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1 Introduction

A variety of quite different approaches to the concept “concept” can be found in philosophy and psychology.
Formal Concept Analysis (cf. [12], [3]) is a mathematical approach which reflects the philosophical under-
standing that a concept can be understood as a unit of thoughts consisting of two parts: the extent containing
all objects which belong to the concept and the intent containing the attributes which are shared by all those
objects (cf. [11]). Tn Formal Concept Analysis this is modeled by formal concepts that are derived from a
formal context. The subconcept-superconcept-relation is modeled naturally yielding a complete lattice (called
concept lattice), in which greatest common subconcepts and lowest, common superconcepts can be calculated.
This approach has become a successful tool in data analysis (cf. [7], [14]).

Knowledge acquisition tools of Formal Concept Analysis can be used for exploring type hierarchies for
conceptual graphs. They are interactive procedures which acquire knowledge from an expert in an exploration
dialogue. These tools determine the concept lattice that is generated by some formal concepts according to
the answers given by the expert.

For exploring type hierarchies for conceptual graphs with tools of Formal Concept Analysis we identify
types with formal concepts, even if there are some differences: Formal Concept Analysis starts with the basic
notion of a formal context (sometimes called conceptual universe) which models the underlying domain. Tf
the domain changes, the conceptual universe which models it has to change, too. The restriction to one
universe establishes the link between extension and intension; it assures a one-to-one-relation between them.
Conceptual graphs on the other side are open for other “possible worlds”. This provides more flexibility, but
it also weakens the link between extension and intension (cf. [9, Theor. 3.2.6]). Tf one accepts the restriction
to one fixed universe then techniques developed in Formal Concept Analysis provide also useful tools for
conceptual graphs.

Attribute Exploration (cf. [2]) determines the meet-semilattice which is generated by the starting attribute
concepts. The expert has to answer whether suggested implications between attributes are valid for all objects
or not. When he denies an implication he has to give an object as counterexample. These counterexamples
then span the resulting lattice. Attribute Exploration corresponds to Aristotelian type hierarchies, where
subtypes can be derived by a join (followed by a type contraction) (ef. [9, Theor. 3.6.11]). This approach
does not involve the join-operation, 1. e., common supertypes are not considered.

Concept Frploration treats joins and meets equally. Tt determines the lattice that is generated by the
starting concepts (which are also called the basic concepts). The basic idea of Concept Exploration is already
mentioned in [12]. Tn [14] and [15] examples are given. U. Klotz and A. Mann worked out. the method and
implemented it as an interactive procedure ([6]).

Distributive Concept Frploration is a knowledge acquisition tool in Formal Concept Analysis similar to
the more general Concept FExploration. The remaining part of this paper 13 devoted to the discussion of
this tool. The main difference between Concept Exploration and Distributive Concept Exploration lies in
the treatment of joins. While the meet corresponds in Formal Concept Analysis to the intersection of the
concept extents, the extent of the join may contain additional objects. Depending on “how close one looks”,
the join may be more or less general. The join of CAT and DOG may for example be CARNTVORE ([9, pg.
81]), but it could also he FOUR-LEG-CARNIVORE or something even more specific. However the smallest
concept that can be obtained in this way is the one that has as extent exactly the union of the extents. E. g.,
the smallest concept that can be understood as CAT V DOG has exactly all cats and all dogs in 1ts extent.



In Formal Concept Analysis the join in a concept lattice is exactly this “canonical join” if the set of
attributes is closed under disjunction. Concept. (resp. type) lattices with this join are distributive. This
has (beside an easier understanding of the join operation) the advantage of a richer mathematical theory.
Distributive lattices are more regularly structured than arbitrary ones. The knowledge of this structure
reduces the complexity of the exploration dialogue.

Distributive Concept Exploration allows the user to examine interactively a list of concepts (called the
basic concepts) which are only given by their names. The result of the exploration is a concept lattice that
reflects the hierarchical subconcept superconcept relation between these concepts and a list of objects and
attributes which separate the concepts. The algorithm of Distributive Concept Exploration follows the free
generating process of distributive lattices by using the tensor product of lattices. During the exploration the
user 18 asked questions in order to determine congruence relations describing the subconcept superconcept
relation. These questions are of the form “Is s a subconcept of 17”7, here s and ¢ are lattice terms built with
the basic concepts. If the user replies “No”, he must justify his answer by an object and an attribute which
separate these concepts.

