating pair for Vx and Wy.The pair will be denoted by (gi(x);mi(y)). Thus we obtain two mappings: gi maps from Gi to the set ofobjects of the conceptual universe, and mi maps from Mi to its set of attributes. These mappings indicatethat the object gi(x) belongs to the concept Vx, and that the attribute mi(y) belongs to the concept Wy.Because of Vx%. Wy we know that gi(x) and mi(y) form a separating pair. The mappings gi and mi donot indicate, if an object or attribute does not belong to a concept. This information cannot be deducedfrom the answers given by the expert during the exploration dialogue. That is, because the expert is notasked how di�erent separating pairs are related. Of course, this could be done, too, but it would lengthenthe dialogue. At the end of the example in the next section is given an object which has an attribute, eventhough, in the line diagram, the object does not lay below the attribute.3 B(;; ;; ;) is the one element lattice which is the absorbing element for the tensor product of lattices.



Unfortunately, Vx%. Wy in Li does not implyVx%. Wy in Li+1. This means that the separating pair(gi(x);mi(y)) will in general not remain in the minimal list for Li+1: If neither gi(x) nor mi(y) belong tobi+1, then there is no c %. d in Li+1 separated by this pair. However it can be used to �nd new separatingpairs for the minimal list: gi(x) might appear in a separating pair for V(x;>) and W(y; bi+1) and mi(y)might appear in a separating pair forV(x; bi+1) andW(y;?). It is a separating pair forV(x; bi+1)%. W(y;?)in Li+1 and remains therefore in the minimal list if the object gi(x) belongs to the concept bi+1 and theattribute mi(y) does not. It is a separating pair for V(x;>)%. W(y; bi+1) in Li+1 and remains in the list ifthe object gi(x) does not belong to the concept bi+1 and the attribute mi(y) does. Because the object gi(x)does not have the attribute mi(y), it is not possible that both belong to the concept bi+1. This justi�es thefollowing de�nition: egi+1(x; bi+1) := ngi(x) if gi(x) belongs to bi+1unde�ned elseegi+1(x;>) := ngi(x) if gi(x) does not belong to bi+1unde�ned elseemi+1(y; bi+1) := nmi(y) if mi(y) belongs to bi+1unde�ned elseemi+1(y;?) := nmi(y) if mi(y) does not belong to bi+1unde�ned elseThus, for every separating pair (gi(x);mi(y)) in Li, the user has to answer the two following questions:\Does the object gi(x) belong to the concept bi+1?" and \Does the attribute mi(y) belong the conceptbi+1?". The algorithm uses the fact that the answer \Yes" to one of the questions implies the answer \No"to the other one.The problem of �nding the rows and columns in eKi that have to be deleted, now turns out to be equivalentto completing the partial mappings egi and emi: If, for x 2 eGi and y 2 fMi with x%. y, at least one of egi(x)and emi(y) is unde�ned and the user is not able to �nd an object or attribute for completing the separatingpair, then the row x and the column y have to be deleted. In two cases we can bene�t from the alreadygiven knowledge:1. If egi(x) is unde�ned, emi(y) is de�ned and x = (>; : : : ;>; bi), then we already know that there mustexist an object that belongs to bi and that does not have the attribute emi(y). The user is then askedfor such an object.2. If egi(x) is de�ned and emi(y) is unde�ned then there must exist an attribute of Wy that egi(x) does nothave. The user is then asked for such an attribute.We are now ready to list the algorithm of Distributive Concept Exploration:Algorithm: Given is the list b1; b2; : : : ; bn of basic concepts.1. i := 0, eK0 := (f>g; f?g; ;), eg0(>) := unde�ned, em0(?) := unde�ned.2. For every (x;y) 2 eGi � fMi with x%. y,where egi(x) or emi(y) are unde�ned, do:� If egi(x) is unde�ned:� If emi(y) is de�ned and x = (>; : : : ;>; bi):Prompt: \Name an object belonging to bi and not havingthe attribute emi(y)!" Set egi(x) according to the answer.� Else do:Ask the user: \Is the in�mum of x a subconceptof the supremum of y ?"\Yes": Delete x in eGi, y in fMi,and the corresponding row and column in eIi.\No": Prompt: \Give a separating pair for Vx and Wy !"



