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ABSTRACT
Social bookmarking systems and their emergent information struc-
tures, known as folksonomies, are increasingly important data sources
for Semantic Web applications. A key question for harvesting se-
mantics from these systems is how to extend and adapt traditional
notions of similarity to folksonomies, and which measures are best
suited for applications such as navigation support, semantic search,
and ontology learning. Here we build an evaluation framework to
compare various general folksonomy-based similarity measures de-
rived from established information-theoretic, statistical, and prac-
tical measures. Our framework deals generally and symmetrically
with users, tags, and resources. For evaluation purposes we fo-
cus on similarity among tags and resources, considering different
ways to aggregate annotations across users. After comparing how
tag similarity measures predict user-created tag relations, we pro-
vide an external grounding by user-validated semantic proxies based
on WordNet and the Open Directory. We also investigate the issue
of scalability. We find that mutual information with distributional
micro-aggregation across users yields the highest accuracy, but is
not scalable; per-user projection with collaborative aggregation pro-
vides the best scalable approach via incremental computations. The
results are consistent across resource and tag similarity.

Categories and Subject Descriptors
H.1.1 [Models and Principles]: Systems and Information Theory;
H.1.2 [Models and Principles]: User/Machine Systems; H.3.3 [Inf-
ormation Storage and Retrieval]: Information Search and Retrieval;
H.3.4 [Information Storage and Retrieval]: Systems and Software

General Terms
Algorithms, Design, Experimentation, Human Factors, Performance

Keywords
Social similarity, semantic grounding, ontology learning, Web 2.0

1. INTRODUCTION
We are transitioning from the “Web 1.0,” where information con-

sumers and providers are clearly distinct, to the so-called “Web 2.0”
in which anyone can easily annotate objects (sites, pages, media,
and so on) that someone else authored. These annotations take many
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forms such as classification, voting, editing, and rating. Social book-
marking systems [17] are increasingly popular among “Social Web”
applications. Their emergent information organizations, based on
free-form tag annotations, have become known as folksonomies.

From the perspective of critical Web applications such as search
engines, we see this as the second major transition in the brief history
of the Web. The first one occurred when researchers went beyond
the textual analysis of content by taking into account the hyperlinks
created by authors as implicit endorsements between pages, leading
to effective ranking and clustering algorithms such as PageRank [6].
Now folksonomies grant us access to a more explicit and semanti-
cally richer source of social annotation. They allow us to extend
the assessment of what a page is about from content analysis al-
gorithms to the collective “wisdom of the crowd.” If many people
agree that a page is about programming then with high probability it
is about programming even if its content does not include the word
‘programming.’ This bottom-up approach of collaborative content
structuring is able to counteract some core deficiencies of knowl-
edge management applications, such as the knowledge acquisition
bottleneck. The usage of folksonomy induced information and the
combination with Semantic Web technology is seen as the next tran-
sition towards the “Web 3.0.”

The fact that collaborative tagging leverages large-scale human
annotation of Web resources makes it a perfect candidate for boot-
strapping Semantic Web applications. Hereby, the notion of similar-
ity plays a crucial role. For example, keyword (tag) similarity sup-
ports navigation, keyword clustering, query expansion, tag recom-
mendation and ontology learning; and resource (page/site) similar-
ity supports result clustering, similarity search, ontology population
and again page recommendation and navigation. Figure 1 illustrates
three applications thereof.

Measures of semantic similarity between objects are naturally bas-
ed upon a precise understanding of how the object space is struc-
tured. The inherent tripartite data structure of folksonomies (con-
sisting of users, tags and resources) differs fundamentally from well-
studied schemes like ontologies or the Web’s link graph. Hence, a
key question is how to extend and adapt traditional content and link
analysis algorithms to folksonomies.

In this work, we focus on defining and analyzing semantic sim-
ilarity relationships obtained from mining socially annotated data.
As a large-scale evaluation of semantic relationships is a difficult
task, we perform a two-step experimentation: First, we compare the
ability of various tag similarity measures to predict user-created tag
relations from the social bookmarking system BibSonomy.org,
and second we provide an external grounding to reliable measures
validated by user studies on large and open reference data sets. Our
insights inform the choice of an appropriate measure, e.g. in a given
application context.
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Contributions and Outline
The similarity notions that we wish to derive from folksonomies rep-
resent bottom-up, emergent, social semantic relationships obtained
by aggregating the opinions of many users who are likely to have in-
consistent knowledge and semantic representations. There are many
ways to pursue such a goal and many open questions. For exam-
ple, should a relationship be stronger if many people agree that two
objects are related than if only few people do? Which weighting

Figure 1: Three applications utilizing relationships between ob-
jects induced by social media. Top: Given a tag, the social book-
marking system BibSonomy.org suggests semantically similar
tags. Middle: GiveALink.org leverages a similarity network
of resources to visualize search results [13]. Bottom: The online
tool at netr.it visualizes tag relationships generated from a
user’s Flickr profile.

schemes regulate best the influence of an individual? How does the
sparsity of annotations affect the accuracy of these measures? Are
the same measures most effective for both resource and tag similar-
ity? Which aggregation schemes retain the most reliable semantic
information? Which lend themselves to incremental computation?

