F. Description Logics - Part 2

This section is based on material from:

- Carsten Lutz, Uli Sattler: http://www.computational-logic.org/content/events/iccl-ss-2005/lectures/lutz/index.php?id=24
- Ian Horrocks: http://www.cs.man.ac.uk/~horrocks/Teaching/cs646/

	Concepts	
	Atomic	A, B
	Not	$\neg \mathrm{C}$
\bigcirc	And	C \square D
<	Or	C ப D
	Exists	$\exists \mathrm{R} . \mathrm{C}$
	For all	$\forall \mathrm{R} . \mathrm{C}$
Z	At least	$\geq \mathrm{n}$ R.C (ln R)
\bigcirc	At most	$\leq \mathrm{n}$ R.C (Sn R)
\bigcirc	Nominal	$\left\{i_{1}, \ldots, i_{n}\right\}$

Roles	
-	Atomic
Inverse	R^{-}

$S=A L C+$ Transitivity
OWL DL = SHOIN(D)
(D: concrete domain)

Atomic types: concept names A, B, \ldots (unary predicates) role names $R, S, \ldots \quad$ (binary predicates)

Constructors: - $\neg C$
(negation)

- $C \sqcap D$
(conjunction)
- $\boldsymbol{C} \sqcup \boldsymbol{D}$
- \exists R.C
(disjunction)
(existential restriction)
- $\forall R . C$
(value restriction)
Abbreviations: - $C \rightarrow D=\neg C \sqcup D \quad$ (implication)

$$
-C \leftrightarrow D=C \rightarrow D \quad \text { (bi-implication) }
$$

$$
\sqcap D \rightarrow C
$$

$-\top=(A \sqcup \neg A) \quad$ (top concept)

- $\perp=A \sqcap \neg A \quad$ (bottom concept)

Examples

- Person \sqcap Female
- Person $\sqcap \exists$ attends.Course
- Person $\sqcap \forall$ Vattends. (Course $\rightarrow \neg$ Easy)
- Person $\sqcap \exists$ teaches. (Course $\sqcap \forall$ attended-by.(Bored \sqcup Sleeping))

Semantics based on interpretations $\left(\Delta^{\mathcal{I}},,^{\mathcal{I}}\right.$), where
$-\Delta^{\mathcal{I}}$ is a non-empty set (the domain)
$-{ }^{\mathcal{I}}$ is the interpretation function mapping each concept name A to a subset $A^{\mathcal{I}}$ of $\Delta^{\mathcal{I}}$ and each role name \boldsymbol{R} to a binary relation $\boldsymbol{R}^{\mathcal{I}}$ over $\Delta^{\mathcal{I}}$.

Intuition: interpretation is complete description of the world

Technically: interpretation is first-order structure with only unary and binary predicates

Semantics of Complex Concepts

$$
(\neg C)^{\mathcal{I}}=\Delta^{\mathcal{I}} \backslash C^{\mathcal{I}} \quad(C \sqcap D)^{\mathcal{I}}=C^{\mathcal{I}} \cap D^{\mathcal{I}} \quad(C \sqcup D)^{\mathcal{I}}=C^{\mathcal{I}} \cup D^{\mathcal{I}}
$$

$(\exists R . C)^{\mathcal{I}}=\left\{d \mid\right.$ there is an $e \in \Delta^{\mathcal{I}}$ with $(d, e) \in R^{\mathcal{I}}$ and $\left.e \in C^{\mathcal{I}}\right\}$ $(\forall R . C)^{\mathcal{I}}=\left\{d \mid\right.$ for all $e \in \Delta^{\mathcal{I}},(d, e) \in R^{\mathcal{I}}$ implies $\left.e \in C^{\mathcal{I}}\right\}$

Person $\sqcap \exists$ attends.Course
Person $\sqcap \forall$ attends. $(\neg$ Course \sqcup Difficult)

Capture an application's terminology means defining concepts
TBoxes are used to store concept definitions:
Syntax:
finite set of concept equations $A \doteq C$
with A concept name and C concept
left-hand sides must be unique!
Semantics:
interpretation \mathcal{I} satisfies $A \doteq C$ iff $A^{\mathcal{I}}=C^{\mathcal{I}}$
\mathcal{I} is model of \mathcal{T} if it satisfies all definitions in \mathcal{T}
E.g.: Lecturer \doteq Person $\sqcap \exists$ teaches.Course

