
Computing Iceberg Concept Lattices

with TITANIC

Gerd Stumme, a Ra�k Taouil, b Yves Bastide, c

Nicolas Pasquier, d Lot� Lakhal e

aInstitut f�ur Angewandte Informatik und Formale Beschreibungsverfahren (AIFB),

Universit�at Karlsruhe (TH), D{76128 Karlsruhe, Germany;

stumme@aifb.uni-karlsruhe.de

bINRIA Lorraine, LORIA, BP 239, F{54506 Vand�uvre{l�es{Nancy, France;

ra�k.taouil@loria.fr

cLaboratoire d'Informatique (LIMOS), Universit�e Blaise Pascal, Complexe

Scienti�que des C�ezeaux, 24 Av. des Landais, F{63177 Aubi�ere Cedex, France;

bastide@libd2.univ-bpclermont.fr

dUniversit�e de Nice, I3S { CNRS UPRESA 6070 { UNSA, Les Algorithmes {

Euclide B, 2000 route des Lucioles, BP 121, F{06903 Sophia Antipolis, France;

pasquier@mezzo.unice.fr

eLIM, CNRS FRE-2246, Universit�e de la M�editerran�ee, Case 90, 163 Avenue de

Luminy, F{13288 Marseille Cedex 9, France; lot�.lakhal@lim.univ-mrs.fr

Abstract

We introduce the notion of iceberg concept lattices and show their use in Knowl-

edge Discovery in Databases (KDD). Iceberg lattices are a conceptual clustering

method, which is well suited for analyzing very large databases. They also serve

as a condensed representation of frequent itemsets, as starting point for comput-

ing bases of association rules, and as a visualization method for association rules.

Iceberg concept lattices are based on the theory of Formal Concept Analysis, a

mathematical theory with applications in data analysis, information retrieval, and

knowledge discovery. We present a new algorithm called Titanic for computing

(iceberg) concept lattices. It is based on data mining techniques with a level-wise

approach. In fact, Titanic can be used for a more general problem: Computing

arbitrary closure systems when the closure operator comes along with a so-called

weight function. Applications providing such a weight function include association

rule mining, functional dependencies in databases, conceptual clustering, and on-

tology engineering. The algorithm is experimentally evaluated and compared with

B. Ganter's Next-Closure algorithm. The evaluation shows an important gain in

eÆciency, especially for weakly correlated data.

Key words: Knowledge Discovery, Database Analysis, Formal Concept Analysis,

Closure Systems, Lattices, Algorithms

Preprint submitted to Elsevier Science 1 February 2002

Content

1 Introduction

2 Formal Concept Analysis

3 Iceberg Concept Lattices

4 Computing Closure Systems:

the Problem

5 Computing Closure Systems

Based on Weights

6 The Titanic Algorithm

7 Computing (Iceberg) Concept

Lattices with Titanic

8 Some Typical Applications

9 Complexity and

Experimental Evaluation

10 Conclusion

1 Introduction

Concept Lattices are used to represent conceptual hierarchies which are inher-

ent in data. They are the core of the mathematical theory of Formal Concept

Analysis (FCA). Introduced in the early 1980ies as a formalization of the con-

cept of `concept' [Wi82], FCA has over the years grown to a powerful theory

for data analysis, information retrieval, and knowledge discovery [SW00]. In

Arti�cial Intelligence (AI), FCA is used as a knowledge representation mech-

anism [Wi92] and as conceptual clustering method [StrW93,CR93,MG95]. In

database theory, FCA has been extensively used for class hierarchy design

and management [MiS89,YLBC96,DDJL96,WTL97,SS98,GMMMAC98]. Its

usefulness for the analysis of data stored in relational databases has been

demonstrated with the commercially used management system TOSCANA

for Conceptual Information Systems [Vo95].

A current research domain common to both the AI and the database com-

munity is Knowledge Discovery in Databases (KDD). Here FCA has been

used as a formal framework for implication and association rules discovery

and reduction [PBTL99a,STBPL01] and for improving the response times of

algorithms for mining association rules [PBTL99b,PBTL99a]. The interaction

of FCA and KDD in general has been discussed in [SWW98] and [HSWW00].

In this paper we show that, vice versa, FCA can also bene�t from ideas used

for mining association rules: Computing concept lattices is an important issue,

investigated for long years [MiS89,GR91,GM94,YLBC96,NR99]. We address

the problem of computing concept lattices from a data mining viewpoint by us-

ing a level-wise approach [AS94,MT97]; and provide a new, eÆcient algorithm

called Titanic. In fact, Titanic can be used for a more general problem:

Computing arbitrary closure systems when the closure operator comes along

with a so-called weight function. The use of weight functions for computing

closure systems has not been discussed in the literature up to now. Weight

functions appear naturally in a variety of applications, include association rule

mining, functional dependencies in databases, conceptual clustering, ontology

learning, transformation of class hierarchies in object-oriented languages, and

con�guration space analysis in software re-engineering.

We also introduce the notion of iceberg concept lattices. Iceberg concept lattices

show only the top-most part of a concept lattice. Iceberg concept lattices have

di�erent uses in KDD: as conceptual clustering tool, as a visualization method

| especially for very large databases |, as a condensed representation of

frequent itemsets, as a base of association rules, and as a visualization tool for

association rules.

In the next section, we recall the basics of FCA. In Section 3, we introduce

iceberg concept lattices and explain their use as conceptual clustering method

by an example. Section 4 provides the theoretical foundation and gives a formal

statement of the generalized problem of computing closure systems using a

weight function. The problem is split in several subtasks in Section 5, and

turned into pseudo-code in Section 6. In Section 7, we apply the algorithm to

concept lattices and iceberg concept lattices, and provide examples. Section 8

lists some typical applications. In Section 9, we provide a complexity discussion

and an experimental evaluation. Section 10 concludes the article.

This article consolidates research presented in the workshop papers [STBPL00]

and [STBL01].

2 Formal Concept Analysis

Since concepts are necessary for expressing human knowledge, any knowledge

management process bene�ts from a comprehensive formalization of concepts.

FCA o�ers such a formalization by mathematizing the concept of `concept'

as a unit of thought constituted of two parts: its extension and its intension

[Wi82,GW99]. This understanding of `concept' is �rst mentioned explicitly in

the Logic of Port Royal [AN68] and has been established in the international

standard ISO 704.

We recall the basics of Formal Concept Analysis as far as they are needed for

this paper. The de�nitions and theorems in this subsection are quoted from

[Wi82]. A more extensive overview is given in [GW99].

To allow a mathematical description of extensions and intensions, FCA starts

with a (formal) context. 1

1 The notion of context has also been used in many other AI applications. See

http://extractor.iit.nrc.ca/bibliographies/context-sensitive for references. In this

De�nition 1 A formal context is a triple K := (G;M; I) where G and M are

sets and I � G�M is a binary relation. The elements of G are called objects

and the elements of M attributes. The inclusion (g;m) 2 I is read \object g

has attribute m". For A � G, we de�ne

A0 := fm 2M j 8g 2 A: (g;m) 2 Ig ;

and for B �M , we de�ne dually

B0 := fg 2 G j 8m 2 B: (g;m) 2 Ig :

We assume | in this article | that all sets are �nite, especially G and M .

Lemma 1 Let (G;M; I) be a context, A1; A2 � G sets of objects, and B1; B2 �

M sets of attributes. Then the following holds:

(1) A1 � A2 =) A0
2 � A0

1

(2) A � A00

(3) A0 = A000

1') B1 � B2 =)

B0
2 � B0

1

2') B � B00

3') B0 = B000

4) A � B0 () B � A0 () A�B � I :

De�nition 2 A formal concept is a pair (A;B) with A � G, B �M , A0 = B

and B0 = A. (This is equivalent to A � G and B � M being maximal with

A� B � I.) A is called extent and B is called intent of the concept.

The set B(K) of all concepts of a formal context K together with the partial

order (A1; B1) � (A2; B2) :, A1 � A2 (which is equivalent to B1 � B2) is

called concept lattice of K .

The following lemma shows, together with Lemma 1(3'), that a concept lattice

can be derived from the set of its concept intents.

Lemma 2 Let K := (G;M; I) be a formal context. Then

B(K) = f(B0; B00) j B � Mg :

The fundamental theorem of FCA [Wi82] shows that each concept lattice is

a complete lattice, and that the set of its intents is a closure system (see

Section 5):

paper, we always refer to the notion developed in FCA.

Theorem 3 (Fundamental Theorem of Formal Concept Analysis)

Let K := (G;M; I) be a formal context. Then B(K) is a complete lattice in

which in�ma and suprema can be described as follows:

^
j2J

(Aj; Bj) =

0
@\
j2J

Aj;

0
@[
j2J

Bj

1
A
001
A ;

_
j2J

(Aj; Bj) =

0
@
0
@[
j2J

Aj

1
A
00

;
\
j2J

Bj

1
A

Conversely, if L is a complete lattice then L �= B(K) if and only if there are

mappings
:G ! L and �:M ! L such that
(G) is supremum-dense in L,

�(M) is in�mum-dense in L, and (g;m) 2 L is equivalent to
(g) � �(m),

for all g 2 G and m 2M . In particular, L �= B(L; L;�).

Example. As running example, we use the Mushroom database from the

UCI KDD Archive (http://kdd.ics.uci.edu/). It consists of a database

with 8,416 objects (mushrooms) and 22 (nominally valued) attributes. We

obtain a formal context by creating one (Boolean) attribute for each of the

80 possible values of the 22 database attributes. The resulting formal context

has thus 8,416 objects and 80 attributes. In order to explain FCA by a small

example, we restrict ourselves �rst to a very limited sub-context, namely the

�rst ten objects, and 13 attributes. This restricted formal context is shown in

Figure 1. A line diagram of its concept lattice is shown in Figure 2.

