

E. Description Logics

This section is based on material from

• Ian Horrocks: http://www.cs.man.ac.uk/~horrocks/Teaching/cs646/

Description Logics

- OWL DL ist äquivalent zur Beschreibungslogik $SHOIN(D_n)$. Auf letzterer basiert also die Semantik von OWL DL.
- Unter Beschreibungslogiken (Description Logics) versteht man eine Familie von Teilsprachen der Prädikatenlogik 1. Stufe, die entscheidbar sind.
- *SHOIN*(**D**_n) ist eine relativ komplexe Beschreibungslogik.
- Um einen ersten Einblick in das Prinzip der Beschreibungslogiken zu erhalten, werfen wir zum Abschluss der Vorlesung einen Blick auf etwas abgespeckte Fassungen.

Literatur:

- D. Nardi, R. J. Brachman. An Introduction to Description Logics. In: F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider (eds.): Description Logic Handbook, Cambridge University Press, 2002, 5-44.
- F. Baader, W. Nutt: Basic Description Logics. In: Description Logic Handbook, 47-100.
- Ian Horrocks, Peter F. Patel-Schneider and Frank van Harmelen. From SHIQ and RDF to OWL: The making of a web ontology language. http://www.cs.man.ac.uk/%7Ehorrocks/Publications/download/2003/HoPH03a.pdf

- Ontology/KR languages aim to model (part of) world
- Terms in language correspond to entities in world
- Meaning given by, e.g.:
 - Mapping to another formalism, such as FOL, with own well defined semantics
 - or a bespoke Model Theory (MT)
- MT defines relationship between syntax and interpretations
 - Can be many interpretations (models) of one piece of syntax
 - Models supposed to be analogue of (part of) world
 - E.g., elements of model correspond to objects in world
 - Formal relationship between syntax and models
 - Structure of models reflect relationships specified in syntax
 - Inference (e.g., subsumption) defined in terms of MT
 - E.g., $\mathcal{T} \vDash A \sqsubseteq B$ iff in every model of \mathcal{T} , ext(A) \subseteq ext(B)

- Many logics (including standard First Order Logic) use a model theory based on Zermelo-Frankel set theory
- The domain of discourse (i.e., the part of the world being modelled) is represented as a set (often referred as Δ)
- Objects in the world are interpreted as elements of Δ
 - Classes/concepts (unary predicates) are subsets of Δ
 - Properties/roles (binary predicates) are subsets of $\Delta \times \Delta$ (i.e., Δ^2)
 - Ternary predicates are subsets of Δ^3 etc.
- The sub-class relationship between classes can be interpreted as set inclusion
- Doesn't work for RDF, because in RDF a class (set) can be a member (element) of another class (set)
 - In Z-F set theory, elements of classes are atomic (no structure)

X

Aside: Set Based Model Theory Example

Aside: Set Based Model Theory Example

- Formally, the vocabulary is the set of names we use in our model of (part of) the world
 - {Daisy, Cow, Animal, Mary, Person, Z123ABC, Car, drives, ...}
- An interpretation \mathcal{I} is a tuple $\langle \Delta, \cdot^{\mathcal{I}} \rangle$
 - Δ is the domain (a set)
 - $\cdot^{\mathcal{I}}$ is a mapping that maps
 - Names of objects to elements of Δ
 - Names of unary predicates (classes/concepts) to subsets of Δ
 - Names of binary predicates (properties/roles) to subsets of $\Delta\times\Delta$
 - And so on for higher arity predicates (if any)

What Are Description Logics?