If emi(y) is de�ned, add:\Eventually you can use emi(y) as attribute."Set egi(x) and emi(y) according to the answer.� Else (i. e. egi(x) is de�ned and emi(y) is unde�ned) do:Prompt: \Name an attribute of Wy that egi(x) does not have!"Set emi(y) according to the answer.3. Set Ki := eKi , gi := egi jGi , mi := emi jMi .4. If i=n, then STOP.5. Set eKi+1 := Ki � (fbi+1;>g; f?;bi+1g; f(bi+1; bi+1)g).6. For every (x;y) 2 Gi �Mi with x%. y:{ Ask the user: \Does the object gi(x) belong to the concept bi+1?"{ If \No", ask \Does the attribute mi(y) belong to the concept bi+1?"{ Set egi+1(x; bi+1) and egi+1(x;>) as de�ned above.{ Set emi+1(y; bi+1) and emi+1(y;?) as de�ned above.7. Set i := i + 1.8. Goto step 2.The result of the algorithm can be shown by a line diagram ofB(Kn ). It is not necessary to label all the objectand attribute concepts in the diagram. Only the concepts Wfx jx2Gn; xi=big (= Vf�y jy2Mn; yi=big)of B(Kn ) have to be labeled by bi, as they correspond to the basic concepts which completely generate thewhole lattice. The resulting list of separating pairs can be displayed in the same diagram: For every pairx %. y in Kn , there is exactly one separating pair (gn(x);mn(y)). We label the concept x by gn(x) andthe concept �y by mn(y) and mark x and �y with the same symbol. An example can be seen in the nextsection.Here are some remarks about the complexity of the algorithm. If the user denies all dependencies betweenthe basic concepts, then the resulting lattice is isomorphic to the bounded distributive lattice FBD(b1; : : : ; bn)which is freely generated by the basic concepts. Its cardinality is exactly known only for n � 8, but the factthat 2n � jFBD(b1; : : : ; bn)j � 22n shows that it grows very fast. So \in the worst case" there is no chanceto do the exploration in a reasonable time. If however the basic concepts are su�ciently related, then thepresented algorithm is e�ective, because it works only on the \logarithmic" level of the formal contexts. Forbasic concepts that are only weakly related, the whole lattice generated by them is usually not requested.We suggest to divide them in stronger related classes and to explore these classes separately.Up to now, the user is assumed to reply to every question during the exploration either with \Yes" or\No". The algorithm as described above is not able to treat incomplete knowledge. With a little change wecan allow the answer \I don't know" to the question \Is the in�mum of x a subconcept of the supremum ofy ?": In this case the row x and the column y will not be deleted in eKi and egi(x) and emi(y) will be set tothe default value ?. In step 6 of the algorithm all egi+1(x; bi+1), egi+1(x;>), emi+1(y; bi+1) and emi+1(y;?)will then automatically be set to ?. These ? play the role of \possible separating pairs". During and afterthe exploration procedure the user can either replace them by a real separating pair or he can delete thecorresponding row and column (if he is then sure that the inequality Vx � Wy holds). The result of theexploration can be shown by a list of line diagrams | one for every possibility of deleting correspondingrows and columns that are not con�rmed by a real separating pair.4 An Exploration of ZinksAs an example, we want to explore a family of musical instruments: Zinks are wind instruments with a conicalwide{bored tube, a shortening hole{system and a mouth piece played like a trumpet. The exploration startswith the following basic concepts:



b1 = straight zink [gerader Zink ]b2 = silent zink [stiller Zink ]b3 = curved zink [krummer Zink ] b4 = cornettinob5 = cornettoThe result is a concept lattice that can be used as a type lattice for conceptual graphs about musicalinstruments. The knowledge about the objects and attributes serving as separating pairs is an additionalinformation that can be used if speci�c instances of the types are needed for some conceptual graph.The exploration is based on information given by the catalogue of the museum of musical instrumentsof the University of Leipzig ([5], cf. also [15]). Speci�cally the zinks used for separating pairs will be takenout of this catalogue. They are named by their catalogue number. Of course, we could also use any otherexisting zink for a separating pair. The contexts eKi and Ki are displayed below the dialogue in which theyare determined. Usually they are not shown to the user. The lattices eLi and Li are shown at the left ofthe contexts eKi and Ki , respectively. For c%. d the concepts are marked with the same symbol (e. g. c withand d with ). The dialogue is abbreviated in the way that a \No" to the question \Is s a subconceptof t?" is justi�ed by the user with a separating pair without waiting to be prompted to do so.We start the algorithm with the context eK0 : em 0:eg0 : eK0 ?> %.\Is everything a subconcept of nothing?"\No! A dividing pair is Zink 1574 and ground tone C."This answer yields the context K0 which describes the lattice that is generated by no basic concepts:
1574