Mushroom 1
Mushroom 2
Mushroom 3
Mushroom 4
Mushroom 5
Mushroom 6
Mushroom 7
Mushroom 8
Mushroom 9
Mushroom 10

ed
ib

le
po

is
on

ou
s

ca
p

sh
ap

e:
 c

on
ve

x
ca

p
sh

ap
e:

 fl
at

ca
p

su
rf

ac
e:

 fi
br

ou
s

ca
p

su
rf

ac
e:

 s
ca

ly
ca

p
su

rf
ac

e:
 s

m
oo

th
ca

p
co

lo
r:

 b
ro

w
n

ca
p

co
lo

r:
 b

uf
f

ca
p

co
lo

r:
 g

ra
y

ca
p

co
lo

r:
 r

ed
ca

p
co

lo
r:

 w
hi

te
ca

p
co

lo
r:

 y
el

lo
w

Fig. 1. Formal context about mushrooms

In the line diagram, the name of an object g is always attached to the circle

representing the smallest concept with g in its extent; dually, the name of

an attribute m is always attached to the circle representing the largest con-

cept with m in its intent. This allows us to read the context relation from

the diagram because an object g has an attribute m if and only if there is

an ascending path from the circle labeled by g to the circle labeled by m.

The extent of a concept consists of all objects whose labels are below in the

hierarchy, and the intent consists of all attributes attached to concepts above

in the hierarchy. For example, the concept without label in the middle of the

cap surface: smooth

cap surface: fibrous

cap color: gray
cap shape: flat

poisonous

cap color: buff

cap color: yellow

edible

cap color: white

cap color: brown

cap shape: convex

cap color: red

cap surface: scaly

Mushroom 10

Mushroom 9

Mushroom 7

Mushroom 8

Mushroom 3

Mushroom 4

Mushroom 1

Mushroom 6

Mushroom 5

Mushroom 2

Fig. 2. The concept lattice of the context in Figure 1

diagram has fMushroom 3, Mushroom 4g as extent, and fedible, cap surface:

�brous, cap shape:
atg as intent.

For X; Y � M , we say that the implication X =) Y holds in the context,

if each object having all attributes in X also has all attributes in Y (i. e.,

an implication is an association rule 2 with 100% con�dence). For instance,

the implication fcap shape:
at, cap surface: smoothg =) fcap color: bu�,

poisonousg holds in the context. (Of course it may not hold any longer when

we enlarge the set of objects under consideration.)

Implications can be read directly in the line diagram: the largest concept

having both `cap shape:
at' and `cap surface: smooth' in its intent is just the

concept labeled by `cap color: bu�' | which on its turn lies below the concept

labeled by `poisonous'. In the next section is discussed how also association

rules with less than 100% con�dence can by visualized in the line diagram.

Beside association rule mining, FCA has been applied in a wide range of ap-

plication domains, including medicine, psychology, social sciences, linguistics,

information sciences, machine and civil engineering etc. (cf. [SW00]). Over

all, FCA has been used in more than 200 projects, both on the scienti�c and

the commercial level. For instance, FCA has been applied for analyzing data

of children with diabetes [SSVWW93], for developing qualitative theories in

music esthetics [MW97], for managing emails [CS00], for database marketing

[HSWW00], and for an IT security management system [BSWWZ00].

2 An association rule is a pair X ! Y with X;Y � M . Its support is de�ned

by supp(X ! Y) :=
j(X[Y)0j

jGj
, and its con�dence by conf(X ! Y) :=

j(X[Y)0j

jX0j
.

See [AIS93].

3 Iceberg Concept Lattices

The previous example was unsatisfying insofar as it was restricted to a very

small and | more important | arbitrarily chosen set of objects. On the other

hand, this restriction allowed us to display the entire concept lattice. In the

worst case, the size of concept lattices grows exponentially with the size of the

context. Hence for most applications one has to consider strategies (other than

arbitrarily reducing the context) for dealing with such large concept lattices.

In this paper, we present an approach based on frequent itemsets as known

from data mining [AIS93]: Our iceberg concept lattices will consist only of the

top-most concepts of the concept lattice. These are the concepts which provide

the most global structuring of the domain:

De�nition 3 Let B �M , and let minsupp 2 [0; 1]. The support count of the

attribute set (also called itemset) B in K is supp(B) := jB0j

jGj
. B is said to be a

frequent attribute set if supp(B) � minsupp.

A concept is called frequent concept if its intent is frequent. The set of all

frequent concepts of a context K is called the iceberg concept lattice of the

context K .

Because the support function is monotonously decreasing (i. e., B1 � B2 =)

supp(B1) � supp(B2)), the iceberg concept lattice is an order �lter of the

whole concept lattice, and thus in general only a join-semi-lattice. But when we

add a new bottom element, it becomes a lattice again. This makes it possible to

apply the same algorithm (which will be introduced in the following sections)

for computing concept lattices and iceberg concept lattices. But before talking

about their computation, let's have a closer look to iceberg concept lattices:

Example. Now we consider the whole Mushroom database. Its concept

lattice consists of 32,086 concepts, hence is by far too large to be displayed.

But for a �rst glance, it is suÆcient to see its top-most part: Figure 3 shows

the Mushroom iceberg concept lattice for a minimum support of 85%.

In the diagram one can clearly see that all mushrooms in the database have

the attribute `veil type: partial'. Furthermore the diagram tells us that the

three next-frequent attributes are: `veil color: white' (with 97.62% support),

`gill attachment: free' (97.43%), and `ring number: one' (92.30%). There is no

other attribute having a support higher than 85%. But even the combination

of all these four concepts is frequent (with respect to our threshold of 85%):

89.92% of all mushrooms in our database have one ring, a white partial veil,

and free gills. This concept with a quite complex description contains more

objects than the concept described by the �fth-most attribute, which has a

support below our threshold of 85%, since it is not displayed in the diagram.

veil type: partial

ring number: one veil color: white

gill attachment: free100 %

92.30 % 97.62 %

97.43 %

97.34 %90.02 %

89.92 %

Fig. 3. Iceberg concept lattice of the mushroom database with minsupp = 85%

In the diagram, we can detect the implication

fring number: one, veil color: whiteg=) fgill attachment: freeg .

It is indicated by the fact that there is no concept having `ring number: one'

and `veil color: white' (and `veil type: partial') in its intent, but not `gill

attachment: free'. This implication has a support of 89.92% (and as it is

an implication, a con�dence of 100%). Unlike the implications in Example 1

(which hold for the ten objects under consideration only), this implication is

globally valid in the Mushroom database, i. e., it does not change when we

consider a di�erent minimum support.

If we want to see more details, we have to decrease the minimum support.

Figure 4 shows theMushroom iceberg concept lattice for a minimum support

of 70%. One observes that, of course, its top-most part is just the iceberg

lattice for minsupp = 85%. Additionally, we obtain �ve new concepts, having

the possible combinations of the next-frequent attribute `gill spacing: close'

(having support 81.08%) with the previous four attributes. The fact that the

combination fveil type: partial, gill attachment: free, gill spacing: closeg is not

realized as a concept intent indicates another implication:

fgill attachment: free, gill spacing: closeg =) fveil color: whiteg (*)

This implication has 78.52% support (the support of the most general con-

cept having all three attributes in its intent) and | being an implication |

100% con�dence.

By further decreasing the minimum support, we discover more and more de-

tails. Figure 5 shows the Mushrooms iceberg concept lattice for a minimum

support of 55%. It shows four more partial copies of the 85% iceberg lattice,

and three new, single concepts.

The Mushrooms example shows that iceberg concept lattices are suitable es-

pecially for strongly correlated data. In Table 1, the size of the iceberg lattice

(i. e., the number of all frequent closed itemsets) is compared with the number

veil type: partial
ring number: one

veil color: white

gill attachment: free

gill spacing: close

100 %

92.30 % 97.62 %97.43 %

81.08 %

76.81 % 78.80 %

97.34 %90.02 %

89.92 %

78.52 %

74.52 %

Fig. 4. Iceberg concept lattice of the mushroom database with minsupp = 70%

veil type: partial
ring number: one

veil color: white

stalk surface below ring: smoothstalk surface above ring: smooth

gill attachment: free

gill size: broad

gill spacing: close

stalk shape: tapering

stalk color below ring: white

stalk color above ring: white

no bruises

100 %

92.30 % 97.62 %

60.31 %

55.09 %

63.17 %

57.94 %

97.43 %69.87 %

62.17 % 67.59 %

81.08 %

76.81 % 78.80 %

97.34 %90.02 %

89.92 %

57.79 %

55.13 %

56.37 %

58.03 %60.88 %

55.66 %

67.30 %

59.89 %

78.52 %

74.52 %

59.89 %

55.70 % 57.51 %57.32 %

57.22 %

Fig. 5. Iceberg concept lattice of the mushroom database with minsupp = 55%

of all frequent itemsets. It shows for instance, that, for the minimum support

of 55%, only 32 frequent closed itemsets are needed to provide all informa-

tion about the support of all 116 frequent itemsets one obtains for the same

threshold.

Table 1

Number of frequent closed itemsets and frequent itemsets for the Mushrooms ex-

ample

minsupp # frequent closed itemsets # frequent itemsets

85% 7 8

70% 12 32

55% 32 116

0% 32.086 280

The observation that the top-most part of the iceberg lattice appears partially

again in combination with other attributes can be used for an alternative visu-

alization: Figure 6 shows the iceberg concept lattice as a nested line diagram.

The diagram provides exactly the same information than Figure 5, but in a

more structured way.

Each of the `satellites' contains a partial copy of the top-most iceberg lattice.

Only those concepts are copied which are, together with the new attribute(s),

still frequent. The lines of the outer diagram have to be read as a bundle of

parallel lines, linking corresponding concepts. For instance, the concept on

the right side of the diagram labeled by `78.80%' is not only an immediate

subconcept of the one labeled by `81.08%, but also of the one labeled by

`97.62%'.