We address all of the above questions here by describing an evalu-
ation framework to compare various general folksonomy-based sim-
ilarity measures. The main contributions of this paper are:

• A general and extensive foundation for the formulation of sim-
ilarity measures in folksonomies, spanning critical design di-
mensions such as the symmetry between users, resources, and
tags; aggregation schemes; exploitation of collaborative filter-
ing; and information-theoretic issues. Some of the measures
considered have been introduced and investigated before (cf.
[10]), but no systematic study including all dimensions of a
folksonomy and all measures exists to date about their appli-
cation to social similarity. (§ 3)

• An experimental assessment of the effectiveness of several
similarity measures for both tags and resources. For the for-
mer, we establish a comparison with user-created tag relations
to measure effectiveness. For both tags and resources, as a
second step we gauge the similarity measures against reliable
grounding measures validated by user studies on large and
open reference data sets. This evaluation addresses several
key limitations of traditional user based assessments. (§ 4)

• An analysis of the empirical evaluation results in the context
of their scalability, in particular their viability for practical
implementations in existing social bookmarking systems. A
clear trade-off between effectiveness and efficiency is demon-
strated and discussed. (§ 5)

2. BACKGROUND
Social bookmarking is a way to manage bookmarks online, for

easy access from multiple locations, and also to share them with
a community. There are many social bookmarking sites includ-
ing popular ones such as Del.icio.us, StumbleUpon.com,
CiteULike.org, BibSonomy.org, and too many others to list.
A number of early social bookmarking tools and their functionalities
were reviewed by Hammond et al. [17, 29].

While bookmarking and tagging may share several incentives [34],
they are separate processes; many people bookmark without tag-
ging [38]. The tagging approach has several limitations including
lack of structure [3], lack of global coherence [38], polysemy, and
word semantics [15]. Synonymy, the use of different languages, and
spelling mistakes may force users to search through numerous tags.
Navigation can be enhanced by suggesting tag relations grounded in
content-based features [1].

Collaborative tagging is often contrasted with more traditional
knowledge management approaches. Voss [46] provides evidence
that the difference between controlled and free indexing blurs with
sufficient feedback mechanisms. The weaknesses and strengths of
these different metadata mechanisms are compared by
Christiaens [11]. In prior work, we have contrasted peer-to-peer
knowledge management with tagging approaches [41].

Measuring the relationships among tags or tagged resources is
an active research area. Mika provides a model of semantic-social
networks for extracting lightweight ontologies from del.icio.
us [35]. Cattuto et al. use a variation of set overlap in the spirit
of TF-IDF to build an adjacency matrix of Web resources [9]. Wu
et al. [47] modify HITS to look for relationships between Web re-
sources. Hotho et al. [23] convert a folksonomy into an undirected
weighted network, used for computing a modified PageRank algo-
rithm called FolkRank for ranking query results. Semantic networks
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among tags have been built using co-occurrence [4, 44] and Jac-
card’s coefficient [18], also to reconstruct a concept hierarchy [19].
Relationships among users can also be extracted from tagging sys-
tems. Diederich and Iofciu use a cosine variant to compute sim-
ilarities between users [12]. Others have proposed alternative ap-
proaches for extracting taxonomic relations or inferring global se-
mantics from a folksonomy [43, 42, 16, 49]. In the context of social
network analysis, Liben-Nowell and Kleinberg [27] explore several
notions of node similarity for link prediction. Unlike all of the above
literature, here we introduce a systematic analysis of a broad range
of similarity measures that can be applied directly and symmetrically
to build networks of users, tags, or resources.

Closely related to the task of measuring the relatedness of tags
and resources is also the application domain of recommendations
in folksonomies. The literature is still sparse. Existing work can
be broadly divided into approaches that analyze the content of the
tagged resources with information retrieval techniques (e.g. [36,
7]), approaches that use collaborative filtering methods based on
the folksonomy structure (e.g. [48, 24]), and combinations of the
two [21]. Sarwar et al. built networks using variations of cosine
and correlation based similarity measures. Each type of network
was exploited after assembly for investigating two collaborative fil-
tering techniques [40]. Our approach differs in that we capture col-
laborative filtering in the similarity measure during network assem-
bly. Several studies and algorithms consider social annotations as
a means of improving Web search. Examples include studies to
compare the content of social networks with search engines [37, 20]
and enhancing search through the use of tags and rankings from so-
cial bookmarking systems [45, 33, 2]. In prior work, we addressed
scalability with collaborative filtering when assembling a resource-
by-resource similarity network in the social bookmarking system
GiveALink.org [32]. This discussion extends our prior work.

The empirical evaluation in this paper leverages externally vali-
dated semantic similarity measures for Web resources and tags, each
used as a grounding reference. In the case of resources, seman-
tic similarity refers to the degree of relatedness between two Web
sites or documents, as perceived by human subjects. Web direc-
tories such as the Open Directory Project (ODP, dmoz.org) pro-
vide user-compiled taxonomies of Web sites. Measures of seman-
tic similarity based on taxonomies are well studied [14]. Maguit-
man et al. extended Lin’s [28] information-theoretic measure to in-
fer similarity from the structure of general ontologies, both hierar-
chical and non-hierarchical [31, 30]. Such a measure, validated by
means of a user study, will serve as our grounding for resource sim-
ilarity. Jiang and Conrath [25] developed a notion of distance in
WordNet (wordnet.princeton.edu) that combines the taxo-
nomic path length with an information-theoretic similarity measure
by Resnik [39]. The Jiang-Conrath distance was validated experi-
mentally by means of user studies as well as by its superior perfor-
mance in the context of a spell-checking application [8]. Therefore
it will serve as our grounding for tag similarity.

3. SIMILARITY FRAMEWORK
Before diving into the details of the similarity measures that we

propose to explore, let us first review the representation that we as-
sume for the annotations to be mined.