Yields two kinds of concept names: defined and primitive

TBoxes are used as ontologies:

$$
\begin{aligned}
\text { Woman } & \doteq \text { Person } \sqcap \text { Female } \\
\text { Man } & \doteq \text { Person } \sqcap \neg \text { Woman } \\
\text { Lecturer } & \doteq \text { Person } \sqcap \exists \text { teaches.Course } \\
\text { Student } & \doteq \text { Person } \sqcap \exists \text { attends.Course } \\
\text { BadLecturer } & \doteq \text { Person } \sqcap \forall \text { teaches.(Course } \rightarrow \text { Boring) }
\end{aligned}
$$

TBox: Example II

A TBox restricts the set of admissible interpretations.

$$
\begin{aligned}
\text { Lecturer } & \doteq \text { Person } \sqcap \exists \text { teaches.Course } \\
\text { Student } & \doteq \text { Person } \sqcap \exists \text { attends.Course }
\end{aligned}
$$

C subsumed by D w.r.t. \mathcal{T} (written $C \sqsubseteq \mathcal{T} D$)
iff

$$
C^{\mathcal{I}} \subseteq D^{\mathcal{I}} \text { holds for all models } \mathcal{I} \text { of } \mathcal{T}
$$

Intuition: If $C \sqsubseteq_{\mathcal{T}} D$, then D is more general than C

Example:
Lecturer \doteq Person $\sqcap \exists$ teaches.Course
Student \doteq Person $\sqcap \exists$ attends.Course
Then

Classification: arrange all defined concepts from a TBox in a hierarchy w.r.t. generality

$$
\begin{aligned}
\text { Woman } & \doteq \text { Person } \sqcap \text { Female } \\
\text { Man } & \doteq \text { Person } \sqcap \neg \text { Woman } \\
\text { MaleLecturer } & \doteq \text { Man } \sqcap \exists \text { teaches.Course }
\end{aligned}
$$

Can be computed using multiple subsumption tests
Provides a principled view on ontology for browsing, maintaining, etc.

A Concept Hierarchy

Excerpt from a process engineering ontology

C is satisfiable w.r.t. $\mathcal{T} \quad$ iff $\quad \mathcal{T}$ has a model with $C^{\mathcal{I}} \neq \emptyset$

Intuition: If unsatisfiable, the concept contains a contradiction.

Example: \quad Woman \doteq Person \sqcap Female

$$
\text { Man } \doteq \text { Person } \sqcap \neg \text { Woman }
$$

Then \exists sibling.Man $\sqcap \forall$ sibling.Woman is unsatisfiable w.r.t. \mathcal{T}

Subsumption can be reduced to (un)satisfiability and vice versa:

- $\boldsymbol{C} \sqsubseteq_{\mathcal{T}} \boldsymbol{D}$ iff $\boldsymbol{C} \sqcap \neg \boldsymbol{D}$ is not satisfiable w.r.t. \mathcal{T}
- C is satisfiable w.r.t. \mathcal{T} if not $C \sqsubseteq \mathcal{T} \perp$.

Many reasoners decide satisfiability rather than subsumption.

A primitive interpretation for TBox \mathcal{T} interpretes

- the primitive concept names in \mathcal{T}
- all role names

A TBox is called definitorial if every primitive interpretation for \mathcal{T}
can be uniquely extended to a model of \mathcal{T}.
i.e.: primitive concepts (and roles) uniquely determine defined concepts

Not all TBoxes are definitorial:

$$
\text { Person } \doteq \exists \text { parent.Person }
$$

Non-definitorial TBoxes describe constraints, e.g. from background knowledge

TBox \mathcal{T} is acyclic if there are no definitorial cycles:

Expansion of acyclic TBox \mathcal{T} :
exhaustively replace defined concept names with their definition (terminates due to acyclicity)

Acyclic TBoxes are always definitorial:
first expand, then set $\quad A^{\mathcal{I}}:=C^{\mathcal{I}}$ for all $A \doteq C \in \mathcal{T}$