The empty circles indicate unrealized concepts: They are still frequent, but

all objects in an unrealized concept share at least one more attribute. For

instance, the unrealized concept on the right side left of the concept labeled

by `78.80%' has as intent fgill spacing: close, gill attachment: free, veil type:

partialg. But implication (*) tells us that all objects having these attributes

also have the attribute `veil color: white'. Therefore, `veil color: white' has to be

in each realized concept which contains the three other attributes. The largest

of them is just the �rst realized concept below: the one with 78.52% support.

This way, each unrealized concept indicates an implication: the attributes

of its intent always imply all attributes in the intent of its largest realized

subconcept. For instance, the two unrealized concepts below the attribute `no

bruises' indicate the implications

fno bruises, gill attachment: freeg =) fveil color: whiteg

fno bruises, veil color: whiteg =) fgill attachment: freeg

respectively, each having 57.22% support.

For attributes which are labeled at concepts having no subconcepts in the

diagram, we cannot decide whether they are part of interesting implications.

For instance, the diagram does not show whether there is an implication having

92.30%

90.02% 97.34%

89.92%

78.80%

78.52%

56,37%

55.09%

58.03%

57.79%

55.70%

57.22%

63.17%

57.94%

60.88%

55.66%

55.13%

67.59%

67.30%

58.89%

62.17%

69.87%

100%

97.62%
97.43% 81.08%

60.31%

58.89%

ring number: one veil color: white

veil type: partial

gill spacing: closegill size: broad

stalk color above ring: white

stalk surface above ring: smooth

stalk surface below ring: smooth

no bruisesstalk shape: tapering

stalk color below ring: white

gill attachment: free

Fig. 6. Nested line diagram of the iceberg concept lattice in Figure 5

`stalk color below ring: white' in its premise or conclusion (other than the

trivial implication fstalk color below ring: whiteg =) fveil type: partialg).

If there are any such rules, then their support is below the actual minimum

support of 55%. In order to study them, the threshold has to be decreased

further.

In the way nested line diagrams are introduced in [Wi84], the attributes are

grouped manually according to their semantics. Related attributes are grouped

together. This usually involves a human expert to decide which attributes

are related. The support function, on the other hand, allows an automatic

grouping: In Figure 6, the inner diagram contains the top-most attributes, the

outer diagram the next-most attributes. The resulting diagram shows the most

important attributes for structuring the domain. The knowledge engineer only

has to �x the minimum support thresholds for the di�erent layers.

Observe that the iceberg concept lattices in this example are used for concep-

tual clustering, or un-supervised learning. Our aim was to gain new insights

about the mushrooms in the database, independent from a speci�c purpose.

In particular, the aim was not to learn how to distinguish between poisonous

and edible mushrooms. The question if and how iceberg concept lattices can

be used in such a supervised learning scenario is an interesting open problem.

In general, Cluster Analysis comprises a set of unsupervised machine learning

techniques which split sets of objects into clusters (subsets) such that objects

within a cluster are as similar as possible while objects from di�erent clusters

are as di�erent as possible. Conceptual Clustering techniques additionally aim

at determining not only clusters | i. e., concept extensions | but to provide

at the same time intensional descriptions of these extensions [Mi80,WMJ00].

This aim �ts well with the understanding of concepts formalized in FCA.

Therefore FCA was considered as a framework for conceptual clustering from

the early 1990ies on [StrW93,CR93,MG95].

Compared to `usual' clustering, conceptual clustering techniques pay their

added value (the intensional description) with increased computation time. In

FCA, there exist basically three ways to overcome this problem: local focusing

(e. g., [CR93]), vertical reduction by conceptual scaling [GW99], and horizon-

tal reduction. Iceberg concept lattices are a horizontal approach to reduce

the amount of information (and the computation time) of a concept lattice.

In comparison to other conceptual clustering approaches, iceberg concept lat-

tices have structural properties which can be stated explicitly: they do not

depend on diverse parameters (except the minimum support threshold) whose

semantics are often diÆcult to interpret, nor on the order in which the input

is presented to the algorithm, nor on any particularities of the implementa-

tion. Another distinction to other hierarchical clustering results is that they

allow for multiple hierarchies (and not only for trees), so that all potentially

interesting specialization paths are contained in the resulting hierarchy.

Up to now, we have discussed the use of iceberg concept lattices as a concep-

tual clustering technique, equipped with a visualization method, which is very

well suited especially for analyzing very large databases containing strongly

correlated data. Now we brie
y discuss some more uses of iceberg concept

lattices in KDD:

A condensed representation of frequent itemsets. The computation

of frequent attribute sets [itemsets] is the �rst (and most expensive) step in

the computation of association rules. One reason is that one needs to count

the support for each itemset. By using the fact that supp(B) = supp(B00),

for B � M , we can derive the supports of all itemsets from the supports of

the frequent concept intents only. In strongly correlated data, only relatively

ing number: one

veil type: partial
gill attachment: free

gill spacing: close

97.0%

99.9% 99.6%

97.2%

97.4%

99.9%

99.7%

97.5%

veil color: white
97.6%

Fig. 7. Visualization of the Luxenburger basis for minsupp = 70% and

minconf= 95%

few of the frequent itemsets are also concept intents. Hence only few support

counts have to be e�ected in the database. This is used for the Pascal algo-

rithm [BTPSL00] which is related to Titanic, and which eÆciently computes

frequent itemsets.

A starting point for computing bases of association rules. One prob-

lem in mining association rules is the large number of rules which are usually

returned. In [BPTSL00] and [STBPL01], di�erent bases for association rules

are introduced, which prune redundant rules, but from which all valid rules

can still be derived. The computation of the bases does not require all frequent

itemsets, but only frequent concept intents.

A visualizing technique for association rules. We have already dis-

cussed how implications (i. e., association rules with 100% con�dence) can

be read from the line diagram. The Luxenburger basis for approximate asso-

ciation rules (i. e., association rules with less than 100% con�dence), which

is presented in [STBPL01], can also be visualized directly in the line dia-

gram of an iceberg concept lattice. The Luxenburger basis is derived from

[Lu91]. It contains only those rules B1 ! B2 where B1 and B2 are frequent

concept intents and where the concept (B0
1
; B1) is an immediate subconcept

of (B0
2
; B2). Hence there corresponds to each approximate rule in the Luxen-

burger base exactly one edge in the line diagram. Figure 7 visualizes all rules in

the Luxenburger basis for minsupp=70% and minconf=95%. For instance,

the rightmost arrow stands for the association rule fveil color: white, gill spac-

ing: closeg ! fgill attachment: freeg, which holds with a con�dence of 99.6%.

Its support is the support of the concept the arrow is pointing to: 78.52%,

as shown in Figure 4. Edges without label indicate that the con�dence of the

rule is below the minimum con�dence threshold. The visualization technique

is described in more detail in [STBPL01]. In comparison with other visualiza-

tion techniques for association rules (as for instance implemented in the IBM

Intelligent Miner), the visualization of the Luxenburger basis within the ice-

berg concept lattice bene�ts of the smaller number of rules to be represented

(without loss of information!), and of the presence of a `reading direction'

provided by the concept hierarchy.

4 Computing Closure Systems: the Problem

Instead of giving an algorithm for computing (iceberg) concept lattices, we

provide an algorithm for a more general task: computing closure systems using

a weight function. The reason is that closure systems are important in a variety

of applications. Some example applications are given in Section 8. In this

section, we formally state the problem, and in the next section, we present

our approach. Its eÆciency is discussed in Section 9.

First, we recall the de�nition of closure systems:

De�nition 4 A closure system on a set M is a subset H of the powerset

P(M) of M which contains the set M and which is closed under arbitrary

intersections. A closure operator on a set M is a function h:P(M)! P(M)

which is

� extensive: X � h(X)

� monotonous: X � Y =) h(X) � h(Y)

� and idempotent: h(h(X)) = h(X) .

It is well-known that closure operators and closure systems are equivalent: For

each closure operator h, the set Hh := fX � M j h(X) = Xg is a closure

system on M ; for each closure system H the function hH:P(M) ! P(M)

with X 7!
T
H2H;H�X H is a closure operator; and the following two equations

hold: HhH = H and hHh
= h.

Lemma 1 and Theorem 3 show that the set of all intents of a context (G;M; I)

is a closure system on M , and that B 7! B00 is the corresponding closure

operator. Thus computing concept lattices is a special case of the following,

more general task:

Let h be a closure operator on a �nite set M . The task is to determine ef-

�ciently the closure system Hh related to the closure operator h when there

exists a weight function compatible with the closure operator:

De�nition 5 A weight function on P(M) is a function s:P(M) ! P from

the powerset of M to a totally ordered set (P;�) having a largest element

smax. For a set X � M , s(X) is called the weight of X. The weight function

is compatible with a closure operator h if

(i) X � Y =) s(X) � s(Y),

(ii) h(X) = h(Y) =) s(X) = s(Y),

(iii) X � Y ^ s(X) = s(Y) =) h(X) = h(Y) :

Remark. In the sequel, we will consider (P;�) to be the interval [0; 1] in

the real numbers, but the theory presented in this paper can be applied to

arbitrary totally ordered sets.

Remark. If X � Y =) s(X) � s(Y) holds instead of (i) (as, e. g., for

functional dependencies), then all `min' in the sequel have to be replaced by

`max'.

Now we can formally state the problem:

Problem. Let h be a closure operator on a �nite set M , and let s be a

compatible weight function. Determine the closure system Hh related to the

closure operator h by using the weight function s.

5 Computing Closure Systems Based on Weights

We discuss the problem of computing the closure system by using a weight

function in three parts:

(1) How can we compute the closure of a given set using the weight function

only, and not the closure operator?

(2) How can we compute the closure system by computing as few closures as

possible?

(3) Since the weight function is usually not stored explicitly, how can we

derive the weights of as many sets as possible from the weights already

computed?