3.1 The Triple Annotation Representation
Our approach is based on the triple representation widely adopted

in the Semantic Web community [23], which is closely related to
the triadic context in formal concept analysis [26]. A folksonomy
F is a set of triples. Each triple (u, r, t) represents user u annotat-
ing resource r with tag t. This is a highly flexible representation
for which efficient data store libraries exist. Folksonomies are read-

bob

alice

wired.com cnn.com

www2009.org

web tech

news

Figure 2: Example folksonomy. Two users (alice and
bob) annotate three resources (cnn.com, www2009.org,
wired.com) using three tags (news, web, tech). The triples
(u, r, t) are represented as hyper-edges connecting a user, a re-
source and a tag. The 7 triples correspond to the following 4
posts: (alice, cnn.com, {news}), (alice, www2009.org,
{web, tech}), (bob, cnn.com, {news}), (bob, wired.com,
{news, web, tech}).

ily represented via triples; a post (u, r, (t1, . . . , tn)) is transformed
into a set of triples {(u, r, t1), . . . , (u, r, tn)}. Note that hierarchi-
cal classifications can also be represented by triples by equating cat-
egories (or folders) with tags and applying inheritance relationships
in a straightforward way; a classification (u, r, t) implies {(u, r, t),
(u, r, t1), . . . , (u, r, tn)} for all ancestor classes ti of t. Therefore
the triple representation subsumes hierarchical taxonomies and folk-
sonomies. As an example, Fig. 2 displays seven triples correspond-
ing to a set of four posts by two users. In the following we use this
running example to illustrate different definitions of similarity.

We will define similarity measures σ(x, y) where x and y can
be two resources (pages, media, etc.) or tags (keywords, phrases,
categories, etc.). Since measures for similarity and relatedness are
not well developed for three-mode data such as folksonomies, we
consider various ways to obtain two-mode views of the data. In par-
ticular, we consider two-mode views in which the two dimensions
considered are dual — for example, resources and tags can be dual
views if resources are represented as sets of tags and vice-versa, or
if tags are represented as vectors of resources and vice-versa. We
focus on the development of information-theoretic similarity mea-
sures, which take into account the information/entropy associated
with each item.

3.2 Aggregation Methods
In reducing the dimensionality of the triple space, we necessarily

lose correlation information. Therefore the aggregation method is
critical for the design of effective similarity measures; poor aggre-
gation choices may negatively affect the quality of the similarity by
discarding informative correlations.

As mentioned above, we can define similarity measures for each
of the three dimensions (users, resources, tags) by first aggregating
across one of the other dimensions to obtain a two-mode view of
the annotation information. For evaluation purposes, we focus here
on resource-resource and tag-tag similarity, for which we have ref-
erence data as empirical grounding. Therefore we aggregate across
users, and obtain dual views of resources and tags, yielding dual
definitions for resource and tag similarity. To keep the notation a bit
simpler, let us make explicit the dimension of users along which we
aggregate, even though the discussion can be extended in a straight-
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forward way to aggregate across tags or resources. Below we con-
sider four approaches to aggregate user information.

3.2.1 Projection
The simplest aggregation approach is to project across users, ob-

taining a unique set of (r, t) pairs. If the triples are stored in a
database relation F , this corresponds to the projection operator in
relational algebra: πr,t(F ). Another way to represent the result of
aggregation by simple projection is a matrix with binary elements
wrt ∈ {0, 1} where rows correspond to resources (as binary vec-
tors, or sets of tags) and columns corresponds to tags (as binary vec-
tors, or sets of resources). All similarity measures are then derived
directly from this set information. As an example, the projected bi-
nary matrix for the folksonomy of Fig. 2 is reported below. Given a
resource and a tag, a 0 in the corresponding matrix element means
that no user associated that resource with that tag, whereas a 1 means
that at least one user has performed the indicated association.

news web tech
cnn.com 1 0 0

www2009.org 0 1 1
wired.com 1 1 1

3.2.2 Distributional
A more sophisticated form of aggregation stems from considering

distributional information associated with the set membership rela-
tionships between resources and tags. One way to achieve distribu-
tional aggregation is to make set membership fuzzy, i. e., weighted
by the Shannon information (log-odds) extracted from the annota-
tions. Intuitively, a shared tag may signal a weak association if it
is very common. Thus we will use the information of a tag (resp.
resource) x defined as − log p(x) where p(x) is the fraction of re-
sources (resp. tags) annotated with x.

Another approach is to count the users who agree on a certain
resource-tag annotation while projecting across users. This yields
a set of frequency-weighted pairs (r, t, wrt) where the weight wrt
is the number of users tagging r with t. Such a representation cor-
responds to a matrix with integer elements wrt, where rows are re-
sources vectors and columns are tag vectors. For the folksonomy of
Fig. 2, such a matrix is reported below. Similarity measures are then
derived directly from the weighted representation.

news web tech
cnn.com 2 0 0

www2009.org 0 1 1
wired.com 1 1 1

We will use both of the above distributional aggregation schemes,
as appropriate for different similarity measures. The fuzzy set ap-
proach is appropriate when we want to perform row/column normal-
ization of tag/resource probabilities to prevent very popular items
from dominating the similarity. Other measures such as the dot prod-
uct depend naturally on weighted vector representations.