In the next section the basic notions of Formal Concept Analysis are introduced. The algorithm of
Distributive Concept Exploration will be presented in Sect. 3 and explained by an example in Sect. 4.

2 Formal Concept Analysis

Both congruence relations on lattices and tensor products of lattices can adequately be described in terms
of Formal Concept Analysis. We briefly recall the basic definitions of Formal Concept Analysis:

A (formal) context is a triple K := (G, M, T) where ( and M are sets and T is a relation between G
and M. The elements of (G and M are called objects and attributes, respectively, and g/m is read “the
object g has the attribute m”. For A C G and B C M we define A’ .= {meM |VgeA : gIm} and dually
B' := {geG|YmeB : gIim}. Now a (formal) concepl is a pair (A, B) with A C G, BC M, A’ = B and
B’ = A. The set A is called the extent and the set. B the intent of the concept.

The hierarchical subconcept superconcept. relation of concepts is formalized by (A, B) < (C, D) : <—
A CC (<= B D D). The set of all concepts of the context K together with this order relation is a complete
lattice that is called the concept lattice of K and is denoted by B(K). Tn the concept lattice, suprema and
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imfima are calculated as follows:
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Fvery complete lattice can be viewed as a concept lattice: The Basic Theorem of Formal Concept Analysis
(cf.[12]) shows that a complete lattice I is isomorphic to the concept lattice B(L, I, <).

Frample. Tn Fig. 1 a formal context of the National State Park Areas in Californiais given. Tts objects are
the National State Park Areas that are situated in California. The attributes are activities, and the relation
I indicates if an activity is possible in a park ([1]).

The corresponding concept lattice is shown in Fig. 2. Tn the line diagram we label for every object g € (¢
its object concept vg := ({g}", {g}’) with the name of the object and for every attribute m € M its attribute
concept um := ({m}' {m}"”) with the name of the attribute. This labeling allows to determine for every
concept its extent and its intent: The extent (resp. intent) of a concept, contains all objects (resp. attributes)
whose object concepts (resp. attribute concepts) are linked to the concept with a descending (resp. ascending)
path of straight line segments.

Tf we are e.g. interested in riding bike and swimming then we take the infimum of p(Bicycle Trail)
and p(Swimming); this concept is represented by the circle labeled by “Death Valley”. The extent of this
concept contains Death Valley Natl. Mon., Golden (Gate Natl. Recreation Area, Point Reyes Natl. Seashore,
and Yosemite Natl. Park  so these are exactly the National Park Areas in Californiain which Bicycle Trails
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Cabrillo Natl. Mon. X
Channel TIslands Natl. Park X X
Death Valley Natl. Mon. x| x| x|x X
Devils Postpile Natl. Mon. x| x| x|x X
Fort. Point. Natl. Historic Site X X
Golden Gate Natl. Recreation Area X[ x| x|x X | X
John Muir Natl. Historic Site X
Joshua Tree Natl. Mon. X[ x| x
Kings Canyon Natl. Park x| x| x X X
T.assen Volcanic Natl. Park X[ x| x| x|x|x X
T.ava Beds Natl. Mon. X | %
Muir Woods Natl. Mon. X
Pinnacles Natl. Mon. X
Point. Reyes Natl. Seashore x| x| x|x x| %
Redwood Natl. Park X[ x| x|x X
Santa Monica Mts. Natl. Recr. Area X[ x| x| x|x|x
Sequoia Natl. Park x| x| x X X
Whiskeytown-Shasta-Trinity Natl. Recr. Area || x|x|x|x|x]|x
Yosemite Natl. Park X[ x| x| x|[x|[x]|x]|x

Fig. 1. A formal context of the National Park Areas in California

exist and Swimming 1s possible. The intent of this concept contains beside Bicycle Trail and Swimming
the activities Horseback Riding, Hiking and NPS Guided Tours, so these activities are possible as well in
the mentioned parks.

A context is called reduced if every object concept is \/-irreducible and every attribute concept is
A-irreducible. Tt is called distributive if its concept lattice is distributive. For a \/ irreducible (resp. A
irreducible) element x of a finite lattice we write 2, (resp. 2*) for its unique lower (resp. upper) cover.