- A family of logic based Knowledge Representation formalisms
 - Descendants of semantic networks and KL-ONE
 - Describe domain in terms of concepts
 (classes), roles (relationships) and individuals
- Distinguished by:
 - Formal semantics (typically model theoretic)
 - Decidable fragments of FOL
 - Closely related to Propositional Modal & Dynamic Logics
 - Provision of inference services
 - Sound and complete decision procedures for key problems
 - Implemented systems (highly optimised)

DL Architecture

Knowledge Base

Tbox (schema)

Man ≡ Human ⊓ Male

Happy-Father \equiv Man $\sqcap \exists$ has-child Female $\sqcap \dots$

Abox (data)

John : Happy-Father (John, Mary) : has-child

Phase 1:

- Incomplete systems (Back, Classic, Loom, ...)
- Based on structural algorithms

Phase 2:

- **Development of** tableau algorithms **and** complexity results
- Tableau-based systems for Pspace logics (e.g., Kris, Crack)
- Investigation of optimisation techniques

Phase 3:

- Tableau algorithms for very expressive DLs
- Highly optimised tableau systems for ExpTime logics (e.g., FaCT, DLP, Racer)
- Relationship to modal logic and decidable fragments of FOL

Phase 4:

- Mature implementations
- Mainstream applications and Tools
 - Databases
 - Consistency of conceptual schemata (EER, UML etc.)
 - Schema integration
 - Query subsumption (w.r.t. a conceptual schema)
 - Ontologies and **Semantic Web** (and **Grid**)
 - Ontology engineering (design, maintenance, integration)
 - Reasoning with ontology-based markup (meta-data)
 - Service description and discovery
- Commercial implementations
 - Cerebra system from Network Inference Ltd

From RDF to OWL

- Two languages developed to satisfy the requirements
 - OIL: developed by group of (largely) European researchers (several from EU OntoKnowledge project)
 - DAML-ONT: developed by group of (largely) US researchers (in DARPA DAML programme)
- Efforts merged to produce DAML+OIL
 - Development was carried out by "Joint EU/US Committee on Agent Markup Languages"
 - Extends ("DL subset" of) RDF
- DAML+OIL submitted to W3C as basis for standardisation
 - Web-Ontology (WebOnt) Working Group formed
 - WebOnt group developed OWL language based on DAML+OIL
 - OWL language now a W3C Recommendation (i.e., a standard like HTML and XML)

- DLs are a family of logic based KR formalisms
- Particular languages mainly characterised by:
 - Set of constructors for building complex concepts and roles from simpler ones
 - Set of axioms for asserting facts about concepts, roles and individuals
- *ALC* is the smallest DL that is propositionally closed
 - Constructors include booleans (and, or, not), and
 - Restrictions on role successors
 - E.g., concept describing "happy fathers" could be written:

 $\textbf{Man} \land \exists \textbf{hasChild.Female} \land \exists \textbf{hasChild.Male}$

∧ ∀hasChild.(Rich ∨ Happy)

DL Concept and Role Constructors

- Range of other constructors found in DLs, including:
 - Number restrictions (cardinality constraints) on roles, e.g., \geq 3 hasChild, \leq 1 hasMother
 - Qualified number restrictions, e.g., ≥ 2 hasChild.Female, ≤ 1 hasParent.Male
 - Nominals (singleton concepts), e.g., {Italy}
 - Concrete domains (datatypes), e.g., hasAge.(\leq 21)
 - Inverse roles, e.g., hasChild⁻ (hasParent)
 - Transitive roles, e.g., hasChild* (descendant)
 - Role composition, e.g., hasParent

 hasBrother
 (uncle)

DL Knowledge Base

- DL Knowledge Base (KB) normally separated into 2 parts:
 - TBox is a set of axioms describing structure of domain (i.e., a conceptual schema), e.g.:
 - HappyFather = Man $\land \exists$ hasChild.Female $\land \dots$
 - Elephant = Animal \land Large \land Grey
 - transitive(ancestor)
 - ABox is a set of axioms describing a concrete situation (data), e.g.:
 - John:HappyFather
 - <John,Mary>:hasChild
- Separation has no logical significance
 - But may be conceptually and implementationally convenient