3.2.3 Macro-Aggregation
By analogy to micro-averaging in text mining, distributional ag-

gregation can be viewed as “micro-aggregation” if we think of users
as classes. Each annotation is given the same weight, so that a
more active user would have a larger impact on the weights and
consequently on any derived similarity measure. In contrast, macro-
aggregation treats each user’s annotation set independently first, and
then aggregates across users. In relational terms, we can select the
triples involving each user u and then project, yielding a set of pairs
for u: {(r, t)u} = πr,t(σu(F )). This results in per-user binary ma-
trices of the form wu,rt ∈ {0, 1}. For the example folksonomy of

Fig. 2, we report below the matrices for the user alice (top) and
bob (bottom).

news web tech
cnn.com 1 0 0

www2009.org 0 1 1
wired.com 0 0 0

news web tech
cnn.com 1 0 0

www2009.org 0 0 0
wired.com 1 1 1

The per-user binary matrix representations wu,rt ∈ {0, 1} are used
to compute a “local” similarity σu(x, y) for each pair of objects (re-
sources or tags) x and y. Finally, we macro-aggregate by voting,
i. e., by summing across users to obtain the “global” similarity

σ(x, y) =
X
u

σu(x, y). (1)

Macro-aggregation does not have a bias toward users with many
annotations. However, in giving the same importance to each user,
the derived similarity measures amplify the relative impact of anno-
tations by less active users. It is an empirical question which of these
biases is more effective.

3.2.4 Collaborative
Macro-aggregation lends itself to explore the issue of collabora-

tive filtering in folksonomies. Thus far, we have only considered
feature-based representations. That is, a resource is described in
terms of its tag features and vice-versa. If two objects share no fea-
ture, all of the measures defined on the basis of the above aggrega-
tion schemes will yield a zero similarity. In collaborative filtering,
on the other hand, the fact that one or more users vote for (or in our
case annotate) two objects is seen as implicit evidence of an associ-
ation between the two objects. The more users share a pair of items,
the stronger the association. We want to consider the same idea in
the context of folksonomies. If many users annotate the same pair
of resources, even with different tags, the two resources might be
related. Likewise, if many users employ the same pair of tags, the
two tags might be related even if they share no resources.

Macro-aggregation incorporates the same idea by virtue of sum-
ming user votes, if we assign a non-zero local similarity σu(x, y) >
0 to every pair of objects (x, y) present in u’s annotations, irrespec-
tive of shared features. This is accomplished by adding a feature-
independent local similarity to every pair (x, y) of resources or tags.
In practice we can achieve this by adding a special “user tag” (resp.
“user resource”) to all resources (resp. tags) of u. This way all of
u’s items have at least one annotation in common.

Prior to macro-averaging, u’s local similarity σu for each pair
must be computed in such a way that the special annotations yield
a small but non-zero contribution. This requires a revision of the
information-theoretic similarity measures. For illustration, consider
adding the special tag t∗u to all resources annotated by u. The proba-
bility of observing tag t∗u associated with any of u’s resources is one,
therefore the fact that two resources share t∗u carries no information
value (Shannon’s information is − log p(t∗u|u) = − log 1 = 0). Let
us redefine user u’s odds of tag (resp. resource) x as

p(x|u) = N(u, x)/(N(u) + 1) (2)

where N(u, x) is the number of resources (resp. tags) annotated by
u with x, while N(u) is the total number of resources (resp. tags)
annotated by u. This way, − log p(t∗u|u) = − log[N(u)/(N(u) +
1)] > 0. Below we imply this construction in the definitions of the
similarity measures with collaborative aggregation.
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Table 1: Summary of similarity measures by aggregation meth-
ods. Entries refer to equation numbers.

Measure Project. Distrib. Macro Collaborative
Matching 3 4 1, 5 1, 5, 2
Overlap 6 7 1, 8 1, 8, 2
Jaccard 9 10 1, 11 1, 11, 2
Dice 12 13 1, 14 1, 14, 2
Cosine 15 16 1, 17 1, 17, 2
M.I. 18, 19 18, 20 1, 21, 19 1, 21, 19, 2

3.3 Similarity Measures
We wish to evaluate several information-theoretic, statistical, and

practical similarity measures. Table 1 summarizes the measures de-
fined below. Each of the aggregation methods requires revisions and
extensions of the definitions for application to the folksonomy con-
text, i. e., for computing resource and tag similarity from triple data.

Recalling that all measures are symmetric with respect to resources
and tags, we simplify the notation as follows: x represents a tag or
a resource and X is its vector representation. For example, if x is
a resource, X is a vector with tag elements wxy . If x is a tag, X
is a vector with resource elements wxy (note we do not switch the
subscript order for generality). For projection aggregation, the bi-
nary vector X can be interpreted as a set and we write y ∈ X to
mean wxy = 1 and |X| =

P
y wxy . Analogously for a single user

u, y ∈ Xu means wu,xy = 1 and |Xu| =
P
y wu,xy . We will

use σ to refer to all similarity measures, and σu to refer to all those
similarity measures that are based on a single user u and are to be
macro-aggregated (Equation 1).