The tensor product of two complete lattices 1.4 and L is defined to be the concept lattice Ty ® Ly :=
B(Ly x Lo, L1 x Lo, V) with (z1,29)V(y1,y2) : <= 21 < yp or 23 < yo. R. Wille showed in [13] that the
tensor product is the free product in the category of completely distributive complete lattices with complete
homomorphisms. There exist natural complete embeddings of Iy and 1o in L1 ® Lo:

Eq: f/] — f/] ® f/27 xrq —r ([077‘]] X LQ U f/] X {0}7[7‘171] X LQ U f/] X {1})
Eq: LQ — f/] ® f/27 xro —r (f/] X [07.772] U {0} X f/27 f/] X [.7727 1] U {1} X [12)

For two contexts (G4, My, I1) and (Gs, Ms, I5) and objects g€Gy and heGs the equality e1(y1g9) A
ga2(v2h) = 75 (g, h) holds in B(Gy, My, 1) @ B(Ga, M, I5). Dually, we have g1 (u1m) V ea(pan) = pg(m,n)
for meMy and neEMs.

We define the direct product of two contexts Ky := (Gq, My, I1) and Ky := (Ga, My, I) to be the context
Ki x Ko := (Gy x Go, My x M5, V) with the incidence (g1, ¢2)V(mi,ms) : <= (g1, m1)ET or (g2, m2)€E .
The tensor product of two concept lattices is (up to isomorphism) just the concept lattice of the direct
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Fig. 2. Concept lattice of the formal context in Fig. 1

product of their contexts: We have B(K;) @ B(Ks) = B(K; x Ky). WKy and Ky are reduced, then K; x Ky
is also reduced (cf.[13]).

Congruence relations of complete lattices appear in a quite natural way in Formal Concept. Analysis. For
finite concept lattices they can always be described by compatible subcontexrts: A context (H, N, .J) is called
a subcontexrt of a context (G, M, T)if HC G, N C M and J =Tn(H x N). Tt is called compatible if for
every concept (A, B) of (G, M, T) the pair (AN H, BN N) is also a concept of the subcontext.

The subcontext (H, N,J) of (G, M,T) is compatible if and only if the mapping Ty n: (A, B) — (AN
H, BN N) is a surjective complete homomorphism from B(G, M, T) to B(H, N, .J). If G and M are finite,
then for every complete congruence relation on B(G, M, T) exists a compatible subcontext, such that the
congruence relation is just the kernel of this homomorphism. Tf (G, M, T) is reduced, this subcontext is
unique. Every subcontext of a reduced context is also reduced (cf. [3]).

So factorizing a concept lattice is equivalent to deleting suitable rows and columns in the context. The
rows and columns that have to be deleted can be described by using the two relations ,/ and 7: For g € G
and m € M we define g/ m if ¢ Jm and if ¢’ C b/ implies him for all h € G. We define ¢ /' m if ¢ Jm and
it m’ C n/ implies gIn for all n € M. We write g ,/*m if g/ mand g /' m.

In a distributive reduced finite context' the Jrelation is a bijection between the set of objects and the
set, of attributes, because the following implications are valid:

g/ m=g,/ m, g/ m, g/ n=m=n,

g m= g,/ m, g/ m b/ m=g=nh.

Tn [3] is shown, that a subcontext (H, N,.J) of a context (G, M, T) is compatible if and only if h *m, h € H
impliesm € N and g/n, n € N implies ¢ € H. Hence, in a distributive reduced finite context the compatible
subcontexts are exactly those of the form (H, N, IN(H x N)) with N = {meM |dge H: g,/*m}. The following
theorem describes the correspondence between compatible subcontexts and congruence relations.

' ATl the contexts needed for Distributive Concept Fxploration are of this type



Theorem 1. Let (G, M, T) be a distributive reduced finite context, g € G and m € M with g /* m. Then
ker ITen gy M\ {m} 15 the congruence relation on B(G, M, T) that is generated by forcing vg < pm.