Acyclic TBoxes II

For reasoning, acyclic TBox can be eliminated:

- to decide $C \sqsubseteq \mathcal{T}^{D}$ with \mathcal{T} acyclic,
- expand \mathcal{T}
- replace defined concept names in C, D with their definition
- decide $C \sqsubseteq D$
- analogously for satisfiability

May yield an exponential blow-up:

$$
\begin{gathered}
\boldsymbol{A}_{0} \doteq \forall r . \boldsymbol{A}_{1} \sqcap \forall s . \boldsymbol{A}_{1} \\
\boldsymbol{A}_{1} \doteq \forall r . \boldsymbol{A}_{2} \sqcap \forall s . \boldsymbol{A}_{2} \\
\ldots \\
\boldsymbol{A}_{n-1} \doteq \forall r . \boldsymbol{A}_{\boldsymbol{n}} \sqcap \forall s . \boldsymbol{A}_{n}
\end{gathered}
$$

View of TBox as set of constraints
General TBox: finite set of general concept implications (GCIs)

$$
C \sqsubseteq D
$$

with both C and D allowed to be complex
e.g. Course $\sqcap \forall$ attended-by.Sleeping \sqsubseteq Boring

Interpretation \mathcal{I} is model of general TBox \mathcal{T} if

$$
C^{\mathcal{I}} \subseteq D^{\mathcal{I}} \text { for all } C \sqsubseteq D \in \mathcal{T}
$$

$C \doteq D$ is abbreviation for $C \sqsubseteq D, D \sqsubseteq C$
e.g. Student $\sqcap \exists$ has-favourite.SoccerTeam \doteq Student $\sqcap \exists$ has-favourite.Beer

Note: $C \sqsubseteq D$ equivalent to $\top \doteq C \rightarrow D$

ABoxes

ABoxes describe a snapshot of the world

An ABox is a finite set of assertions

$$
\begin{array}{ll}
a: C & (a \text { individual name, } C \text { concept }) \\
(a, b): R & (a, b \text { individual names, } R \text { role name })
\end{array}
$$

E.g. \{peter : Student, (dl-course, uli) : tought-by \}

Interpretations \mathcal{I} map each individual name a to an element of $\Delta^{\mathcal{I}}$.
\mathcal{I} satisfies an assertion

$$
\begin{array}{lll}
a: C & \text { iff } & a^{\mathcal{I}} \in C^{\mathcal{I}} \\
(a, b): R & \text { iff } & \left(a^{\mathcal{I}}, b^{\mathcal{I}}\right) \in R^{\mathcal{I}}
\end{array}
$$

\mathcal{I} is a model for an ABox \mathcal{A} if \mathcal{I} satisfies all assertions in \mathcal{A}.

Note:

- interpretations describe the state if the world in a complete way
- ABoxes describe the state if the world in an incomplete way

$$
\begin{gathered}
\text { (uli, dl-course) : tought-by uli : Female } \\
\text { does not imply } \\
\text { dl-course : } \forall \text { tought-by.Female }
\end{gathered}
$$

An ABox has many models!
An ABox constraints the set of admissibile models similar to a TBox

ABox consistency
Given an ABox \mathcal{A} and a TBox \mathcal{T}, do they have a common model?

Instance checking
Given an ABox \mathcal{A}, a TBox \mathcal{T}, an individual name a, and a concept C does $a^{\mathcal{I}} \in C^{\mathcal{I}}$ hold in all models of \mathcal{A} and \mathcal{T} ?

$$
\text { (written } \mathcal{A}, \mathcal{T} \models a: C \text {) }
$$

The two tasks are interreducible:

- \mathcal{A} consistent w.r.t. \mathcal{T} iff $\mathcal{A}, \mathcal{T} \not \models a: \perp$
- $\mathcal{A}, \mathcal{T} \models a: C$ iff $\mathcal{A} \cup\{a: \neg C\}$ is not consistent
$\begin{aligned} \text { ABox } & \frac{\text { dumbo }: \text { Mammal }}{\text { g23: Darkgrey }} \\ & \\ & \text { dumbo }: \forall \text { color.Lightgrey }\end{aligned}$
TBox \quad Elephant \doteq Mammal $\sqcap \exists$ bodypart.Trunk $\sqcap \forall$ color.Grey
Grey \doteq Lightgrey \sqcup Darkgrey
$\perp \doteq$ Lightgrey \sqcap Darkgrey