Constructor	DL Syntax	Example	FOL Syntax
intersectionOf	$C_1 \sqcap \ldots \sqcap C_n$	Human ⊓ Male	$C_1(x) \wedge \ldots \wedge C_n(x)$
unionOf	$C_1 \sqcup \ldots \sqcup C_n$	Doctor ⊔ Lawyer	$C_1(x) \lor \ldots \lor C_n(x)$
complementOf	$\neg C$	¬Male	$\neg C(x)$
oneOf	$\{x_1\}\sqcup\ldots\sqcup\{x_n\}$	{john} ⊔ {mary}	$x = x_1 \lor \ldots \lor x = x_n$
allValuesFrom	$\forall P.C$	∀hasChild.Doctor	orall y.P(x,y) ightarrow C(y)
someValuesFrom	$\exists P.C$	∃hasChild.Lawyer	$\exists y. P(x,y) \land C(y)$
maxCardinality	$\leqslant nP$	≤1hasChild	$\exists^{\leqslant n}y.P(x,y)$
minCardinality	$\geqslant nP$	≥2hasChild	$\exists^{\geqslant n}y.P(x,y)$

• XMLS datatypes as well as classes in $\forall P.C$ and $\exists P.C$

- E.g., ∃hasAge.nonNegativeInteger
- Arbitrarily complex nesting of constructors
 - E.g., Person $\sqcap \forall$ hasChild.Doctor $\sqcup \exists$ hasChild.Doctor

E.g., Person \sqcap \forall hasChild.Doctor $\sqcup \exists$ hasChild.Doctor:

```
<owl:Class>
  <owl:intersectionOf rdf:parseType=" collection">
    <owl:Class rdf:about="#Person"/>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#hasChild"/>
      <owl:toClass>
        <owl:unionOf rdf:parseType=" collection">
          <owl:Class rdf:about="#Doctor"/>
          <owl:Restriction>
            <owl:onProperty rdf:resource="#hasChild"/>
            <owl:hasClass rdf:resource="#Doctor"/>
          </owl:Restriction>
        </owl:unionOf>
      </owl:toClass>
    </owl:Restriction>
  </owl:intersectionOf>
</owl:Class>
```

٩	م م
~~	5

Axiom	DL Syntax	Example
subClassOf	$C_1 \sqsubseteq C_2$	Human \sqsubseteq Animal \sqcap Biped
equivalentClass	$C_1 \equiv C_2$	Man ≡ Human ⊓ Male
disjointWith	$C_1 \sqsubseteq \neg C_2$	Male $\sqsubseteq \neg$ Female
sameIndividualAs	$\{x_1\} \equiv \{x_2\}$	${President_Bush} \equiv {G_W_Bush}$
differentFrom	$\{x_1\} \sqsubseteq \neg \{x_2\}$	${john} \sqsubseteq \neg {peter}$
subPropertyOf	$P_1 \sqsubseteq P_2$	hasDaughter 드 hasChild
equivalentProperty	$P_1 \equiv P_2$	$cost \equiv price$
inverseOf	$P_1 \equiv P_2^-$	hasChild \equiv hasParent ⁻
transitiveProperty	$P^+ \sqsubseteq \overline{P}$	ancestor $+ \sqsubseteq$ ancestor
functionalProperty	$\top \sqsubseteq \leqslant 1P$	$\top \sqsubseteq \leqslant 1$ hasMother
inverseFunctionalProperty	$\top \sqsubseteq \leqslant 1P^-$	$\top \sqsubseteq \leqslant 1$ hasSSN $^-$

• Axioms (mostly) reducible to inclusion (⊑)

 $- C \equiv D$ iff both $C \subseteq D$ and $D \subseteq C$

• Obvious FOL equivalences

- E.g.,
$$C \equiv D$$
 iff $\forall x. C(x) \Leftrightarrow D(x)$,

 $C \sqsubseteq D$ iff $\forall x. C(x) \Rightarrow D(x)$

- choma primitivo datatypos
- OWL supports XML Schema primitive datatypes

- E.g., integer, real, string, ...