Proof. The subcontext (G\{g}, M\ {m}, TN(G\{g} x M\ {m})) is compatible. The compatible subcontexts
(H,N, TN (H x N)) with ¢ ¢ H and m € N are exactly those with (yg,vg A um) € ker ITgz n, because the
equation g n(yg A pm) = g n((v9)«) = (¢" N H,(¢" N H)') = Tz n(vg) holds if and only if ¢ &€ H.
Among these subcontexts, (G\ {g}, M\ {m}, TN (G\ {g} x M\ {m})) is the largest and induces therefore

the smallest congruence relation containing (yg,vg A um). O

3 Distributive Concept Exploration

In this section the algorithm of Distributive Concept Exploration is introduced; in the next 1t is explained
by an example. For an easier understanding we suggest to switch between the two sections as appropriate.

Let by,ba, ..., b, be the list of concepts the user wants to explore. All we assume is that the exploration
takes place in a (somehow fixed) conceptual universe where the set of attributes is closed under disjunction.
This yields the “canonical join” as described in Section 1. Distributive Concept Exploration determines a
concept lattice reflecting the hierarchical relationship between the basic concepts together with a list of
objects and attributes which are separating different concepts:

Definition. For two concepts a and b with a not being a subconcept of b, a pair (g, m) is called a separating
pair if g 18 an object of the concept a and m 1s an attribute of the concept b such that g does not have
the attribute m. (The existence of such an object and such an attribute is a counterexample against the
hypothesis that a is a subconcept, of b.)

The lattice that we want to determine can be seen as a quotient lattice FBD(bq,...,b,)/© of the free
bounded distributive lattice generated by the basic concepts, where @ is the congruence relation that reflects
the answers given by the user. We use the fact that FBD(by,...,b,) = FBD(b) ® ... ® FBD(b,) for
splitting the determination of @ into smaller parts: For i = 0, ..., n, the exploration algorithm subsequently
determines the lattice I; that is completely generated by the basic concepts by, ..., b; with respect to their
hierarchical relationships. The lattice I; is obtained from I;_y by L; = (L;,_; @ FBD(b;))/OQ;, where 6;
reflects the hierarchical relationship between b; and the elements of ;1. The result of the exploration is
then given by the lattice I,,. _

For every i € {0,...,n}, the lattice I; will be determined in two steps: First the tensor product I; of
Li—y with FBD(b;) (which is the three element chain L < b; < T) is calculated. Then the user is asked
questions of the kind “Is s a subconcept of 177 with s and ¢ being lattice terms built with by,... b;. A
congruence relation on I; is deduced from the answers given by the user. The factorization of L by the
deduced congruence relation yields the lattice I.;. The lattice I.; is only used as intermediate step, 1t is not
needed any longer.

The algorithm starts with the determination of 1y out of 7/0, which is the complete lattice freely generated
by the empty set. Lo is the two element chain 1 < T, and we understand its elements as representations of
the concepts nothing and everything (in our field of interest), respectively. Any serious user will agree that
these concepts are distinet in a non-trivial field of interest. However (as we will see below) he has to be asked
the question “Is everything a subconcept of nothing?” in order to get the first separating pair.

In the algorithm the lattice L; will be represented? by a reduced context K; := (Gi, M;, I;). As this
context is the result of a repeated use of the tensor product, its objects and attributes are tuples. They are
of the form @ := (2, ..., 2;) € G; with g =T and 2, € {T,bg} fork=1,...,nand y:= (yo,...,y) € M;
with yo = L and y, € {L,bx} for k = 1,...,n. According to the remarks about the tensor product in Sect.
2, the incidence xI;y represents the inequality A= < \/y with Az = A\,_, = and \Vy ==\ ;-

2 We say that a complete lattice T, is represented by a context, K if 7, is isomorphic to B(K).



As mentioned above, the lattice 7/7' has to be calculated as intermediate step in the determination of
the lattice Li. This tensor product of ;1 with the chain 1. < b; < T will be represented by the context
((”77 M, f) being the direct product of K;_; with the context ({b;, T}, {L, b}, {(b;, 8;)}). The context
TK W]” then be derived from K; by deleting suitable rows and columns. This corresponds to finding a suitable
congruence relation on the tensor product. Theorem 1 indicates the questions needed for determining these
rows and columns: For all ® € G; and y € M; with & ' ¢ the user is asked: “Is the infimum of & a subconcept,
of the supremum of y ?” As we have up to now no (concept) lattice in which supremum and infimum can be
calculated, we have to explain how the infimum of & resp. the supremum of y shall be understood: According
to the Basic Theorem of Formal Concept Analysis, an object belongs to the infimum of a set of concepts if
and only if it belongs to each of them. As the set of attributes of the conceptual universe 18 assumed to be
closed under disjunctions, an object belongs to the supremum of a set of concepts if and only if it belongs to
at least one of them. This definition makes all lattices appearing in the exploration distributive. If the user
agrees to the question, the object & and the attribute y will be deleted, otherwise they will be kept in (5;
and in M;, respectively.