1. ABox is inconsistent w.r.t. TBox.
2. dumbo is an instance of Elephant
3. Tableau algorithms for $\mathcal{A L C}$ and extensions

We see a tableau algorithm for $\mathcal{A L C}$ and extend it with
(1) general TBoxes and
(2) inverse roles

Goal: Design sound and complete desicion procedures for satisfiability (and subsumption) of DLs which are well-suited for implementation purposes

Goal: design an algorithm which takes an $\mathcal{A \mathcal { L C }}$ concept C_{0} and

1. returns "satisfiable" iff C_{0} is satisfiable and
2. terminates, on every input,
i.e., which decides satisfiability of $\mathcal{A L C}$ concepts.

Recall: such an algorithm cannot exist for FOL since satisfiability of FOL is undecidable.

Idea: our algorithm

- is tableau-based and
- tries to construct a model of C_{0}
- by breaking C_{0} down syntactically, thus
- inferring new constraints on such a model.

To make our life easier, we transform each concept C_{0} into an equivalent C_{1} in NNF

Equivalent: $C_{0} \sqsubseteq C_{1}$ and $C_{1} \sqsubseteq C_{0}$
NNF: negation occurs only in front of concept names
How? By pushing negation inwards (de Morgan et. al):

$$
\begin{aligned}
\neg(C \sqcap D) & \rightsquigarrow \neg C \sqcup \neg D \\
\neg(C \sqcup D) & \rightsquigarrow \neg C \sqcap \neg D \\
\neg \neg C & \rightsquigarrow C \\
\neg \forall R . C & \rightsquigarrow \exists R . \neg C \\
\neg \exists R . C & \rightsquigarrow \forall R . \neg C
\end{aligned}
$$

From now on: concepts are in NNF and $\operatorname{sub}(C)$ denotes the set of all sub-concepts of C

Find out whether $A \sqcap \exists R . B \sqcap \forall R . \neg B \quad$ is satisfiable... $A \sqcap \exists R . B \sqcap \forall R .(\neg B \sqcup \exists S . E)$

Our tableau algorithm works on a completion tree which

- represents a model \mathcal{I} : nodes represent elements of $\Delta^{\mathcal{I}}$
\rightsquigarrow each node x is labelled with concepts $\mathcal{L}(x) \subseteq \operatorname{sub}\left(C_{0}\right)$
$C \in \mathcal{L}(x)$ is read as " x should be an instance of C "
edges represent role successorship
\rightsquigarrow each edge $\langle x, y\rangle$ is labelled with a role-name from C_{0} $R \in \mathcal{L}(\langle x, y\rangle)$ is read as " (x, y) should be in $\boldsymbol{R}^{\mathcal{I} "}$
- is initialised with a single root node x_{0} with $\mathcal{L}\left(x_{0}\right)=\left\{C_{0}\right\}$
- is expanded using completion rules
\sqcap-rule: if $\quad C_{1} \sqcap C_{2} \in \mathcal{L}(x)$ and $\left\{C_{1}, C_{2}\right\} \nsubseteq \mathcal{L}(x)$ then set $\mathcal{L}(x)=\mathcal{L}(x) \cup\left\{C_{1}, C_{2}\right\}$

ப-rule: if $\quad C_{1} \sqcup C_{2} \in \mathcal{L}(x)$ and $\left\{C_{1}, C_{2}\right\} \cap \mathcal{L}(x)=\emptyset$ then set $\mathcal{L}(x)=\mathcal{L}(x) \cup\{C\}$ for some $C \in\left\{C_{1}, C_{2}\right\}$
\exists-rule: if $\quad \exists \boldsymbol{S} . \boldsymbol{C} \in \mathcal{L}(\boldsymbol{x})$ and x has no S-successor y with $C \in \mathcal{L}(y)$, then create a new node y with $\mathcal{L}(\langle x, y\rangle)=\{S\}$ and $\mathcal{L}(y)=\{C\}$
\forall-rule: if $\quad \forall S . C \in \mathcal{L}(x)$ and there is an S-successor \boldsymbol{y} of \boldsymbol{x} with $C \notin \mathcal{L}(y)$ then set $\mathcal{L}(y)=\mathcal{L}(y) \cup\{C\}$