Questions 2 and 3 are not independent from each other. Hence we will not

provide an optimal answer for each of them, but one which improves the overall

bene�t.

5.1 Weight-based computation of closures

We use the constraints on the function s for determining the closure of a set

by comparing its weight with the weights of its immediate supersets.

Proposition 4 Let X �M . Then

h(X) = X [fm 2M nX j s(X) = s(X [fmg)g :

Proof. \�": Suppose that there exists m 2 h(X)nX with s(X) 6= s(X[fmg).

Then h(X) 6= h(X [fmg) by condition 2 of De�nition 5. Hence m =2 h(X).

Contradiction.

\�": Let m 2M nX with s(X) = s(X [fmg). Then h(X) = h(X [fmg) by

condition 3 of De�nition 5. Hence m 2 h((X [fmg)) = h(X). 2

Hence if we know the weights of all sets, then we can compute the closure

operator (! Algorithm 3, steps 3{7). 3 In the next subsection we discuss

for which sets it is necessary to compute the closure in order to obtain all

closed sets. In Subsection 5.3 we discuss how the weights needed for those

computations can be determined.

5.2 A level-wise approach for computing all closed sets

One can now compute the closure system H by applying Proposition 4 to

all subsets X of M . But this is not eÆcient, since many closed sets will be

determined several times.

De�nition 6 We de�ne an equivalence relation � on the powerset P(M) of

M by (X; Y) 2 � : () h(X) = h(Y), for X; Y � M . The equivalence class

of X is given by [X] := fY �M j (X; Y) 2 �g.

If we knew the equivalence relation � in advance, it would be suÆcient to

compute the closure for one set of each equivalence class only. But since we

have to determine the relation during the computation, we have to consider

more than one element of each class in general. As known from algorithms for

mining association rules, we will use a level-wise approach.

De�nition 7 A k-set is a subset X of M with jXj = k. For X � P(M), we

3 In this section, we give some references to the algorithms in the following section.

These references can be skipped at the �rst reading.

de�ne Xk := fX 2 X j X is k-setg. For X = P(M), we also write Pk(M)

for Xk.

At the kth iteration, the weights of all k-sets which remained from the pruning

strategy described below are determined; and the closures of all (k � 1)-sets

which passed the pruning in the (k � 1)th iteration are computed.

The �rst sets of an equivalence class that we reach using such a level-wise

approach are the minimal sets in the class:

De�nition 8 A set X � M is a key set (or minimal generator) if X is

minimal (with respect to set inclusion) in [X]. The set of all key sets is denoted

by K.

We have H = fh(X) j X 2 Kg, because there is at least one key set in each

equivalence class of �. Hence it is suÆcient to compute the closures of all key

sets.

In a sense the key sets are the �rst sets one reaches when traversing the

powerset P(M) level-wise:

Proposition 5 The set K is an order ideal of (P(M);�); i. e., Y 2 K and

X � Y implies X 2 K, for all X; Y � M .

Proof. Let X � Y and X be a non-key set. Then there exists a minimal Z 2

[X] with Z � X. 4 From h(Z) = h(X) it follows that h(Y) = h(Y n (X nZ)).

Hence Y is not minimal in [Y] and thus by de�nition not a key set. 2

The de�nition of an order ideal is equivalent to X=2K, X�Y =) Y =2K, for

all X; Y � M . This allows to use a pruning strategy for determining the key

sets. Originally the strategy we are going to apply was presented in [AS94], but

only for a special case: as a heuristic for determining all frequent sets (which

are, in our terminology, all sets with weights above a user-de�ned threshold).

We recall this strategy, and show that it can be applied to arbitrary order

ideals of the powerset of M :

De�nition 9 Let I be an order ideal of P(M). A candidate set for I is a

subset of M such that all its proper subsets are in I.

The de�nition is justi�ed by the fact that all combinations of the candidate

sets can appear as (k + 1)th level of an order ideal for which the �rst k levels

are known. This statement is the subject of the �rst part of the following

lemma. The second part states that non-candidate sets cannot appear at the

4 We use X � Y to say that X � Y and X 6= Y .

(k + 1)th level.

Lemma 6 Let X � Pk(M), and let Y be the set of all candidate (k+ 1)-sets

for the order ideal #X := fY 2P(M) j 9X2X :Y�Xg (i. e., the order ideal

generated by X).

(1) For each subset Z of Y, there exists an order ideal I of P(M) with

Ik = X and Ik+1 = Z.

(2) For each order ideal I of P(M) with Ik = X the inclusion Ik+1 � Y

holds.

Proof. 1. Let I := (#X) [Z. Let Y 2 I and X � Y . We have to show that

X 2 I. If Y 2 #X then X 2 #X � I because #X is an order ideal. If Y 2 Z

then X 2 #X � I by De�nition 9.

2. Suppose that there exists Y 2 Ik+1 nY. As Y =2 Y, there exists X � Y with

jXj = k and X =2 Ik. Hence Y =2 Ik+1. Contradiction. 2

The eÆcient generation of the set of all candidate sets for the next level is

described in the following proposition (! Algorithm 2). We assume that M

is linearly ordered, e. g., M = f1; : : : ; ng.

Proposition 7 Let X � Pk�1(M). Let

eC := ffx1 < x2 < : : : < xkg j fx1; : : : ; xk�2; xk�1g; fx1; : : : ; xk�2; xkg 2 Xg ;

and

C :=
n
X 2 eC j 8x 2 X:X n fxg 2 X

o
:

Then C = fX 2 Pk(M) j X is candidate set for # Xg.

Proof. The de�nition of C is equivalent to C := fx 2 eC j X is candidate set

for #Xg. Hence it remains to show that all candidate sets are included in eC.
Let X be a candidate set, and let X = fx1; : : : ; xkg with x1 < : : : < xk. Since

X is a candidate set, all its proper subsets are in #X | especially the two

sets fx1; : : : ; xk�2; xk�1g and fx1; : : : ; xk�2; xkg. Since they have cardinality k,

they are also in X . Hence X 2 I by de�nition of eC. 2

Unlike in the Apriori algorithm [AS94], in our application the pruning of a set

cannot be determined by its properties alone, but properties of its subsets (i. e.,

their weights) have to be taken into account as well. This causes an additional

step in the generation function (! Algorithm 2, step 5) compared to the

version presented in [AS94]. Based on this additional step, at each iteration

the non-key sets among the candidate sets are pruned (! Algorithm 1, step 8)

by using the second part of the following proposition.

Proposition 8 Let X �M .

(1) Let m 2 X. Then X 2 [X n fmg] if and only if s(X) = s(X n fmg).

(2) X is a key set if and only if s(X) 6= min fs(X n fmg) j m 2 Xg.

Proof. 1. The \if" part follows from De�nition 5 (iii), the \only if" part from

De�nition 5 (ii).

2. From 1. we deduce that X is a key set if and only if s(X) 6= s(X n fmg),

for all m 2 X. Since s is a monotonous decreasing function, this is equivalent

to 2. 2

A candidate set X is hence pruned when s(X) = minfs(X n fmg) j m 2 Xg

holds.

5.3 Deriving weights from already known weights

If we reach a k-set which is known not to be a key set, then we already

passed along at least one of the key sets in its equivalence class in an earlier

iteration. Hence we already know its weight. Using the following proposition,

we determine this weight by using only weights already computed.

Proposition 9 If X is not a key set, then

s(X) = minfs(K) j K 2 K; K � Xg :

Proof. \�": Let K be a key set with K�X and K � X. Then s(X) = s(K) �

minfs(K) j K 2 K; K � Xg.

\�": Suppose that there exists K 2 K with K � X and s(K) < s(X). Then

K 6� X by De�nition 5 (i). Contradiction. 2

Hence it is suÆcient to compute the weights of the candidate sets only (by

calling a function depending on the speci�c application ! Algorithm 1, step

7). All other weights can be derived from those weights.

Now we are able to put all pieces together and to turn them into an algorithm.

6 The TITANIC Algorithm

The pseudo-code is given in Algorithm 1. A list of notations is provided in

Table 2.

Algorithm 1 Titanic

1) Weigh(f;g);

2) K0 f;g;

3) k 1;

4) forall m 2M do fmg:p s ;:s;

5) C ffmg j m 2Mg;

6) loop begin

7) Weigh(C);

8) forall X 2 Kk�1 do X:closure Closure(X);

9) Kk fX 2 C j X:s 6= X:p sg;

10) if Kk = ; then exit loop ;

11) k ++;

12) C Titanic-Gen(Kk�1);

13) end loop ;

14) return
Sk�1
i=0 fX:closure j X 2 Kig.

Table 2

Notations used in Titanic

k is the counter which indicates the current iteration. In the kth itera-

tion, all key k-sets are determined.

Kk contains after the kth iteration all key k-sets K together with their

weight K:s and their closure K:closure.

C stores the candidate k-sets C together with a counter C:p s which

stores the minimum of the weights of all (k � 1)-subsets of C. The

counter is used in step 9 to prune all non-key sets.

The algorithm starts with determining the weight of the empty set (step 1)

and stating that it is always a key set (step 2). Then all 1-sets are candidate

sets by de�nition (steps 4+5).

In later iterations, the candidate k-sets are determined by the function

Titanic-Gen (step 12 ; Algorithm 2) which is (except step 5) a straight-

forward implementation of Proposition 7. The result of step 5 of Algorithm 2

will be used in step 9 of Algorithm 1 for pruning the non-key sets according

to Proposition 8(2).

Once the candidate k-sets are determined, the function Weigh(X) is called

to compute, for each X 2 X , the weight of X and stores it in the variable X:s

(step 7).

Algorithm 2 Titanic-Gen

Input: Kk�1, the set of key (k � 1)-sets K with their weight K:s.

Output: C, the set of candidate k-sets C

with the values C:p s := minfs(C n fmg j m 2 Cg.