Observe that the /' relation is inherited and can thus easily be calculated: For & * y in K;_1 we have
(2, T) /" (y,b;) and (2,b;) / (y, L) in K . Deleting corresponding rows and columns does not change the
L -relation.

The algorithm starts with the determination of the context Ky out of the context Ky = ({T}H{L},0).
As we have T L in TAKiO, the first question in every exploration is “Is T (everything) a subconcept of L
(nothing)?” Usually, this will be denied (and a separating pair will be given). Tf however the user agrees,
the exploration is terminated because he obtains Ky = (0, §, @) which is the absorbing element for the direct
product of contexts.?

Separating pairs are used for separating different concepts. This algorithm computes for every I; with
1 = 0,...,n a minimal list of pairs of objects and attributes, such that for two concepts a and b of 7.; with
a % b there is at least one pair in this list which is a separating pair for a and b.

Definition. For two elements u and v of a lattice L, we write u /* v, if u is maximal in L\ [») and v is
minimal in L\ (u].

Tn a finite lattice this implies that u is \/ irreducible and v is A irreducible and that ugv, v, <wv, and u<v*
hold. Tt should not be confusing that we use /* at the same time as a relation between elements of a lattice
and between objects and attributes of a context because g ,* m in K is equivalent to v¢ ,* pm in B(K).

Tt is sufficient to have a list of separating pairs for elements ¢ and 0 of ; with ¢ /10, as for two elements
a and b of I; with a € b there always exist such ¢ and 9 with a > ¢ and 0 > b, because I; is finite and
distributive. The separating pair for ¢ and 0 is also a separating pair for a and b. On the other hand there
must be different, separating pairs for different ¢ 1 0, so that in fact this list is minimal.

During the exploration, the user i1s asked for separating pairs: Whenever he denies the question “Is the
infimum of & a subconcept, of the supremum of ¢y 77 he is prompted for a separating pair for A x and \/ y.
The pair will be denoted by (g;(#),m;(y)). Thus we obtain two mappings: g; maps from 7; to the set of
objects of the conceptual universe, and m; maps from M; to its set of attributes. These mappings indicate
that the object g, (x) belongs to the concept A @, and that the attribute m;(y) belongs to the concept \/ y.
Because of A x ' \/y we know that g;(#) and m,(y) form a separating pair. The mappings g; and m; do
not indicate, if an object or attribute does not belong to a concept. This information cannot be deduced
from the answers given by the expert during the exploration dialogue. That 1s, because the expert is not
asked how different separating pairs are related. Of course, this could be done, too, but it would lengthen
the dialogue. At the end of the example in the next section is given an object which has an attribute, even
though, in the line diagram, the object does not lay below the attribute.

? B(0,0,0) is the one element lattice which is the absorbing element for the tensor product of lattices.



Unfortunately, A« /' \/ y in L; does not imply A ® ,\/y in L;11. This means that the separating pair
(g, (%), m;(y)) will in general not remain in the minimal list for L;1y: Tf neither g;(x) nor m;(y) belong to
b; 11, then there is no ¢ /0 in ;41 separated by this pair. However it can be used to find new separating
pairs for the minimal list: g, () might appear in a separating pair for A(2, T) and \/(y, b;11) and m;(y)
might appear in a separating pair for A (2, b;11) and \/(y, L). Tt is a separating pair for A(=, b;11) /* V(y, 1)
in L;y1 and remains therefore in the minimal list if the object g;(#) belongs to the concept b; 11 and the
attribute m;(y) does not. Tt is a separating pair for A(=, T) (v, bix1) in L;y1 and remains in the list if
the object g, (#) does not, belong to the concept b; 11 and the attribute m;(y) does. Because the ohject g, ()
does not have the attribute m;(y), it is not possible that both helong to the concept b; 4. This justifies the
following definition:

~ o (® if g, belongs to b1
Bit (@, big1) = i;n(de)ﬁned e]i ) ’ '
B (m,T) = g (x) if g;(#) does not bhelong to b;4;
AR undefined else
~ S my(q it m; belongs to b; 44
Mt (4, big1) = {uncggf?ned else ) ’ '
i (y, 1) = m;(y) if m;(y) does not belong to b, 14
B undefined else

Thus, for every separating pair (g; (=), m;(y)) in L;, the user has to answer the two following questions:
“T)oe% the ohject g;(#) belong to the concept b;117” and “Does the attribute m;(y) belong the concept
b;117”. The algorithm uses the fact that the answer “Yes”
to the other one.

The problem of finding the rows and columns in TK that have to be deleted, now turns out to be equivalent
to (’ompletmg the partial mappings g, and m;: If, for = € G7 and y € /\/[7 Wlth x 'y, at least one of g, (=)
and m;(y) is undefined and the user is not able to find an object or attribute for completing the separating
pair, then the row x and the column y have to be deleted. In two cases we can benefit from the already

to one of the questions implies the answer “No”

given knowledge:

1. Tf g;(2) is undefined, m;(y) is defined and & = (T,...,T,b;), then we already know that there must
exist an object that be]ong% to b; and that does not have the attribute m;(y). The user is then asked
for such an object.

2. Tf g;(«) is defined and m;(y) is undefined then there must exist an attribute of \/ y that g;(#) does not
have. The user i1s then asked for such an attribute.

We are now ready to list the algorithm of Distributive Concept Exploration:

Algorithm: Given is the list by, bs, ...,

1.i:=0, Ky := T} {L}0), g,(T) :=undefined, mg(L) :=undefined.
2. For every (x,y) € Gi x M; with = Y,
where g, (#) or m;(y) are undefined, do:
o If g;(#) is undefined:
o If m;(y) is defined and = = (T,..., T,b;):
Prompt: “Name an object belonging to b; and not having
the attribute m;(y)!”
e Flse do:
Ask the user: “Is the infimum of & a subconcept,

b,, of basic concepts.

Set g, (#) according to the answer.

of the supremum of y 7”7

“Yes”: Delete @ in (?7;7 yin M;,

and the corresponding row and column in 7.
'77

“No”: Prompt: “Give a separating pair for A and \/ y!



Tf m; (y) is defined, add:
“Fventually you can use m;(y) as attribute.”
Set g, (#) and m;(y) according to the answer.
e Else (i.e. g; (=) is defined and m;(y) is undefined) do:
Prompt: “Name an attribute of \/y that g,(x) does not have!”
Set m;(y) according to the answer.
3. Set K; =K, g = |G,y My 1= My |y,
4. If i=n, then STOP.
5. Set Kipq =T x ({biyr, TH{L, bigr} {(bip1,biy1)}).
6. For every (x,y) € G; x M; with & /' y:
Ask the user: “Does the object g; (@) belong to the concept b; 117"
If “No”, ask “Does the attribute m;(y) belong to the concept b; 117"
Set g, 1 (®,b;41) and g, (=, T) as defined above.
Set m;11(y, b;y1) and m; 1 (y, L) as defined above.
7. Set7:=1+ 1.
8. Goto step 2.

The result of the algorithm can be shown by a line diagram of B(K,, ). Tt is not necessary to label all the object
and attribute concepts in the diagram. Only the concepts \/{vx | 2€G,, v;=b;} (= N{uy|yeM,, yi=b;})
of B(K,,) have to be labeled by b;, as they correspond to the basic concepts which completely generate the
whole lattice. The resulting list of separating pairs can be displayed in the same diagram: For every pair
x /' y in K, , there is exactly one separating pair (g, (x), m,(y)). We label the concept. v by g, (%) and
the concept py by m,(y) and mark v and py with the same symbol. An example can be seen in the next
section.