3.3.1 Matching
The matching similarity measure is defined, for the projection

case, as

σ(x1, x2) =
X
y

wx1ywx2y = |X1 ∩X2|. (3)

As an example, below we report the resulting similarity matrices for
the resources and the tags of Fig. 2:

cnn.com www2009.org wired.com

cnn.com - 0 1
www2009.org 0 - 2
wired.com 1 2 -

news web tech
news - 1 1
web 1 - 2
tech 1 2 -

The distributional version of the matching similarity is

σ(x1, x2) = −
X

y∈X1∩X2

log p(y). (4)

This and the other measures use the p definition of § 3.2.2. For the
example case of Fig. 2, the resources and the tags have the follow-
ing probabilities: p(cnn.com) = 1/3 (out of 3 tags, cnn.com
is associated with 1 tag only, news), p(www2009.org) = 2/3,
p(wired.com) = 1 (i.e., no information content about tags),
p(news) = 2/3 (out of 3 resources, news is associated with 2
of them, cnn.com and wired.com), p(web) = 2/3, p(tech) =
2/3. This yields the following similarity matrices for resources and
tags (numeric values were truncated at the second decimal place):

cnn.com www2009.org wired.com

cnn.com - 0 0.41
www2009.org 0 - 0.81
wired.com 0.41 0.81 -

news web tech
news - 0 0
web 0 - 0.41
tech 0 0.41 -

Notice how the similarity of news with both web and tech is zero
in the distributional case, whereas it is non-zero in the projection
case above. This is due to the fact that the tag news shares only one
resource, wired.com, with both web and tech. wired.com
has zero information content for tags, as it is associated with all of
them. Thus it gives no contribution to tag similarities.

In the case of macro and collaborative aggregation, an analogous
definition applies to local (per-user) matching similarity:

σu(x1, x2) = −
X

y∈Xu
1 ∩X

u
2

log p(y|u). (5)

For the case of Fig. 2, we need to compute the conditional probabili-
ties for the two users. For alice, we have: p(cnn.com|alice) =
1/3, p(www2009.org|alice) = 2/3, p(wired.com|alice) =
0, p(news|alice) = 1/2 (news is associated with one of the two
resources alice has annotated), p(web|alice) = 1/2,
p(tech|alice) = 1/2. For bob: p(cnn.com|bob) = 1/3,
p(www2009.org|bob) = 0, p(wired.com|bob) = 1,
p(news|bob) = 1, p(web|bob) = 1/2, p(tech|bob) = 1/2.
We compute the similarity matrices as we did above, separately for
users alice and bob, and then we sum them to obtain the aggre-
gated similarity matrices below:

cnn.com www2009.org wired.com

cnn.com - 0 1.10
www2009.org 0 - 0
wired.com 1.10 0 -

news web tech
news - 0 0
web 0 - 0
tech 0 0 -

Notice how computing per-user similarities and then aggregating
over users produces more sparse similarity matrices than aggregat-
ing over users first. In the example of Fig. 2, due to the tiny size
of the folksonomy, the consequences are extreme: The contribution
of user alice to both matrices is zero, and for tag similarities this
is also true for user bob, so that all entries of the aggregated tag
similarity matrix are zero.

Collaborative filtering is able to extract more signal when aggre-
gating similarities over users, as it exposes the similarity that is im-
plicit in the user context. In our example, when we modify the prob-
abilities of tags and resources as described in § 3.2.4, we find for
alice: p(cnn.com|alice) = 1/4, p(www2009.org|alice)
= 1/2, p(wired.com|alice) = 0, p(news|alice) = 1/3,
p(web|alice) = 1/3, p(tech|alice) = 1/3. For bob:
p(cnn.com|bob) = 1/4, p(www2009.org|bob) = 0,
p(wired.com|bob) = 3/4, p(news|bob) = 2/3, p(web|bob) =
1/3, p(tech|bob) = 1/3. The probabilities of the (per-user) dummy
tag t∗ and dummy resource r∗ used in the construction of § 3.2.4 are:
p(t∗alice|alice) = 2/3, p(r∗alice|alice) = 3/4, p(t∗bob|bob) = 2/3,
p(r∗bob|bob) = 3/4. The resulting similarity matrices for collabora-
tive aggregation are:

cnn.com www2009.org wired.com

cnn.com - 0.41 0.81
www2009.org 0.41 - 0
wired.com 0.81 0 -
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news web tech
news - 0.86 0.86
web 0.86 - 1.56
tech 0.86 1.56 -

Notice how collaborative filtering recovers non-zero values for the
tag similarities.

3.3.2 Overlap
Projection-aggregated overlap similarity is defined as

σ(x1, x2) =
|X1 ∩X2|

min(|X1|, |X2|)
(6)

while distributional overlap is given by

σ(x1, x2) =

P
y∈X1∩X2

log p(y)

max(
P
y∈X1

log p(y),
P
y∈X2

log p(y))
. (7)

Local overlap for macro and collaborative aggregation is

σu(x1, x2) =

P
y∈Xu

1 ∩X
u
2

log p(y|u)
max(

P
y∈Xu

1
log p(y|u),

P
y∈Xu

2
log p(y|u)) .

(8)

3.3.3 Jaccard
Jaccard similarity aggregated by projection is

σ(x1, x2) =
|X1 ∩X2|
|X1 ∪X2|

. (9)

Distributional Jaccard similarity is defined by

σ(x1, x2) =

P
y∈X1∩X2

log p(y)P
y∈X1∪X2

log p(y)
(10)

while the macro and collaborative versions are based on

σu(x1, x2) =

P
y∈Xu

1 ∩X
u
2

log p(y|u)P
y∈Xu

1 ∪X
u
2

log p(y|u) . (11)

3.3.4 Dice
The projected Dice coefficient is

σ(x1, x2) =
2|X1 ∩X2|
|X1|+ |X2|

(12)

with its distributional version defined as

σ(x1, x2) =
2

P
y∈X1∩X2

log p(y)P
y∈X1

log p(y) +
P
y∈X2

log p(y)
(13)

and the macro and collaborative Dice built upon

σu(x1, x2) =
2

P
y∈Xu

1 ∩X
u
2

log p(y|u)P
y∈Xu

1
log p(y|u) +

P
y∈Xu

2
log p(y|u) . (14)