The variables p s assigned to the sets fm1; : : : ; mkg which are generated in

step 1 are initialized by fm1; : : : ; mkg:p s smax.

1) C ffm1 < m2 < : : : < mkg j fm1; : : : ; mk�2; mk�1g; fm1; : : : ; mk�2; mkg

2) forall X 2 C do begin eb 2 Kk�1g;

3) forall (k � 1)-subsets S of X do begin

4) if S =2 Kk�1 then begin C C n fXg; exit forall ; end;

5) X:p s min(X:p s; S:s);

6) end;

7) end;

8) return C.

Algorithm 3 Closure(X) for X 2 Kk�1

1) Y X;

2) forall m 2 X do Y Y [(X n fmg):closure;

3) forall m 2M n Y do begin

4) if X [fmg 2 C then s (X [fmg):s

5) else s minfK:s j K 2 K; K � X [fmgg;

6) if s = X:s then Y Y [fmg

7) end;

8) return Y .

Remark. In the case of concept lattices,Weigh determines the weights (i. e.,

the supports) of all X 2 X with a single pass of the context (see Section 7.1).

This is the reason why we call the function Weigh for a set of sets instead of

calling it for each set separately. In general, computing the weights of di�erent

sets simultaneously may or may not be more eÆcient than doing it separately,

depending on the application.

For those sets which remained from the pruning (step 9) in the previous pass

(and which are now known to be key sets), their closures are computed (step 8

; Algorithm 3). The Closure function (Algorithm 3) is a straight-forward

implementation of Proposition 4 (steps 3{7) and Proposition 9 (step 5) plus

an additional optimization (step 2).

In step 9 of Algorithm 1, all candidate k-sets which are not key sets are pruned

according to Proposition 8 (2). Algorithm 1 terminates, if there are no key k-

sets left (step 10). Otherwise the next iteration begins (step 11).

The correctness of the algorithm is proved by the theorems in the previous

section. Examples for the algorithm are given in the next section.

7 Computing (Iceberg) Concept Lattices with TITANIC

In the sequel we will show that, for a given formal context, the support func-

tion ful�lls the conditions of De�nition 5 for being compatible to the closure

operator h(X) := X 00 . Hence computing concept lattices is a typical applica-

tion of the problem. We will also discuss how to modify the closure operator

such that the problem description applies to iceberg concept lattices as well.

We demonstrate the Titanic algorithm by two examples: computing a con-

cept lattice, and computing an iceberg concept lattice. For other applications

(for instance those listed in Section 8), only the Weigh function has to be

adapted.

7.1 Computation of Concept Lattices

In the following, we will use the composed function B 7! B00, for B � M . It

is (by Theorem 3) a closure operator on M . The related closure system (i. e.,

the set of all B � M with B00 = B) is by Lemma 2 exactly the set of the

intents of all concepts of the context. The structure of the concept lattice is

hence already determined by this closure system. Therefore we restrict our-

selves to the computation of the closure system of all concept intents in the

sequel. The computation makes extensive use of the support function intro-

duced in De�nition 3. We show that the support function ful�lls the conditions

of De�nition 5.

Lemma 10 Let X; Y �M .

(1) X � Y =) supp(X) � supp(Y)

(2) X 00 = Y 00 =) supp(X) = supp(Y)

(3) X � Y ^ supp(X) = supp(Y) =) X 00 = Y 00

Proof. 1. Let X � Y . Then Y 0 � X 0 by Lemma 1, which implies

supp(Y) =
jY 0j

jGj
�
jX 0j

jGj
= supp(X).

2. X � Y () X 00 = Y 00 () X 000 = Y 000 () X 0 = Y 0 =)

s(X) =
jX 0j

jGj
=
jY 0j

jGj
= s(Y) :

Algorithm 4 The Weigh algorithm for concept lattices

1) forall X 2 X do X:s 0;

2) forall g 2 G do

3) forall X 2 Subsets(g0;X) do X:s ++;

4) forall X 2 X do X:s X:s
jGj

;

3. supp(X) = supp(Y) implies jX 0j = jY 0j, and X � Y implies X 0 � Y 0.

Hence X 0 = Y 0, since X 0 and Y 0 are �nite. It follows X 00 = Y 00. 2

Corollary 11 The support count is a weight function which is compatible with

the closure operator X 7! X 00.

Thus we can use Titanic for computing concept lattices. In this special ap-

plication, we can bene�t from two optimizations:

(1) In Algorithm 1, we can | in the case of (iceberg) concept lattices |

replace step 1 by

10) ;:s 1

since we know that supp(;) = 1. We avoid one call of theWeigh function.

(2) For concept lattices, Weigh determines the weights | that is, the sup-

ports | of allX 2 X with a single pass over the context. This is (together

with the fact that only maxfjXj j X � M is candidate setg passes are

needed) the reason for the eÆciency of Titanic. The Weigh algorithm

for concept lattices is given in Algorithm 4. Subsets(Y;X) returns, for

Y �M and X � P(M), all X 2 X with Y � X. It uses a tree structure

with hash tables (as described in [PBTL98]) to eÆciently encode X .

Example. For explaining how Titanic works, we will use the mushroom

example in Figure 1 again, but will reduce it further to the �rst �ve attributes

(see Figure 8).

In the �rst pass, the algorithm deals with the empty set and all 1-sets. It

returns the results for k = 0 and k = 1:

Mushroom 1
Mushroom 2
Mushroom 3
Mushroom 4
Mushroom 5
Mushroom 6
Mushroom 7
Mushroom 8
Mushroom 9
Mushroom 10

ed
ib

le
 (

e)
po

is
on

ou
s

(p
)

ca
p

sh
ap

e:
 c

on
ve

x
(c

)
ca

p
sh

ap
e:

 fl
at

 (
l)

ca
p

su
rf

ac
e:

 fi
br

ou
s

(i)

edible (e)

poisonous (p)cap shape: convex (c)

cap shape: flat (l)

cap surface: fibrous (i)

Mushroom 1

Mushroom 2 Mushroom 3
Mushroom 4Mushroom 5

Mushroom 6

Mushroom 7
Mushroom 8

Mushroom 9

Mushroom 10

Fig. 8. Example for the Titanic algorithm

k = 0:

step 1 step 2

X X:s X 2 Kk?

; 1 yes

k = 1:

steps 4+5 step 7 step 9

X X:p s X:s X 2 Kk?

feg 1 6=10 yes

fpg 1 4=10 yes

fcg 1 4=10 yes

flg 1 6=10 yes

fig 1 7=10 yes

Step 8 returns: ;:closure ;

Then the algorithm repeats the loop for k = 2; 3, and 4:

k = 2:

step 12 step 7 step 9

X X:p s X:s X 2 Kk?

fe; pg 4=10 0 yes

fe; cg 4=10 4=10 no

fe; lg 6=10 2=10 yes

fe; ig 6=10 4=10 yes

fp; cg 4=10 0 yes

fp; lg 4=10 4=10 no

fp; ig 4=10 3=10 yes

fc; lg 4=10 0 yes

fc; ig 4=10 2=10 yes

fl; ig 6=10 5=10 yes

Step 8 returns: feg:closure feg

fpg:closure fp; lg

fcg:closure fc; eg

flg:closure flg

fig:closure fig

k = 3:

step 12 step 7 step 9

X X:p s X:s X 2 Kk?

fe; l; ig 2=10 2=10 no

fp; c; ig 4=10 0 yes

fc; l; ig 4=10 0 yes

Step 8 returns: fe; pg:closure fe; p; c; l; ig

fe; lg:closure fe; l; ig

fe; ig:closure fe; ig

fp; cg:closure fe; p; c; l; ig

fp; ig:closure fp; l; ig

fc; lg:closure fe; p; c; l; ig

fc; ig:closure fe; c; ig

fl; ig:closure fl; ig

k = 4:

Step 12 returns the

empty set. Hence there

is nothing to weigh in

step 7. Step 9 sets K4

equal to the empty set;

and in step 10, the loop

is exited.

Step 8 returns: fp; c; ig:closure fe; p; c; l; ig

fc; l; ig:closure fe; p; c; l; ig

Finally the algorithm collects all concept intents (step 14):

;, feg, fp; lg, fc; eg, flg, fig, fe; p; c; l; ig,

fe; l; ig, fe; ig, fp; l; ig, fe; c; ig, fl; ig

(which are exactly the intents of the concepts of the concept lattice in Fig-

ure 8). The algorithm determined the support of 5 + 10 + 3 = 18 attribute

sets in three passes of the database.

7.2 Equipping Titanic for Iceberg Concept Lattices

The structure of an iceberg concept lattice is determined by the semi-lattice

of its frequent intents. If we add the set M (which is not frequent in general)

to the set of frequent intents, it becomes a closure system. The next lemma

presents its closure operator.

Lemma 12 Let K := (G;M; I) be a context, and let minsupp 2 [0; 1]. The set

F := fB � M j (A;B) 2 B(K); supp(B) � minsuppg [fMg is a closure sys-

tem on M . Its closure operator is given by h(X) := X 00 if supp(X) � minsupp

and h(X) := M else. The weight function s(X) := supp(X) if supp(X) �

minsupp and s(X) := �1 else is compatible with the closure operator.

Proof. eF := fB �M j supp(B) � minsuppg[fMg is a closure system, since

it is closed under arbitrary intersections. Int(K) := fB �M j (A;B) 2 B(K)g

is a closure system by Theorem 3. Hence F is | as intersection of the two

closure systems eF and Int(K) | also a closure system. Verifying that h is the

related closure operator and that s is compatible is straightforward. 2

The lemma shows that the Titanic algorithm as presented in Section 6 can

directly be applied to iceberg concept lattices. However we can bene�t from

the fact that weight �1 indicates that the closure of the set is the whole setM .

In this case we can improve the algorithm. The improved version is discussed

now.