Here are some remarks about the complexity of the algorithm. If the user denies all dependencies between
the basic concepts, then the resulting lattice is isomorphic to the bounded distributive lattice FBD(bq, ..., b,)
which 1is freely generated by the basic concepts. Tts cardinality is exactly known only for n < &, but the fact
that 27 < |[FBD(by,...,b,)| < 22" shows that it grows very fast. So “in the worst case” there is no chance
to do the exploration in a reasonable time. If however the basic concepts are sufficiently related, then the
presented algorithm is effective, because it works only on the “logarithmic” level of the formal contexts. For
basic concepts that are only weakly related, the whole lattice generated by them is usually not requested.
We suggest to divide them in stronger related classes and to explore these classes separately.

Up to now, the user is assumed to reply to every question during the exploration either with “Yes” or
“No”. The algorithm as described above is not able to treat incomplete knowledge. With a little change we
can allow the answer “T don’t know” to the question “Is the infimum of & a subconcept of the supremum of
y 77 Tn this case the row = and the column y will not be deleted in K; and g;(#) and m;(y) will be set to
the default value ?.Tn step 6 of the algorithm all g, (2, bi41), g1 (2, T), My (y, biyq) and my 4 (y, L)
will then automatically be set to 2. These ? play the role of “possible separating pairs”. During and after
the exploration procedure the user can either replace them by a real separating pair or he can delete the
corresponding row and column (if he is then sure that the inequality A = < \/y holds). The result of the
exploration can be shown by a list of line diagrams one for every possibility of deleting corresponding
rows and columns that are not confirmed by a real separating pair.

4 An Exploration of Zinks

As an example, we want to explore a family of musical instruments: Zinks are wind instruments with a conical
wide bored tube, a shortening hole system and a mouth piece played like a trumpet. The exploration starts
with the following basic concepts:



by = straight zink [gerader Zink] by =
bs = silent zink [stiller Zink) bs =
bs = curved zink [krummer Zink]

cornettino
cornetto

The result is a concept lattice that can be used as a type lattice for conceptual graphs about musical
instruments. The knowledge about the objects and attributes serving as separating pairs is an additional
information that can be used if specific instances of the types are needed for some conceptual graph.

The exploration is based on information given by the catalogue of the museum of musical instruments
of the University of Leipzig ([5], cf. also [15]). Specifically the zinks used for separating pairs will be taken
out of this catalogue. They are named by their catalogue number. Of course, we could also use any other
existing zink for a separating pair. The contexts ; and K; are displayed below the dialogue in which they
are determined. Usunally they are not shown to the user. The lattices I); and ; are shown at the left of
the contexts K; and TK;, respectively. For ¢ /0 the concepts are marked with the same symbol (e. g. ¢ with
G and o with (B). The dialogue is abbreviated in the way that a “No” to the question “Is s a subconcept
of 177 1s justified by the user with a separating pair without waiting to be prompted to do so.

We start the algorithm with the context Ko :

“TIs everything a subconcept of nothing?”
“No! A dividing pair is Zink 1574 and ground tone C.”

This answer yields the context Ky which describes the lattice that 1s generated by no basic concepts:

Mg :

n ground tone C

1574

ground tone C 8o* |
[T

“Is Zink 1574 a straight zink?”
((NO!”

“Has every straight zink the attribute ground tone C7”
((NO!”

Here is the first example of a separating pair that is split. The object Zink 1574 and the attribute ground

tone C however will be used for (two different) separating pairs in the next step again. The last two answers
determine the mappings g7 and mq:



)

1574 )

mj:
ground tone C

straight zink ¢4
- BIE
ground tone C by || x
a 53T I

“Name a straight zink not having ground tone C!”

“Tink 1559.”
“Name an attribute of straight zinks that Zink 1574 does not have!”

“Straight form.”

This yields the context Ky which describes the lattice that is generated by the first basic concept straight

zink:

)

1574

mj:

straight form

straight zink &
1559 g |

ground tone C

a) 157 T

Ne n ground tone C
N % m straight form

“Is Zink 1559 a silent zink?”
((YeS!”

This implies that “Has every silent zink the attribute ground tone C7” has to be answered by “No!”, because

Zink 1559 and ground tone C' were a dividing pair.

“Is Zink 1574 a silent zink?”
((NO!”
“Has every silent zink the attribute straight form?”

“YQS!”

Now go and ms are determined. The context TAKiQ represents the tensor product of two three element chains:



1574

straight form

ground tone C
straight form

straight zink silent zink S
O

S >

g, —|.5|E s

1559 1559|671 A ba || x | x| x

bo L7 x| x

ground tone C b4 X 2 X

57 T %

“Is silent zink a subconcept of straight zink?”