ground tone C

m 0: groundtoneCg0 :1574 K0 ?> %.\Is Zink 1574 a straight zink?"\No!"\Has every straight zink the attribute ground tone C?"\No!"Here is the �rst example of a separating pair that is split. The object Zink 1574 and the attribute groundtone C however will be used for (two di�erent) separating pairs in the next step again. The last two answersdetermine the mappings eg1 and em1:



straight zink

1574

ground tone C

em 1: groundtoneCeg1 :1574 eK1 ? b 1b1 %. �> %.\Name a straight zink not having ground tone C !"\Zink 1559."\Name an attribute of straight zinks that Zink 1574 does not have!"\Straight form."This yields the context K1 which describes the lattice that is generated by the �rst basic concept straightzink :
ground tone C

straight zink
1559

straight form

1574 m 1: groundtoneC straightformg1 :15591574 K1 ? b 1b1 %. �> %.\Is Zink 1559 a silent zink?"\Yes!"This implies that \Has every silent zink the attribute ground tone C?" has to be answered by \No!", becauseZink 1559 and ground tone C were a dividing pair.\Is Zink 1574 a silent zink?"\No!"\Has every silent zink the attribute straight form?"\Yes!"Now eg2 and em2 are determined. The context eK2 represents the tensor product of two three element chains:



silent zink

1559

ground tone C

straight form

1574

straight zink

em 2: groundtoneC straightformeg2 :15591574 eK2 ? b 1 b 2 b 1_b 2b1 ^ b2 %. � � �b2 %. � �b1 �%. �> %.\Is silent zink a subconcept of straight zink?"\Yes!"\Is straight zink a subconcept of silent zink?"\No! A dividing pair is Zink 1558 and recessed mouthpiece."The context K2 is now determined which is generated by the two �rst basic concepts straight zink and silentzink . In particular, one can see in the diagram that silent zink is a subconcept of straight zink :
ground tone C

1574

straight zink
straight form

1558

1559

silent zink
recessed mouthpiece

m 2: groundtoneC recessedmouthpiece straightformg2 :155915581574 K2 ? b 2 b 1_b 2b1 ^ b2 %. � �b1 %. �> %.\Is Zink 1559 a curved zink?"\No!"\Has every curved zink the attribute ground tone C?"\No!"\Is Zink 1558 a curved zink?"\No!"\Has every curved zink the attribute recessed mouthpiece?"\No!"\Is Zink 1574 a curved zink?"\No!"\Has every curved zink the attribute straight form?"\No!"



The following �gure shows the context eK3 and the mappings eg3 and em3:
curved zink

silent zink

straight zink

1559

recessed mouthpiece

1558

straight form

1574

ground tone C

em 3: groundtoneC recessedmouthpiece straightformeg3 :155915581574 eK3 ? b 2 b 1_b 2 b 3 b 2_b 3 b 1_b 2_b 3b1 ^ b2 ^ b3 %. � � � � �b1 ^ b3 %. � � � �b3 %. � � �b1 ^ b2 � �%. � �b1 � %. �> %.\Is the in�mum of straight zink , silent zink and curved zink a subconcept of nothing?"\Yes!"\Is the in�mum of straight zink and curved zink a subconcept of silent zink?"\Yes!"\Name a curved zink not having straight form!"\Zink 1563."\Name an attribute of curved zinks that Zink 1559 does not have!"\Attached mouthpiece."\Name an attribute of the supremum of silent zink and curved zink that Zink 1558 does not have!"\Recessed mouthpiece or curved form."\Name an attribute of the supremum of straight zink , silent zink and curved zink that Zink 1574does not have!"\More than 6 �nger holes."Up to now we have determined the complete lattice generated by the �rst three basic concepts straight zink ,silent zink , and curved zink . It is shown in Fig. 3.We continue the exploration in the same way with the remaining two basic concepts cornetto and cor-nettino. Finally, we get the context K5 as shown in Fig. 4. Its line diagram shows all information about thehierarchical relationship between the �ve basic concepts. For example, we can deduce from it that there areno silent zinks that are also cornettos, because the in�mum of silent zink and cornetto is nothing . We canfurther deduce that there are other zinks than those we chose for the exploration, because the supremum ofall basic concepts is di�erent from everything . The observation that the supremum of cornetto and cornettinois curved zink and their in�mum is nothing reects the fact that the curved zinks can be divided in twodisjunct classes: cornettos and cornettinos.Remark that in the diagram Zink 1558 is not laying below attached mouthpiece, even though Zink 1558has an attached mouthpiece! Zink 1558 and attached mouthpiece belong to di�erent separating pairs, and sotheir relationship has not been asked from the expert.