3.3.5 Cosine
Cosine similarity with binary projection is given by

σ(x1, x2) =
X1p
|X1|

· X2p
|X2|

=
|X1 ∩X2|p
|X1| · |X2|

. (15)

For the distributional version of the cosine, it is natural to use the
frequency-weighted representation:

σ(x1, x2) =
X1

||X1||
· X2

||X2||
=

P
y wx1ywx2yqP

y w
2
x1y

qP
y w

2
x2y

. (16)

The macro and collaborative aggregation versions are based on local
cosine

σu(x1, x2) =
Xu

1p
|Xu

1 |
· Xu

2p
|Xu

2 |
=
|Xu

1 ∩Xu
2 |p

|Xu
1 | · |Xu

2 |
(17)

where in the collaborative case the construction of § 3.2.4 is applied
without need of log-odds computations.

3.3.6 Mutual Information
The last measure we consider is mutual information. With projec-

tion and distributional aggregation we define

σ(x1, x2) =
X
y1∈X1

X
y2∈X2

p(y1, y2) log
p(y1, y2)

p(y1)p(y2)
(18)

where for the projection case the probabilities p(y) are defined in
the usual manner (§ 3.2.2), and the joint probabilities p(y1, y2) are
also based on resource/tag (row/column) normalization:

p(y1, y2) =

P
x wxy1wxy2P

x 1
. (19)

With distributional aggregation, the joint probabilities must be ma-
trix rather than row/column normalized; we compute fuzzy joint
probabilities from the weighted representation:

p(y) =

P
x wxyP
r,t wrt

, p(y1, y2) =

P
x min(wxy1 , wxy2)P

r,t wrt
(20)

where min is a fuzzy equivalent of the intersection operator. Finally,
macro and collaborative aggregation of local mutual information use

σu(x1, x2) =
X

y1∈Xu
1

X
y2∈Xu

2

p(y1, y2|u) log
p(y1, y2|u)

p(y1|u)p(y2|u)
(21)

where simple and joint probabilities are resource/tag (row/column)
normalized for each user’s binary representation, and collaborative
mutual information uses the construction and probability definition
of § 3.2.4.

3.3.7 Other Measures
For space reasons we omit discussion of other measures we ex-

perimented with. These include distributional versions of matching,
overlap, Dice, and Jaccard similarity with matrix-normalized proba-
bilities based on the weighted representation. They did not perform
as well as the measures defined above.

4. EVALUATION
BibSonomy.org is a social bookmark and publication man-

agement system. For our analysis, we used a benchmark dataset
from December 2007, which is available on the BibSonomy site.1

We focused on the bookmark part of the system. The BibSonomy
snapshot that we used contains 128, 500 bookmarks annotated by
1, 921 users with 58, 753 distinct tags. We focus on resource simi-
larity and tag similarity, aggregating across users as the third dimen-
sion of our annotation data.

4.1 Predicting Tag Relations
BibSonomy.org allows users to input directed relations such

as tagging → web2.0 between pairs of tags. These relation-
ships are suitable for, but not limited to, defining is-a relationships.
The semantics can thus be read as “tagging is a web2.0” or
“tagging is a subtag of web2.0” [22]. The most straightfor-
ward evaluation of our similarity measures therefore consists in us-
ing them to predict user-defined relations between tags. Such a pre-
diction task requires that we set some threshold on the similarity
1http://www.bibsonomy.org/faq#faq-dataset-1
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Figure 3: Areas under ROC curves (AUC) for tag relation pre-
dictions based on similarity measures with distributional and
collaborative aggregation. In an ROC curve, the true positive
rate is plotted against the false positive rate as a function of sim-
ilarity thresholds. A good similarity measure can select many
true positives with few false positives, yielding a higher AUC.

values, such that a similarity above threshold implies a prediction
that two tags are related and vice-versa. To determine which simi-
larity measures are more effective predictors, we plot in Fig. 3 the
areas under ROC curves for a couple of aggregation methods. These
results suggest that mutual information outperforms the other mea-
sures with distributional aggregation. For collaborative aggregation
it is difficult to establish a clear ranking between the measures.

This evaluation approach has some important limitations:

• While folksonomies contain many tags, available user data
about tag relations is very sparse. For example we considered
2000 tags (4×106 candidate relations) and found among these
only 142 tag relations provided by BibSonomy users. With
such little labeled data, assessments are bound to be noisy.

• Similarity values are broadly distributed, spanning several or-
ders of magnitude. The tag relation prediction task forces us to
turn this high resolution data into binary assessments, poten-
tially losing precious information. The results are very sensi-
tive to small changes in the similarity threshold; for example
increasing the threshold from 0 to 10−7 decreases the false
positive rate from 1 to less then 0.1. Such sensitivity suggests
that fine-grained information is critical, and negatively affects
the reliability of the evaluation results.

• Although there is no such requirement, users’ tag relations
usually focus on hierarchical relationships and thus may miss
many potentially strong non-hierarchical relations. For exam-
ple, we may have python→ programming and perl→
programming but no relation between python and perl.
This may unfairly penalize our measures.

• Finally, user data is only available for tag relations while we
would like to also evaluate the resource similarity measures.

To address these limitations, we look to an alternative evaluation
approach that, while still based (indirectly) on user data, allows us to
access a much larger pool of high resolution similarity assessments
for both tags and resources. For each, we need a reliable external
source of similarity data as a grounding reference to evaluate the
effectiveness of the various proposed similarity measures.