We only apply rules if their application does "something new"

$$
\begin{gathered}
\sqcap \text {-rule: if } \quad C_{1} \sqcap C_{2} \in \mathcal{L}(x) \text { and }\left\{C_{1}, C_{2}\right\} \nsubseteq \mathscr{L}(x) \\
\text { then set } \mathcal{L}(x)=\mathcal{L}(x) \cup\left\{C_{1}, C_{2}\right\}
\end{gathered}
$$

\sqcup-rule: if $\quad C_{1} \sqcup C_{2} \in \mathcal{L}(x)$ and $\left\{C_{1}, C_{2}\right\} \cap \mathcal{L}(x)=\emptyset$ then set $\mathcal{L}(x)=\mathcal{L}(x) \cup\{C\}$ for some $C \in\left\{C_{1}, C_{2}\right\}$
\exists-rule: if $\quad \exists S . C \in \mathcal{L}(x)$ and x has no S-successor y with $C \in \mathcal{L}(y)$, then create a new node y with $\mathcal{L}(\langle x, y\rangle)=\{S\}$ and $\mathcal{L}(y)=\{C\}$
\forall-rule: if $\quad \forall S . C \in \mathcal{L}(x)$ and there is an S-successor y of x with $C \notin \mathcal{L}(y)$ then set $\mathcal{L}(y)=\mathcal{L}(y) \cup\{C\}$

The \sqcup-rule is non-deterministic:
\sqcap-rule: if $\quad C_{1} \sqcap C_{2} \in \mathcal{L}(x)$ and $\left\{C_{1}, C_{2}\right\} \nsubseteq \mathcal{L}(x)$ then set $\mathcal{L}(x)=\mathcal{L}(x) \cup\left\{C_{1}, C_{2}\right\}$
\sqcup-rule: if $\quad C_{1} \sqcup C_{2} \in \mathcal{L}(x)$ and $\left\{C_{1}, C_{2}\right\} \cap \mathcal{L}(x)=\emptyset$ then set $\mathcal{L}(x)=\mathcal{L}(x) \cup\{C\}$ for some $C \in\left\{C_{1}, C_{2}\right\}$
\exists-rule: if $\quad \exists S . C \in \mathcal{L}(x)$ and x has no S-successor y with $C \in \mathcal{L}(y)$, then create a new node y with $\mathcal{L}(\langle x, y\rangle)=\{S\}$ and $\mathcal{L}(y)=\{C\}$
\forall-rule: if $\quad \forall S . C \in \mathcal{L}(x)$ and there is an S-successor y of x with $C \notin \mathcal{L}(y)$ then set $\mathcal{L}(y)=\mathcal{L}(y) \cup\{C\}$

Clash: a c-tree contains a clash if it has a node x with $\perp \in \mathcal{L}(x)$ or $\{A, \neg A\} \subseteq \mathcal{L}(x)$ - otherwise, it is clash-free
Complete: a c-tree is complete if none of the completion rules can be applied to it

Answer behaviour: when started for C_{0} (in NNF!), the tableau algorithm

- is initialised with a single root node x_{0} with $\mathcal{L}\left(x_{0}\right)=\left\{C_{0}\right\}$
- repeatedly applies the completion rules (in whatever order it likes)
- answer " C_{0} is satisfiable" iff the completion rules can be applied in such a way that it results in a complete and clash-free c-tree (careful: this is non-deterministic)
...go back to examples

Lemma: Let C_{0} an $\mathcal{A L C}$-concept in NNF. Then

1. the algorithm terminates when applied to C_{0} and
2. the rules can be applied such that they generate a clash-free and complete completion tree iff C_{0} is satisfiable.

Corollary: 1 . Our tableau algorithm decides satisfiability and subsumption of $\mathcal{A L C}$.
2. Satisfiability (and subsumption) in $\mathcal{A L C}$ is decidable in PSpace.
3. $\mathcal{A L C}$ has the finite model property i.e., every satisfiable concept has a finite model.
4. $\mathcal{A L C}$ has the tree model property i.e., every satisfiable concept has a tree model.
5. $\mathcal{A L C}$ has the finite tree model property i.e., every satisfiable concept has a finite tree model.