- Strict separation between "object" classes and datatypes
 - Disjoint interpretation domain $\Delta_{\rm D}$ for datatypes
 - For a datavalue d holds $d^{\mathcal{I}} \subseteq \Delta_D$
 - and $\Delta_{\mathrm{D}} \cap \Delta^{\mathcal{I}} = \emptyset$
 - Disjoint "object" and datatype properties
 - For a datatype propterty P holds $P^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta_D$
 - For object property ${\bf S}$ and datatype property ${\bf P}$ hold ${\bf S}^{\mathcal{I}}\cap {\bf P}^{\mathcal{I}}=\emptyset$
- Equivalent to the " (D_n) " in $SHOIN(D_n)$

Why Separate Classes and Datatypes?

- Philosophical reasons:
 - Datatypes structured by built-in predicates
 - Not appropriate to form new datatypes using ontology language
- Practical reasons:
 - Ontology language remains simple and compact
 - Semantic integrity of ontology language not compromised
 - Implementability not compromised can use hybrid reasoner

- Mapping OWL to equivalent DL ($SHOIN(D_n)$):
 - Facilitates provision of reasoning services (using DL systems)
 - Provides well defined semantics
- DL semantics defined by interpretations: $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where
 - $-\Delta^{\mathcal{I}}$ is the domain (a non-empty set)
 - $\cdot^{\mathcal{I}}$ is an interpretation function that maps:
 - Concept (class) name $A \ \ \text{to subset} \ A^{\mathcal{I}} \ \text{of} \ \Delta^{\mathcal{I}}$
 - Role (property) name ${\rm R}$ to binary relation ${\rm R}^{\mathcal{I}}$ over $\Delta^{\mathcal{I}}$
 - Individual name i to element $i^{\mathcal{I}}$ of $\Delta^{\mathcal{I}}$

DL Semantics

 Interpretation function .¹ extends to concept expressions in the obvious way, i.e.:

$$(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$$
$$(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$$
$$(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$$
$$\{x\}^{\mathcal{I}} = \{x^{\mathcal{I}}\}$$
$$(\exists R.C)^{\mathcal{I}} = \{x \mid \exists y. \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}$$
$$(\forall R.C)^{\mathcal{I}} = \{x \mid \forall y. (x, y) \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\}$$
$$(\leqslant nR)^{\mathcal{I}} = \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \leqslant n\}$$
$$(\geqslant nR)^{\mathcal{I}} = \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \geqslant n\}$$

DL Knowledge Bases (Ontologies)

×

- An OWL ontology maps to a DL Knowledge Base $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$
 - \mathcal{T} (Tbox) is a set of axioms of the form:
 - $C \sqsubseteq D$ (concept inclusion)
 - $C \equiv D$ (concept equivalence)
 - $R \sqsubseteq S$ (role inclusion)
 - $R \equiv S$ (role equivalence)
 - $R^+ \sqsubseteq R$ (role transitivity)
 - $\, \mathcal{A} \,$ (Abox) is a set of axioms of the form
 - $x \in D$ (concept instantiation)
 - $\langle x,y \rangle \in R$ (role instantiation)
- Two sorts of Tbox axioms often distinguished
 - "Definitions"
 - $C \sqsubseteq D$ or $C \equiv D$ where C is a concept name
 - General Concept Inclusion axioms (GCIs)
 - $C \sqsubseteq D$ where C in an arbitrary concept