4.2 Evaluation via External Grounding
Given a similarity measure to be evaluated, we want to assess how

well it approximates the reference similarity measures. Since differ-
ent similarity measures have different distributional properties, we
turn to a non-parametric analysis that only looks at the ranking of
the pairs by similarity rather than the actual similarity values. This
reflects the intuition that while it is problematic for someone to quan-
tify the similarity between two objects, it is natural to rank pairs on

the basis of their similarities, as in “a chair is more similar to a table
than to a computer.” Indeed in most applications we envision (e.g.
search, recommendation) ranking is key: Given a particular tag or
resource we want to show the user a set of most similar objects. We
thus turn to Kendall’s τ correlation between the similarity vectors
whose elements are pairs of objects. We compute τ efficiently with
Knight’s O(N logN) algorithm as implemented by Boldi et al. [5].
A higher correlation is to be interpreted as a better agreement with
the grounding and thus as evidence of a better similarity measure.
Of course only a subset of the tags or resources in any social book-
marking system are found in a reference similarity dataset, so we
cannot use the grounding to measure similarity in general. We can
however use the reference similarities to evaluate our proposed mea-
sures, which can in turn be applied to any pair of objects.

4.3 Tag Similarity

4.3.1 WordNet Grounding
We use the WordNet term collection for the semantic grounding

of the tag similarity measures. In particular we rank tag pairs by
their Jiang-Conrath distance [25], which combines taxonomic and
information-theoretic knowledge. This WordNet distance measure
is an appropriate reference as it was validated experimentally [8, 10].

For our evaluation of tag similarity, we focus on the subset of
the BibSonomy annotations whose tags overlap with the WordNet
dataset. This subset comprises 17, 041 tags, or about 29% of the to-
tal number of tags in the BibSonomy dataset. Similarities are com-
puted between all pairs of tags in this set, however it was not possible
to use the full annotation data from the folksonomy due to the time
complexity of the similarity computations in conjunction with the
dimensionality of the underlying vector space. The issues of time
complexity and scalable computation of similarity are discussed be-
low in § 5. Let us first evaluate the effectiveness of the measures
by limiting the analysis to the most popular resources. More specif-
ically we select, among the tags in the overlap subset, those associ-
ated with the 2000 most frequent resources, i.e., those resources that
appear in the largest number of triples across the entire folksonomy.
We then compute the similarities using all the folksonomy annota-
tions relative to these top tags, disregarding less used, noisier tags.
As an illustration, let us consider the tags of Fig. 2 and the similar-
ities among them as extracted from the WordNet grounding as well
as two of our measures. Below we show the ranked similarities and
the resulting τ values.

Rank WordNet Distrib. Jaccard Distrib. MI
1 tech-web news-tech news-web
2 news-web tech-web tech-web
3 news-tech news-web news-tech
τ 1 1/3 2/3

4.3.2 Results
Figure 4 plots Kendall’s τ correlation between each measure in-

troduced in § 3 and the WordNet reference. As a baseline we com-
puted τ with a randomly generated ranking of the tag similarities.
Among micro-aggregated measures, distributional information does
not have any positive impact on accuracy compared to the simpler
binary representation stemming from projection. Consistently with
Fig. 3, mutual information is by far the most accurate measure of
tag similarity. Matching, overlap, Dice and Jaccard do not differ
significantly from each other.

Macro-aggregation is the worst-performing aggregation method,
with the exception of matching (which almost equals the micro-
averaged version) and mutual information (which outperforms all
of the micro-averaged measures except mutual information itself).
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Figure 4: Tag-tag similarity accuracy, according to Kendall’s
τ correlations between the similarity vectors generated by the
various measures and the reference similarity vector provided
by the WordNet grounding measure. All similarity measures
perform significantly better than the randomly generated set of
similarities (τ = 10−4).
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Figure 5: Resource-resource similarity accuracy, according to
Kendall’s τ correlations between the similarity vectors gener-
ated by the various measures and the reference similarity vector
provided by the ODP grounding measure. All similarity mea-
sures perform significantly better than the randomly generated
set of similarities (τ = 8× 10−5).

Collaborative aggregation provides a large boost to accuracy for
tags. Each of the collaborative measures outperforms all of the oth-
ers, except mutual information. These results underscore the critical
semantic information contained in single-user annotations. Combin-
ing these individually induced tag relations by collaborative aggre-
gation yields globally meaningful semantic tag relations.

4.4 Resource Similarity

4.4.1 ODP Grounding
We use the URL collection of the Open Directory Project for

the semantic grounding of the resource similarity measures. In par-
ticular we rely on Maguitman et al.’s graph-based similarity mea-
sure [31, 30], which extends Lin’s hierarchical similarity [28] by
taking non-hierarchical structure into account. The ODP graph sim-
ilarity is an appropriate reference because it was shown to be very
accurate through a user study [30].

For our evaluation of resource similarity, we focus on the subset of
the BibSonomy annotations whose resources overlap with the ODP.
This subset comprises 3, 323 resources, or about 2.6% of the total
unique URLs in the BibSonomy dataset. Similarities are computed
between all pairs of resources in this set, using the full annotation
data from the folksonomy.