Algorithm 5 di�ers from Algorithm 1 in steps 1, 10, and 14; Algorithm 6 di�ers

from Algorithm 2 in steps 1 and 4; and Algorithm 7 is extending Algorithm 3

by step 1. We discuss these di�erences step by step:

� Algorithm 5, step 1: See the remark about the �rst optimization in Sec-

tion 7.1.

� Algorithm 5, step 10: The loop can be exited when no or only infrequent

key sets remain, as they are not used for generating candidate sets in the

next iteration (see Algorithm 6, step 1)

� Algorithm 5, step 14: The algorithm returns only frequent intents, i. e. only

closures of frequent key sets.

Algorithm 5 Titanic improved for iceberg concept lattices

1) ;:s 1;

2) K0 f;g;

3) k 1;

4) forall m 2M do fmg:p s ;:s;

5) C ffmg j m 2Mg;

6) loop begin

7) Weigh(C);

8) forall X 2 Kk�1 do X:closure Closure(X);

9) Kk fX 2 C j X:s 6= X:p sg;

10) if fX 2 Kk j X:s 6= �1g = ; then exit loop ;

11) k ++;

12) C Titanic-Gen(Kk�1);

13) end loop ;

14) return
Sk�1
i=0 fX:closure j X 2 Ki; X:s 6= �1g.

Algorithm 6 Titanic-Gen for iceberg concept lattices

Input: Kk�1, the set of key (k � 1)-sets K with their support K:s.

Output: C, the set of candidate k-sets C with the values

C:p s := minfs(C n fmg j m 2 Cg.

The variables p s assigned to the sets fm1; : : : ; mkg which are generated in

step 1 are initialized by fm1; : : : ; mkg:p s 1.

1) C ffm1 < m2 < : : : < mk�1 < mkg j fm1; : : : ; mk�2; mk�1g;

fm1; : : : ; mk�2; mkg 2 fK 2 Kk�1 j K:s 6= �1gg;

2) forall X 2 C do begin

3) forall (k � 1)-subsets S of X do begin

4) if S =2 Kk�1 or S:s = �1 then begin C C n fXg; exit forall ; end;

5) X:p s min(X:p s; S:s);

6) end;

7) end;

8) return C.

Algorithm 7 Closure for iceberg concept lattices

1) if X:s = �1 then return M ;

2) Y X;

3) forall m 2 X do Y Y [(X n fmg):closure;

4) forall m 2M n Y do begin

5) if X [fmg 2 C then s (X [fmg):s

6) else s minfK:s j K 2 K; K � X [fmgg;

7) if s = X:s then Y Y [fmg

8) end;

9) return Y .

� Algorithm 6, step 1: Only frequent key sets are used to construct new can-

didate sets. See next item.

� Algorithm 6, step 4: S is a candidate set only if all (k� 1)-subsets of S are

frequent key sets, because sets containing an infrequent key set are known

not to be key sets.

� Algorithm 7, step 1: If the weight of a set is �1, its closure must be M by

Lemma 12.

As before, the functionWeigh(X) determines, in one pass of the context, for

each X 2 X the support of X and stores it in the variable X:s. If s(X) <

minsupp, then Weigh returns X:s �1.

Example. Although Titanic only needs three passes of the database to com-

pute the iceberg lattice in Figure 3 (and four passes for the one in Figure 5),

we decided not to use it as example for explaining the mechanism of Titanic

for iceberg lattices. The reason is, that at the �rst pass the algorithm has

to handle 80 candidate itemsets of size one. Of course, this is no problem in

praxis, but is too large for demonstration purposes. Therefore we reuse the

context in Figure 8, and show the computation of its iceberg concept lattice

for minsupp = 30%.

In the �rst pass, the algorithm deals with the empty set and all 1-sets. It

returns the results for k = 0 and k = 1. As no infrequent sets are considered

here, the results are exactly the same as in Example 7.1:

k = 0:

step 1 step 2

X X:s X 2 Kk?

; 1 yes

k = 1:

steps 4+5 step 7 step 9

X X:p s X:s X 2 Kk?

feg 1 6=10 yes

fpg 1 4=10 yes

fcg 1 4=10 yes

flg 1 6=10 yes

fig 1 7=10 yes

Step 8 returns: ;:closure ;

Then the algorithm repeats the loop for k = 2. Here, the �rst infrequent sets

are reached:

k = 2:

step 12 step 7 step 9

X X:p s X:s X 2 Kk?

fe; pg 4=10 �1 yes

fe; cg 4=10 4=10 no

fe; lg 6=10 �1 yes

fe; ig 6=10 4=10 yes

fp; cg 4=10 �1 yes

fp; lg 4=10 4=10 no

fp; ig 4=10 3=10 yes

fc; lg 4=10 �1 yes

fc; ig 4=10 �1 yes

fl; ig 6=10 5=10 yes

Step 8 returns: feg:closure feg

fpg:closure

fp; lg

fcg:closure

fc; eg

flg:closure flg

fig:closure fig

Remark. As the weight of the key sets fe; pg, fe; lg, fc; lg, and fc; ig is

�1, we know that these sets are infrequent (with respect to our minimum

support threshold of 30%). In the corresponding closure system, they will

hence generate the whole set M . These infrequent key sets are important if

we want to provide a basis for association rules. See [STBPL01] for details.

If our aim is conceptual clustering, we can neglect these infrequent key sets

and can improve the performance of the algorithm by modifying step 9 in

Algorithm 5 to

90) Kk fX 2 C j X:s 6= X:p s and X:s 6= 1g :

This would yield `yes' instead of `no' in the last column for the �ve sets

mentioned above.

k = 3:

Step 12 returns the

empty set (because of

the condition K:s 6= �1

in step 1 of Algorithm

2). Hence there is noth-

ing to weigh in step 7.

Step 9 sets K3 equal

to the empty set; and

in step 10, the loop is

exited.

Step 8 returns: fe; pg:closure M

fe; lg:closure M

fe; ig:closure fe; ig

fp; cg:closure M

fp; ig:closure fp; l; ig

fc; lg:closure M

fc; ig:closure M

fl; ig:closure fl; ig

Finally the algorithm collects all frequent concept intents (step 14):

;, feg, fp; lg, fc; eg, flg, fig, fe; ig, fp; l; ig, fl; ig

The resulting concept iceberg lattice is shown in Figure 9.

100%

60%

30%

poisonous

cap shape: flatedible

40% 50%

60%

cap surface: fibrous

40%
30%

cap shape: convex
60%

Fig. 9. Iceberg concept lattice for the context in Figure 8 for minsupp = 30%

8 Some Typical Applications

In Section 3, we have already discussed the use of (iceberg) concept lattices for

knowledge discovery and conceptual clustering. Here we present two examples,

in which iceberg concept lattices have been applied:

Database marketing. The purpose of database marketing is the study of

customers and their buying behavior in order to create and validate market-

ing strategies. In [HSWW00], the use of iceberg concept lattices for database

marketing in a Swiss department store is discussed in more detail. In that

scenario, the object set G consists of all customers of the warehouse paying by

since 1924until 1973

since 1934

since 1944

until 1963
unknown

100,00

47,7546,04

44,3944,77

37,01

35,23

33,97 41,41

34 0330 61

50,98

Fig. 10. Iceberg concept lattice for customers clustered by their year of birth.

credit card, and the attribute set M consists of attributes describing the cus-

tomers (e. g., `lives in Western Switzerland') and their buying behavior (e. g.,

`has spent more than 1000 Swiss francs in the last year'). For a given set X

of attributes, the weight function returns the number of customers ful�lling

all attributes in X. By decreasing the minimum support, one can study the

customer clusters in more and more detail. In Figure 10, for instance, the

customers of the warehouse are clustered according to their year of birth. The

minimum support threshold is set to 0.3, i. e., all concepts whose extents do

not comprise at least 30% of all customers, are pruned.

Ontology Learning. Ontologies are \explicit speci�cation[s] of a conceptu-

alization" [Gr94]. They usually consist of a set of concepts (not to be confused

with formal concepts from FCA), a hierarchical is-a relation and other (non-

hierarchical) relations between the concepts, and eventually axioms describing

constraints on the relations and concepts. One task in learning ontologies from

data is the construction of the is-a hierarchy. Suppose that the concepts are

already learned (e. g., by applying linguistic and statistical methods [MaS00])

and stored in the setM . The set G contains instances, or documents annotated

with the concepts. The relation I indicates if an instance belongs to a concept,

or if a document is annotated with a concept. In [SM01], this approach has

been used in FCA{Merge, a technique for supporting the merging of on-

tologies. There, Titanic uses the weight function which assigns to a set X of

ontology concepts the number of documents/instances related to all concepts

in X. The resulting iceberg concept lattice provides an is-a hierarchy on the

set of the ontology concepts. Additionally, it suggests new concepts which may

simplify the structure of the concept hierarchy.

The use of (iceberg) concept lattices is not only restricted to knowledge dis-

covery. Here we give some more examples of typical applications, in which

FCA has been successfully applied in the past (before the introduction of Ti-

tanic). Their purpose is to show that the weight function (whose existence

is a necessary condition for the applicability of Titanic) naturally appears in

a wide variety of domains.

Con�guration space analysis. In software re-engineering, one task is to

analyze the source code of a given program where no (or relatively few) docu-

mentation is given. In [KS94], the use of Formal Concept Analysis for analyzing

the con�guration space of C++ programs is discussed. In the described sce-

nario, iceberg concept lattices could be introduced quite naturally. The set G

of objects contains the lines of code, the set M consists basically of the C++

preprocessor symbols which appear in the code, and the relation I indicates

which lines of code are governed by which preprocessor symbols. Instead of

computing the whole concept lattice, one can restrict the computation to the

top-level groupings of code pieces by using Titanic. The weight function re-

turns, for a set X of preprocessor symbols, the number of lines of code which

are governed by all preprocessor symbols in X.