“Yes!”

“TIs straight zink a subconcept of silent zink?”

“No! A dividing pair is Zink 1558 and recessed mouthpiece.”

The context Ky 18 now determined which is generated by the two first basic concepts straight zink and silent
zink. Tn particular, one can see in the diagram that silent zink is a subconcept of straight zink:

IS

o

£

2,

S
1574 ale Z|E
28|15l
. S| -~
straight form “g o <
iy straight zink NEE
1558 S[El=
o
recessed mouthpiece 4>3
silentzink@ Ko o~ =
g, —|o|5

1559

1559 []1 AN []2 /l X

ground tone C 1558 by Al B
a 5 T

“TIs Zink 1559 a curved zink?”

((NO!”

“Has every curved zink the attribute ground tone C7”
((NO!”

“TIs Zink 1558 a curved zink?”

((NO!”

“No!”

“TIs Zink 1574 a curved zink?”

“No!”

“Has every curved zink the attribute straight form?”

((NO'M



The following figure shows the context K5 and the mappings gz and ms:

IS
o
£
&
S
. 3
ol s] 2 £
EISIElR
straight form ~§ qu_; :,é
£Y straight zink JEE
1558 sl2|=
curved zink
NS
>
‘.. nx?utlr;plece 3 > Sl
Ko Slentzn g, ~|8)5]8]8ls
1559 .
by A bo A bs|| | x| x| x| x|x
by A b3 x| x| x| x
bs L[ x| x
1559 b1 A ba X [ x A x| x
ground tone C 1558 b4 x| %
157} T %

“TIs the infimum of straight zink, silent zink and curved zink a subconcept of nothing?”

“Yes!”

“TIs the infimum of straight zink and curved zink a subconcept of silent zink?”

“Yes!”

“Name a curved zink not having straight form!”

“Tink 1563.”

“Name an attribute of curved zinks that Zink 1559 does not have!”

“Attached mouthpiece.”

“Name an attribute of the supremum of silent zink and curved zink that Zink 1558 does not have!”
“Recessed mouthpiece or curved form.”

“Name an attribute of the supremum of straight zink, silent zink and curved zink that Zink 1574
does not have!”

“More than 6 finger holes.”

Up to now we have determined the complete lattice generated by the first three basic concepts straight zink,
silent zink, and curved zink. Tt 18 shown in Fig. 3.

We continue the exploration in the same way with the remaining two basic concepts cornetto and cor-
nettino. Finally, we get the context K5 as shown in Fig.4. Tts line diagram shows all information about the
hierarchical relationship between the five basic concepts. For example, we can deduce from it that there are
no silent zinks that are also cornettos, because the infimum of silent zink and cornetto 1s nothing. We can
further deduce that there are other zinks than those we chose for the exploration, because the supremum of
all basic concepts 1s different from everything. The observation that the supremum of cornetto and cornettino
is curved zink and their infimum is nothing reflects the fact that the curved zinks can be divided in two
disjunct classes: cornettos and cornethinos.

Remark that in the diagram Zink 1558 1s not laying below attached mouthpiece, even though Zink 1558
has an attached mouthpiece! Zink 1558 and attached mouthpiece belong to different separating pairs, and so
their relationship has not been asked from the expert.



g
1.
2
~
L5}
=
~
s
S| w
.. o=
o o] é
j'5}
more than 6 finger holes g 3 § g
S5
recessed mouthpiece glg 2o
or curved form E Elg|s
straight zink <3z =
1558 Sg 3o
mounted mouthpiece = 3§ 2 CEJ
. . . o =~
curved zink 53 ¢ silent zink
1563 1559 S
>
K, | <]
) > >\ >
g.: S|.8|8|5
1563 bs | X X
1559||b1 A ba|| x [ x| %
1558 by X X
B T 7

Fig. 8. Result of the exploration of the first three basic concepts

Tf there are other subconcepts of zink we are interested in (for example tenor zink, serpent or wvioloncel

serpent) we can continue the exploration by starting with the context K5 and adding the new basic concepts.

This serial approach allows also to extend already given knowledge at a later time.
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