curved zink

1574

more than 6 finger holes

straight zink
1558

silent zink
15591563

mounted mouthpiece

recessed mouthpiece
or curved form

m 3: straightform attachedmouthpiece recessedmouthpieceorcurved
form

morethan6�ngerholesg3 :1563155915581574 K3 b 1_b 2 b 3 b 2_b 3 b 1_b 2_b 3b3 %. � � �b1 ^ b2 �%. � �b1 � %. �> %.Fig. 3. Result of the exploration of the �rst three basic conceptsIf there are other subconcepts of zink we are interested in (for example tenor zink , serpent or violoncelserpent) we can continue the exploration by starting with the context K5 and adding the new basic concepts.This serial approach allows also to extend already given knowledge at a later time.References1. California Road Map, 1:1 200 000, Hallwag 19942. B. Ganter: Algorithmen zur Begri�sanalyse. In: B. Ganter,R. Wille, K. E. Wol� (eds.): Beitr�age zur Begri�sana-lyse. B. I.-Wissenschaftsverlag, Mannheim, Wien, Z�urich 1987. 241{2543. B. Ganter, R. Wille: Formale Begri�sanalyse: Mathematische Grundlagen. Springer, Berlin, Heidelberg (to ap-pear)4. A. W. Hales: On the non-existence of free complete Boolean algebras. Fund. Math. 54, 1964, 45{665. H. Heyde: H�orner und Zinken. Musikinstrumenten{Museum der Universit�at Leipzig. Katalog Bd. 5. VEBDeutscher Verlag f�ur Musik, Leipzig 19826. U. Klotz, A. Mann: Begri�exploration. Diplomarbeit, TH Darmstadt 19887. W. Kollewe, M. Skorsky, F. Vogt, R. Wille: TOSCANA| ein Werkzeug zur begri�lichen Analyse und Erkundungvon Daten. In: R. Wille, M. Zickwol� (eds.): Begri� liche Wissensverarbeitung | Grundfragen und Aufgaben.B. I.{Wissenschaftsverlag, Mannheim 19948. P. Luksch, R. Wille: A mathematical model for conceptual knowledge systems. In: H.{H. Bock, P. Ihm (eds.):Classi�cation, data analysis and knowledge organization. Springer, Berlin 1991, 156{1629. J. F. Sowa: Conceptual Structures. Addison-Wesley, Reading 198310. G. Stumme: Attribute exploration with background implications and exceptions. (in preparation)11. H. Wagner: Begri�. In: H. M. Baumgartner, C. Wild (eds.): Handbuch philosophischer Grundbegri�e. K�oselVerlag, M�unchen 1973, 191{20912. R. Wille: Restructuring lattice theory: an approach based on hierarchies of concepts. In: I. Rival (ed.): Orderedsets. Reidel, Dordrecht{Boston 1982, 445{47013. R. Wille: Tensorial decomposition of concept lattices. In: Order 2, 1985, 81{95



attached mouthpiece

more than 6 finger holes
1574

straight form or ground

1558

straight zink

1559

silent zink
1566

netto
cor-

cornettino
1563

or curved form
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tone neither es’ nor d’

curved zink

m 5: straightformorgroundtonee
'ord'

straightformorgroundtonen
eithere'nord'

attachedmouthpiece recessedmouthpieceorcurved
form

morethan6�ngerholesg5 :15661563155915581574 K5 b 1_b 2_b 4 b 1_b 2_b 5 b 3_b 4_b 5 b 2_b 3_b 4_b 5 b 1_b 2_b 3_b 4_b 5b3 ^ b5 %. � � � �b3 ^ b4 �%. � � �b1 ^ b2 � �%. � �b1 � � %. �> %.Fig. 4. Result of the Distributive Concept Exploration of zinks14. R. Wille: Bedeutungen von Begri�sverb�anden. In: B. Ganter, R. Wille, K. E. Wol� (eds.): Beitr�age zur Begri�s-analyse. B. I.{Wissenschaftsverlag, Mannheim 1987, 161{21115. R. Wille: Knowledge acquisition by methods of formal concept analysis. In: E. Diday (ed.): Data analysis, learningsymbolic and numeric knowledge. Nova Science Publisher, New York, Budapest 1989, 365{380
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