4.4.2 Results
Figure 5 plots the Kendall’s τ correlation between each measure

introduced in § 3 and the ODP reference. The baseline was com-
puted using a random ranking of resources similarities, as we did for
tags. Distributional aggregation yields the best performance. How-
ever, with the exception of the matching similarity measure, the dis-
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Figure 6: Scalability of the mutual information computation of
resource similarity for different aggregation methods. We mea-
sured the CPU time necessary to update the similarities after a
constant number of new annotations are received, as a function
of system size n. Best polynomial fits time ∼ nα are also shown.

tributional information does not seem to have a very large impact.
Mutual information is again by far the most accurate measure. Over-
lap, Dice and Jaccard do not differ significantly from each other.

While macro-aggregation is the worst-performing aggregation
method, collaborative aggregation greatly improves accuracy. In
particular, cosine performs best in the collaborative setting. These
results again suggest that collaborative filtering captures important
semantic information in the folksonomy; the fact that two resources
are annotated by the same users is telling about the relationship be-
tween these resources, beyond any tags they share. These results
are consistent with experiments performed on another data set for a
small subset of the measures explained here [32].

5. DISCUSSION AND SCALABILITY
The results outlined above for resource and tag similarity allow us

to draw a few consistent observations: First, mutual information is
the measure that best extracts semantic similarity information from a
folksonomy. Mutual information considers conditional probabilities
between two objects extracting the most data among the evaluated
measures from an information theory point of view. We interpret
this as the most fine-grained approach because we are not projecting
out any information on the graph. Second, macro-aggregation is less
effective than micro-aggregation. One interpretation is that since
user data is necessarily more sparse, macro-aggregation adds noise
by giving equal importance to each user. In other words, the user
does not seem to be as good a “unit” of knowledge aggregation in a
folksonomy as finer-grained individual annotation.

In spite of macro-aggregation’s shortcomings, collaborative fil-
tering extracts so much useful information about folksonomy rela-
tionships that it cannot be ignored. Especially for tag similarity,
collaborative aggregation compensates for almost all the loss due
to the noise of macro-aggregation. It seems therefore important for
folksonomy-derived similarity measures to capture this form of so-
cial information, which differs from the more obvious notions of
similarity based on shared features. Indeed we show there is use-
ful information in annotation data even if we do away with tags
when computing resource similarity and vice-versa (i.e., removing
resources when computing tag similarity).

Another reason to consider macro-aggregation in general, and col-
laborative aggregation in particular, is related to the issue of scala-
bility. As mentioned above, the computations of micro-aggregated
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similarities have taxing computational complexity. Mutual informa-
tion, the most effective measure, is also the most expensive. Having
a look at its definition (Eq. 18), it is obvious that in its computation
all possible combinations of attribute pairs for two given objects are
involved. This implies a quadratic complexity — while e.g. the
cosine similarity (Eq. 16) only runs in a linear fashion through the
attribute overlap of two objects.

From a practical perspective, we consider as scalable those mea-
sures that can be updated to reflect new annotations at a pace that can
keep up with the stream of incoming annotations. Suppose that some
constant number c of new annotations arrive per unit time. The sim-
ilarity of all pairs of tags/resources affected by each new annotation
must therefore be updated in constant time 1/c.

The problem with distributional aggregation is that similarities
must be recomputed from scratch as frequency weights are updated.
This is not scalable because its complexity clearly grows with the
size of the system (e. g., number of triples). On the other hand,
macro and collaborative aggregation allow for incremental compu-
tation because each user’s representation is maintained separately.
When a new annotation arrives from user u, only u’s contribution
σu need be updated. Such updates may be scalable.

An average-case complexity analysis is problematic due to the
long-tailed distributions typical of folksonomies; quantities like av-
erage densities and average overlap are not necessarily characteristic
of the system, given the huge fluctuations associated with broad dis-
tributions. Therefore we turn to an empirical analysis to examine
how update complexity scales with system size. Figure 6 compares
the computation of mutual information between resources using two
aggregation methods: distributional (micro) and macro (or collab-
orative) aggregation. This is representative because mutual infor-
mation is consistently the best measure with both micro and macro
aggregation, and the second best with collaborative aggregation. As
the plot shows, micro-aggregation scales almost quadratically with
system size, while macro-aggregated similarity can be updated in al-
most constant time. Therefore macro and collaborative aggregation
measures compensate a loss in accuracy with a huge scalability gain.

6. CONCLUSIONS
In summary, we have discussed a general and extensive foun-

dation for the formulation of similarity measures in folksonomies,
spanning critical design dimensions such as the symmetry between
users, resources, and tags; aggregation schemes; exploitation of col-
laborative filtering; and information-theoretic issues. Experiments
with resource and tag similarity alike have pointed to folksonomy-
based mutual information measures as the best at extracting semantic
associations from social annotation data.

The question of scalability has highlighted a critical trade-off be-
tween accuracy and complexity. Although some social aggregation
methods achieve good accuracy in a non-scalable way, measures
based on collaborative aggregation of annotations achieve compet-
itive quality while minimizing computation thanks to incremental
updates. This leads to the best performance/cost trade-off; we un-
derscore the key role of scalability for the practical viability of sim-
ilarity computations in existing social bookmarking systems.

Other similarity measures that we have not yet explored include
matrix-normalized mutual information with binary projection ag-
gregation and the integration of collaborative filtering with distri-
butional aggregation.

The similarity measures analyzed in this paper can readily be em-
ployed to support many Social and Semantic Web applications, such
as tag clustering for ontology construction and learning, query ex-
pansion, and recommendation. Our group has begun the use of these
similarity measures for visualizing relationships among resources in
search query results [13]. Another straightforward application of the

socially induced similarity is to enrich Web navigation for knowl-
edge exploration. These techniques can lead to a possible synergy
between traditional and socio-semantic Web technologies.
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