- An interpretation \mathcal{I} satisfies (models) an axiom A ($\mathcal{I} \vDash A$):
 - $\ \mathcal{I} \vDash C \sqsubseteq D \text{ iff } C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
 - $\hspace{0.1in} \mathcal{I} \vDash C \equiv D \hspace{0.1in} \text{iff} \hspace{0.1in} C^{\mathcal{I}} \hspace{-.1in}=\hspace{-.1in} D^{\mathcal{I}}$
 - $\ \mathcal{I} \vDash R \sqsubseteq S \text{ iff } R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$
 - $\mathcal{I} \vDash R \equiv S$ iff $R^{\mathcal{I}} = S^{\mathcal{I}}$
 - $\mathcal{I} \vDash \mathbb{R}^+ \sqsubseteq \mathbb{R}$ iff $(\mathbb{R}^{\mathcal{I}})^+ \subseteq \mathbb{R}^{\mathcal{I}}$
 - $\mathcal{I} \vDash x \in D$ iff $x^{\mathcal{I}} \in D^{\mathcal{I}}$
 - $\ \mathcal{I} \vDash \langle x, y \rangle \in R \text{ iff } (x^{\mathcal{I}}, y^{\mathcal{I}}) \in R^{\mathcal{I}}$
- \mathcal{I} satisfies a Tbox \mathcal{T} ($\mathcal{I} \vDash \mathcal{T}$) iff \mathcal{I} satisfies every axiom A in \mathcal{T}
- \mathcal{I} satisfies an Abox \mathcal{A} ($\mathcal{I} \vDash \mathcal{A}$) iff \mathcal{I} satisfies every axiom A in \mathcal{A}
- \mathcal{I} satisfies an KB \mathcal{K} ($\mathcal{I} \vDash \mathcal{K}$) iff \mathcal{I} satisfies both \mathcal{T} and \mathcal{A}

- Knowledge is correct (captures intuitions)
 - $\ C \ subsumes \ D \ w.r.t. \ \mathcal{K} \ iff \ for \ every \ model \ \mathcal{I} \ of \ \mathcal{K}, \ C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- Knowledge is minimally redundant (no unintended synonyms)
 - C is equivalent to D w.r.t. \mathcal{K} iff for every model \mathcal{I} of \mathcal{K} , $C^{\mathcal{I}} = D^{\mathcal{I}}$
- Knowledge is meaningful (classes can have instances)
 - C is satisfiable w.r.t. \mathcal{K} iff there exists some model \mathcal{I} of \mathcal{K} s.t. $C^{\mathcal{I}} \neq \emptyset$
- Querying knowledge
 - x is an instance of C w.r.t. \mathcal{K} iff for every model \mathcal{I} of \mathcal{K} , $x^{\mathcal{I}} \in C^{\mathcal{I}}$
 - $\langle x, y \rangle \text{ is an instance of } R \text{ w.r.t. } \mathcal{K} \text{ iff for, } every \text{ model } \mathcal{I} \text{ of } \mathcal{K}, (x^{\mathcal{I}}, y^{\mathcal{I}}) \in R^{\mathcal{I}}$
- Knowledge base consistency
 - A KB ${\cal K}$ is consistent iff there exists some model ${\cal I}$ of ${\cal K}$

DL Reasoning

- Tableau algorithms used to test satisfiability (consistency)
- Try to build a tree-like model *I* of the input concept C
- Decompose C syntactically
 - Apply tableau expansion rules
 - Infer constraints on elements of model
- Tableau rules correspond to constructors in logic (□, ⊔ etc)
 - Some rules are nondeterministic (e.g., \sqcup , \leq)
 - In practice, this means search
- Stop when no more rules applicable or clash occurs
 - Clash is an obvious contradiction, e.g., $A(x), \, \neg \, A(x)$
- Cycle check (blocking) may be needed for termination
- C satisfiable iff rules can be applied such that a fully expanded clash free tree is constructed

Highly Optimised Implementation

- Naive implementation leads to effective non-termination
- Modern systems include MANY optimisations
- Optimised classification (compute partial ordering)
 - Use enhanced traversal (exploit information from previous tests)
 - Use structural information to select classification order
- Optimised subsumption testing (search for models)
 - Normalisation and simplification of concepts
 - Absorption (rewriting) of general axioms
 - Davis-Putnam style semantic branching search
 - Dependency directed backtracking
 - Caching of satisfiability results and (partial) models
 - Heuristic ordering of propositional and modal expansion