Transformation of class hierarchies. In object-oriented languages, one

aim is to simplify the class hierarchy according to a (number of) given pro-

gram(s). In [ST98], this problem has been attacked by using concept lattices.

In the scenario, the setM of attributes contains all data members and methods

of a given class hierarchy, and the set G of objects consists of all variables and

pointers of the program(s). The relation I basically indicates which variables

and pointers are related to which data members and methods.The resulting

concept lattice provides an improved hierarchy which can be used for restruc-

turing the class hierarchy according to software engineering principles without

the need to modify the source code. The computation of the concept lattice

can be done by using as weight function the function which returns, for a given

set X of data members and methods, the number of variables and pointers

related to all elements in X.

Another situation where a weight function arises naturally in the computation

of a closure system is the following. This scenario is more diÆcult to state in

terms of a formal context:

Discovery of functional dependencies. One important task of logical

database tuning is the discovery of minimal functional dependencies from

database relations [HKPT99,LPL00]. This is equivalent to computing a clo-

sure system on the set M of all database attributes. The closed sets are just

those which are closed under all functional dependencies which hold in the

database. Titanic can be applied for this computation, using as weight of a

given attribute set X the minimal number of rows which have to be deleted

from the database such that X is closed under all functional dependencies

which are valid for the remaining rows. This weight function is derived from

the g3 measure introduced in [KM95]. For this application, all `min' in this

paper have to be replaced by `max' (refer to Remark 2).

9 Complexity and Experimental Evaluation

There are several algorithms known for computing concept lattices: [MiS89],

[GR91], [GM94], [NR99], [PBTL99a], [PBTL99b], and [PHM00]. The most

eÆcient algorithm for practical applications to the best of our knowledge is

Ganter's Next-Closure algorithm [GR91]; the algorithm with the best worst-

case complexity is the one from Nourine and Raynaud presented in [NR99].

The latter one substantiates in an eÆcient way an approach proposed by

R. Wille [Wi82]. In this section, we will compare Titanic with these two

algorithms.

The problem of computing concept lattices has exponential worst-case com-

plexity: The context K := (f1; : : : ; ng; f1; : : : ; ng; 6=) has n objects and n at-

tributes, while its concept lattice B(K) has 2n concepts. Therefore all three

algorithms have an exponential complexity. However, for practical purposes, it

is interesting to examine the situation in more detail. In the sequel, we assume

that jM j � jGj.

Ganter's algorithm computes the concepts sequentially. In [GR91] is shown

that the complexity for computing one concept is in O(jGj � jM j2), so that the

overall complexity could be stated as O(jB(K)j�(jGj�jM j2)). For each concept,

the context has to be accessed. If we consider additionally the access time db

of the formal context (which can be signi�cantly large when the context is too

large to be stored in main memory!), we obtain O(jB(K)j � (db+ jGj � jM j2)).

The algorithm of Nourine and Raynaud also computes the concepts sequen-

tially. For each concept, the algorithm needs time O((jM j + jGj) � jGj), thus

improving Ganter's worst-case complexity. Both algorithms need to access the

context for each concept to be computed: If we add the access time db of

the formal context to Nourine and Raynaud's algorithm, it is in O(jB(K)j �

(db+(jM j+ jGj) � jGj)). On the other hand, Nourine and Raynaud's algorithm

needs exponential space, since the whole lattice must be stored during run-

time; while Next-Closure needs the context only, and has thus linear space

complexity.

Both algorithms have di�erent bene�ts. While Next-Closure needs only linear

space, Nourine and Raynaud's algorithm provides the best worst-case com-

plexity known so far. On the other hand, Next-Closure can be easily adapted

to eÆciently compute iceberg lattices, while the structure of Nourine and

Raynaud's algorithm prohibits this. Furthermore, for the latter algorithm, the

need to access the results computed so far makes it impractical for very large

databases (contexts). Therefore, we will compare Titanic in the experimental

evaluation with Ganter's Next-Closure algorithm only.

From a complexity point of view, Titanic is in between those two algorithms.

Its worst-case space complexity is reached, when all
j
jM j

2

k
-sets are candidate

sets. Then all these 0
B@ jM jj

jM j

2

k
1
CA =

jM j � : : : �
�j

jM j

2

k
+ 1

�
l
jM j

2

m
� : : : � 1

sets have to be stored. This is the widest level of the powerset of jM j, and its

width grows exponentially relatively to jM j.

Titanic's time complexity can be determined as follows: The algorithm ac-

cesses the context as often as the size L of the largest candidate set is. This

size is bounded by jM j, the height of the powerset of M . At each access, the

algorithm considers a number of candidate sets. Let N be the maximal num-

ber of candidate sets considered at one of the accesses of the context. Then

the time complexity is O(L � (db + N � jGj � jM j)). By using the upper limits

for L and N , we obtain

O

0
B@jM j �

0
B@db+

0
B@ jM jj

jM j

2

k
1
CA � jGj � jM j

1
CA
1
CA :

We see that the number of accesses of the context is at most jM j (rather than

2jM j as for the other two algorithms), which is especially important, when the

context is so large that it doesn't �t into main memory. In that case, db can

be a signi�cant (or even the dominant) time factor.

The results show Titanic's worst-case complexity. In praxis the values for

L and N are usually much lower. Especially for N (which contributes the

exponentiality), the upper limit is, in the average case for computing iceberg

concept lattices, the number of 2-itemsets, which is at most

0
B@ jM j

2

1
CA =

jM j � (jM j � 1)

2
:

We evaluated Titanic experimentally also. For our evaluation, a version of

the Titanic algorithm was implemented in C++ together with a rewriting

of Ch. Lindig's C version of Next-Closure [Li97]. The comparisons took place

on a Pentium III running at 600MHz, with 512MB of main memory, and were

performed on the Mushroom (8,416 objects, 80 attributes) and Internet

(10,000 objects, 141 attributes) databases, both available from the UCI KDD

Archive (http://kdd.ics.uci.edu/), with a varying number of objects.

The results are visualized in Figures 11 and 12, and listed in detail in Table 3.

They show that on the weakly correlated Internet database, Next-Closure

Table 3

Database characteristics and evaluation results

Computation time (sec.)

Database # of objects # of attr. # of concepts Next-Closure Titanic

Internet 1,000 141 15,107 16.49 31.29

2,000 141 31,719 66.32 82.70

5,000 141 73,026 381.95 253.00

7,500 141 100,706 803.17 368.44

10,000 141 124,574 1431.86 480.34

Mushrooms 2,500 79 5,394 31.13 14.87

5,000 79 9,064 108.38 20.14

8,416 80 32,086 527.74 97.93

0

200

400

600

800

1000

1200

1400

1600

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im
e
(s
)

Number of objects

Titanic
Next-Closure

Fig. 11. Comparison of Titanic and Next-Closure on the Internet database

0

100

200

300

400

500

3000 4000 5000 6000 7000 8000

T
im
e
(s
)

Number of objects

Titanic
Next-Closure

Fig. 12. Comparison of Titanic and Next-Closure on the Mushrooms database

is faster for few attributes, but takes three times the time of Titanic for the

whole dataset. On the strongly correlatedMushrooms database, Titanic is

two to �ve times faster than Next-Closure.

In [BTPSL00], we showed that a modi�ed version of Titanic for computing

association rules called Pascal (which computes all frequent itemsets, and

not only the closed ones) outperforms the algorithms Apriori [AS94] and Max-

Miner [Ba98] on strongly correlated data sets (and is comparable with those

algorithms on weakly correlated data sets).

The problem of computing concept lattices has exponential complexity. This

shows that one cannot expect from any algorithm | however robust it is

claimed to be | that it solves the problem in reasonable time in the worst

case. However our experimental results with Titanic show that under normal

conditions (and if handled with care) a strong and waterproof algorithm may

improve the exploration of unknown regions of knowledge.

10 Conclusion

The paper provides two contributions: iceberg concept lattices and the Ti-

tanic algorithm. It shows the use of iceberg concept lattices as a conceptual

clustering method, a condensed representation of frequent itemsets, and an

eÆcient visualization technique for conceptual hierarchies derived from very

large databases. Titanic is presented as an algorithm for eÆciently deter-

mining closure systems for a given weight function. Typical examples for its

application are listed in the paper. The mathematical foundations of the al-

gorithm are introduced, and the algorithm is experimentally evaluated.

References

[AIS93] R. Agrawal, T. Imielinski, A. Swami. Mining association rules between

sets of items in large databases. Proc. SIGMOD Conf., 1993, 207{216

[AS94] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.

Proc. VLDB Conf., 1994, 478{499 (Expanded version in IBM Report

RJ9839)

[AN68] A. Arnauld, P. Nicole: La logique ou l'art de penser | contenant, outre

les r�egles communes, plusieurs observations nouvelles, propres �a former

le jugement. Ch. Saveux, Paris 1668

[BPTSL00] Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, L. Lakhal: Mining

Minimal Non-Redundant Association Rules Using Frequent Closed

Itemsets. In: J. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.{K. Lau, C.

Palamidessi, L.M. Pereira, Y. Sagiv, P. J. Stuckey (eds.): Computational

Logic | CL. Proc. 1st Intl. Conf. on CL (6th Intl. Conf. on Database

Systems). LNAI 1861, Springer, Heidelberg 2000, 972{986

[BTPSL00] Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, L. Lakhal: Mining

Frequent Patterns with Counting Inference. SIGKDD Explorations 2(2),

Special Issue on Scalable Algorithms, 2000, 71{80

[Ba98] R. J. Bayardo: EÆciently Mining Long Patterns from Databases. Proc.