Proof of the Lemma: Termination

(1) Termination is an immediate consequence of these observations:

1. the c-tree is constructed in a monotonic way, each rule either adds nodes or extends node labels, nothing is removed
2. node labels are restricted to subsets of $\operatorname{sub}\left(C_{0}\right)$ and $\# \operatorname{sub}\left(C_{0}\right) \leq\left|C_{0}\right|$, at each position in C_{0}, at most one sub-concepts starts
3. the c-tree is of bounded breadth $\leq\left|C_{0}\right|$, at most 1 successor for each $\exists R . C \in \operatorname{sub}\left(C_{0}\right)$
4. the c-tree is of bounded depth $\leq\left|C_{0}\right|$, the maximal depth of concepts in node labels decreases from a node to its successor, i.e., for y a successor of $x: \max \{|C| \mid C \in \mathcal{L}(y)\}<\max \{|C| \mid C \in \mathcal{L}(x)\}$

Proof of the Lemma: Termination

If we construct c-tree in depth-first manner and re-use space for branches already visited, mark $\exists R . C \in \mathcal{L}(x)$ with "todo" or "done"
we can run tableau algorithm in polynomial space:

- c-tree is of depth bounded by $\left|C_{0}\right|$, and
- we keep only a single branch in memory at any time.
$\rightsquigarrow(2)$ of our corollary: $\mathcal{A L C}$ is in PSpace

Proof of the Lemma: Soundness

(2) Let the algorithm stop with a complete and clash-free c-tree.

From this, define an interpretation \mathcal{I} as follows:

$$
\begin{aligned}
\Delta^{\mathcal{I}} & :=\{x \mid x \text { is a node in c-tree }\} \\
A^{\mathcal{I}} & :=\{x \mid A \in \mathcal{L}(x)\} \text { for concept names } A \\
R^{\mathcal{I}} & :=\{(x, y) \mid y \text { is an } R \text {-successor of } x \text { in c-tree }\}
\end{aligned}
$$

and show, by induction on structure of concepts, for all $x \in \Delta^{\mathcal{I}}, D \in \operatorname{sub}\left(C_{0}, \mathcal{T}\right)$:

$$
D \in \mathcal{L}(x) \text { implies } x \in D^{\mathcal{I}}
$$

\rightarrow concept names D : by definition of \mathcal{I}
\rightarrow for negated concept names D : due to clash-freeness and induction
\rightarrow for conjunctions/disjunctions/existential restrictions/universal restrictions D : due to completeness and by induction
\rightsquigarrow since C_{0} is in label of root node, \mathcal{I} is a model of C_{0}
(3) Let C_{0} be satisfiable, and let \mathcal{I} be a model of it with $a_{0} \in C_{0}^{\mathcal{I}}$.

Use \mathcal{I} to steer the application of the (only non-deterministic) \sqcup-rule:
Completion tree Model of CO
Inductively define a total mapping $\boldsymbol{\pi}$:
start with $\pi\left(x_{0}\right)=a_{0}$, and show that each rule can be applied such that $(*)$ is preserved

$$
\begin{aligned}
& \text { (*) if } C \in \mathcal{L}(x) \text {, then } \pi(x) \in C^{\mathcal{I}} \\
& \text { if } y \text { is an } R \text {-succ. of } x \text {, then }\langle\pi(x), \pi(y)\rangle \in R^{\mathcal{I}}
\end{aligned}
$$

- easy for \sqcap - and \forall-rule,
- for \exists-rule, we need to extend π to the newly created R-successor
- for \sqcup-rule, if $C_{1} \sqcup C_{2} \in \mathcal{L}(x),(*)$ implies that $\pi(x) \in\left(C_{1} \sqcup C_{2}\right)^{\mathcal{I}}$ \rightsquigarrow we can choose C_{i} with $\pi(x) \in C_{i}^{\mathcal{I}}$ to add to $\mathcal{L}(x)$ and thus preserve (*)
\rightsquigarrow easy to see: $(*)$ implies that c-tree is clash-free

Look again at the model \mathcal{I} constructed for a clash-free, complete c-tree:
\mathcal{I} is - finite because c-tree has finitely many nodes

- a tree because c-tree is a tree

Hence we get Corollary (3) - (5) for free from our proof:
C_{0} is satisfiable
\rightsquigarrow tableau algorithm stops with clash-free, complete c-tree
$\rightsquigarrow C_{0}$ has a finite tree model.