SIGMOD '98, 1998, 85{93

[BSWWZ00] K. Becker, G. Stumme, R. Wille, U. Wille, M. Zickwol�: Conceptual

Information Systems Discussed Through an IT-Security Tool. In:

R. Dieng, O. Corby (eds.): Knowledge Engineering and Knowledge

Management. Methods, Models, and Tools. Proc. EKAW '00. LNAI

1937, Springer, Heidelberg 2000, 352{365

[CR93] C. Carpineto, G. Romano: GALOIS: An Order-Theoretic Approach to

Conceptual Clustering. Machine Learning. Proc. ICML 1993, Morgan

Kaufmann Prublishers 1993, 33{40

[CS00] R. Cole, G. Stumme: CEM { A Conceptual Email Manager. In: B.

Ganter, G. W. Mineau (eds.): Conceptual Structures: Logical, Linguistic,

and Computational Issues. Proc. ICCS '00. LNAI 1867, Springer,

Heidelberg 2000, 438{452

[DDJL96] H. Dicky, C. Dony, M. Huchard, T Libourel: On automatic class insertion

with overloading. OOPSLA 1996, 251{267

[GR91] B. Ganter, K. Reuter: Finding all closed sets: A general approach. Order.

Kluwer Academic Publishers, 1991, 283{290

[GW99] B. Ganter, R. Wille: Formal Concept Analysis: Mathematical

Foundations. Springer, Heidelberg 1999

[GMMMAC98] R. Godin, H. Mili, G. Mineau, R. Missaoui, A. Ar�, T. Chau: Design

of class hierarchies based on concept (Galois) lattices. TAPOS 4(2),

1998, 117{134

[GM94] R. Godin, R. Missaoui: An incremental concept formation approach for

learning from databases. TCS 133(2): 387{419 (1994)

[Gr94] T. Gruber: Towards principles for the design of ontologies used for

knowledge sharing. Intl. J. of Human and Computer Studies 46(2/3),

1997, 293{310

[HSWW00] J. Hereth, G. Stumme, U. Wille, R. Wille: Conceptual Knowledge

Discovery and Data Analysis. In: B. Ganter, G. Mineau (eds.):

Conceptual Structures: Logical, Linguistic, and Computational Struc-

tures. Proc. ICCS2000. LNAI 1867, Springer, Heidelberg 2000, 421{437

[HKPT99] Y. Huhtala, J. K�arkk�ainen, P. Porkka, H. Toivonen: TANE: an eÆcient

algorithm for discovering functional and approximate dependencies. The

Computer Journal 42(2), 1999, 100{111

[KM95] J. Kivinen, H. Mannila: Approximate inference of functional

dependencies from relations. TCS 149(1), 1995, 129{149

[KS94] M. Krone, G. Snelting: On the inference of con�guration structures from

source code. Proc. 16th Intl. Conference on Software Engineering, May

1994, IEEE Comp. Soc. Press, 49{57

[Li97] Ch. Lindig: Concepts. ftp://ftp.ips.cs.tu-bs.de/pub/local/softech/misc/

concepts-0.3d.tar.gz, 1997. (Open Source implementation of concept

analysis in C)

[LPL00] S. Lopes, J.{M. Petit, L. Lakhal: EÆcient discovery of functional

dependencies and Amstrong relations. Proc. EDBT 2000. LNCS 1777.

Springer, Heidelberg 2000, 350{364

[Lu91] M. Luxenburger: Implications partielles dans un contexte. Math�emati-

ques, Informatique et Sciences Humaines 29(113), 1991, 35{55

[MW97] K. Mackensen, U. Wille: Qualitative Text Analysis Supported by

Conceptual Data Systems. Quality and Quantity: Internatinal Journal

of Methodology 2(33), 1999, 135{156

[MaS00] A. M�adche, S. Staab: Mining Ontologies from Text. In: R.Dieng, O Corby

(eds.): Knowledge Engineering and Knowledge Management. Methods,

Models, and Tools. Proc. EKAW '00. LNAI 1937, Springer, Heidelberg

2000, 189{202

[MT97] H. Mannila, H. Toivonen: Levelwise Search and Borders of Theories in

Knowledge Discovery. Data Mining and Knowledge Discovery 1(3): 241-

258 (1997)

[Mi80] R. S. Michalski: Knowledge acquisition through conceptual clustering:

a theoretical framework and an algorithm for partitioning data into

conjunctive concepts. Policy Analysis and Information Systems 4(3),

1980, 219{244

[MG95] G. Mineau, G., R. Godin: Automatic Structuring of Knowledge Bases

by Conceptual Clustering. IEEE Transactions on Knowledge and Data

Engineering 7(5), 1995, 824{829

[MiS89] M. Missiko�, M. Scholl: An algorithm for insertion into a lattice:

application to type classi�cation. Proc. 3rd Intl. Conf. FODO 1989.

LNCS 367, Springer, Heidelberg 1989, 64{82

[NR99] L. Nourine, O. Raynaud: A fast algorithm for building lattices.

Information Processing Letters 71, 1999, 199{204

[PBTL98] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal: Pruning Closed Itemset

Lattices for Association Rules. 14�emes Journes Bases de Donnes

Avances (BDA'98), Hammamet, Tunisia, 26{30 October 1998

[PBTL99a] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal: EÆcient mining of

association rules using closed itemset lattices. Journal of Information

Systems, 24(1), 1999, 25{46

[PBTL99b] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal: Discovering frequent

closed itemsets for association rules. Proc. ICDT '99. LNCS 1540.

Springer, Heidelberg 1999, 398{416

[PHM00] J. Pei, J. Han, R. Mao: CLOSET: An EÆcient Algorithm for Mining

Frequent Closed Itemsets. ACM SIGMOD Workshop on Research Issues

in Data Mining and Knowledge Discovery 2000, 21{30

[SSVWW93] P. Scheich, M. Skorsky, F. Vogt, C. Wachter, R. Wille: Conceptual

Data Systems. In: O. Opitz, B. Lausen, R. Klar (eds.): Information and

Classi�cation. Springer, Berlin-Heidelberg 1993, 72{84

[SS98] I. Schmitt, G. Saake: Merging inheritance hierarchies for database

integration. Proc. 3rd IFCIS Intl. Conf. on Cooperative Information

Systems, New York City, Nework, USA, August 20-22, 1998, 122{131

[ST98] G. Snelting, F. Tip: Reengineering class hierarchies using concept

analysis. Proc. ACM SIGSOFT Symposium on the Foundations of

Software Engineering, November 1998, 99{110

[StrW93] S. Strahringer, R. Wille: Conceptual clustering via convex-ordinal

structures. In: O. Opitz, B. Lausen, R. Klar (eds.): Information and

Classi�cation. Springer, Berlin-Heidelberg 1993, 85{98

[SM01] G. Stumme, A. Mdche: FCA{Merge: Bottom-Up Merging of Ontologies.

Proc. 17th Intl. Conf. on Arti�cial Intelligence (IJCAI '01). Seattle, WA,

USA, 2001, 225{230

[STBL01] G. Stumme, R. Taouil, Y. Bastide, L. Lakhal: Conceptual Clustering

with Iceberg Concept Lattices. Proc. GI{Fachgruppentre�en

Maschinelles Lernen '01. Universit�at Dortmund 763, Oktober 2001

[STBPL00] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, L. Lakhal:

Fast computation of concept lattices using data mining techniques.

Proc. 7th Intl. Workshop on Knowledge Representation Meets

Databases, Berlin, 21{22. August 2000. CEUR-Workshop Proceeding.

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/

[STBPL01] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, L. Lakhal: Intelligent

Structuring and Reducing of Association Rules with Formal Concept

Analysis. In: F. Baader. G. Brewker, T. Eiter (eds.): KI 2001:

Advances in Arti�cial Intelligence. Proc. KI 2001. LNAI 2174, Springer,

Heidelberg 2001, 335{350

[SWW98] G. Stumme, R. Wille, U. Wille: Conceptual Knowledge Discovery in

Databases Using Formal Concept Analysis Methods. In: J. M. _Zytkow,

M. Quafofou (eds.): Principles of Data Mining and Knowledge Discovery.

Proc. 2nd European Symposium on PKDD '98, LNAI 1510, Springer,

Heidelberg 1998, 450{458

[SW00] G. Stumme, R. Wille (eds.): Begri�iche Wissensverarbeitung {

Methoden und Anwendungen. Springer, Heidelberg 2000

[TPBL00] R. Taouil, N. Pasquier, Y. Bastide, L. Lakhal: Mining Bases for

Assocition Rules Using Closed Sets. Proc. 16th Intl. Conf. ICDE 2000,

San Diego, CA, US, February 2000, 307

[Vo95] F. Vogt, R. Wille: TOSCANA { A graphical tool for analyzing and

exploring data. LNCS 894, Springer, Heidelberg 1995, 226{233

[WTL97] K. Waiyamai, R. Taouil, L. Lakhal: Towards an object database approach

for managing concept lattices. Proc. 16th Intl. Conf. on Conceptual

Modeling, LNCS 1331, Springer, Heidelberg 1997, 299{312

[Wi82] R. Wille: Restructuring lattice theory: an approach based on hierarchies

of concepts. In: I. Rival (ed.). Ordered sets. Reidel, Dordrecht{Boston

1982, 445{470

[Wi84] R. Wille: Line diagrams of hierarchical concept systems. Int. Classif. 11,

1984, 77{86

[Wi92] R. Wille: Concept lattices and conceptual knowledge systems. Computers

& Mathematics with Applications 23, 1992, 493{515

[WMJ00] S. Wrobel, K. Morik, T. Joachims: Maschinelles Lernen und Data

Mining. In: G. Grz, C.{R. Rollinger, J. Schneeberger (eds.): Handbuch

der Knstlichen Intelligenz. 3. Au
age. Oldenbourg, Mnchen{Wien 2000,

517{597

[YLBC96] A. Yahia, L. Lakhal, J. P. Bordat, R. Cicchetti: iO2: An algorithmic

method for building inheritance graphs in object database design.

Proc. 15th Intl. Conf. on Conceptual Modeling. LNCS 1157, Springer,

Heidelberg 1996, 422{437