Recall: - Concept inclusion: of the form $C \sqsubseteq D$ for C, D (complex) concepts

- (General) TBox: a finite set of concept inclusions
- \mathcal{I} satisfies $C \doteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- \mathcal{I} is a model of TBox \mathcal{T} iff \mathcal{I} satisfies each concept equation in \mathcal{T}
$\bullet C_{0}$ is satisfiable w.r.t. \mathcal{T} iff there is a model \mathcal{I} of \mathcal{T} with $C_{0}^{\mathcal{I}} \neq \emptyset$

Goal - Lemma: Let C_{0} an $\mathcal{A L C}$-concept and \mathcal{T} be a an $\mathcal{A L C}$-TBox. Then

1. the algorithm terminates when applied to \mathcal{T} and C_{0} and
2. the rules can be applied such that they generate a clash-free and complete completion tree iff C_{0} is satisfiable w.r.t. \mathcal{T}.

We extend our tableau algorithm by adding a new completion rule:

- remember that nodes represent elements of $\Delta^{\mathcal{I}}$ and
- if $C \dot{\sqsubseteq} D \in \mathcal{T}$, then for each element x in a model \mathcal{I} of \mathcal{T}
if $x \in C^{\mathcal{I}}$, then $x \in D^{\mathcal{I}}$ hence $x \in(\neg C)^{\mathcal{I}}$ or $x \in D^{\mathcal{I}}$

$$
\begin{aligned}
& x \in(\neg C \sqcup D)^{\mathcal{I}} \\
& x \in(\operatorname{NNF}(\neg C \sqcup D))^{\mathcal{I}}
\end{aligned}
$$

for $\operatorname{NNF}(\boldsymbol{E})$ the negation normal form of \boldsymbol{E}

Completion rules for $\mathcal{A L C}$ with TBoxes

\sqcap-rule: if $\quad C_{1} \sqcap C_{2} \in \mathcal{L}(x)$ and $\left\{C_{1}, C_{2}\right\} \nsubseteq \mathcal{L}(x)$ then set $\mathcal{L}(x)=\mathcal{L}(x) \cup\left\{C_{1}, C_{2}\right\}$
\sqcup-rule: if $\quad C_{1} \sqcup C_{2} \in \mathcal{L}(x)$ and $\left\{C_{1}, C_{2}\right\} \cap \mathcal{L}(x)=\emptyset$ then set $\mathcal{L}(x)=\mathcal{L}(x) \cup\{C\}$ for some $C \in\left\{C_{1}, C_{2}\right\}$
\exists-rule: if $\quad \exists S . C \in \mathcal{L}(x)$ and x has no S-successor y with $C \in \mathcal{L}(y)$, then create a new node y with $\mathcal{L}(\langle x, y\rangle)=\{S\}$ and $\mathcal{L}(y)=\{C\}$
\forall-rule: if $\quad \forall S . C \in \mathcal{L}(x)$ and there is an S-successor y of x with $C \notin \mathcal{L}(y)$ then set $\mathcal{L}(y)=\mathcal{L}(y) \cup\{C\}$
\mathcal{T}-rule: if $\quad C_{1} \sqsubseteq C_{2} \in \mathcal{T}$ and $\operatorname{NNF}\left(\neg C_{1} \sqcup C_{2}\right) \notin \mathcal{L}(x)$ then set $\mathcal{L}(x)=\mathcal{L}(x) \cup\left\{\operatorname{NNF}\left(\neg C_{1} \sqcup C_{2}\right)\right\}$

Example: Consider satisfiability of C w.r.t. $\{C \sqsubseteq \exists R . C\}$

Tableau algorithm no longer terminates!
Reason: size of concepts no longer decreases along paths in a completion tree
Observation: most nodes on this path look the same and we keep repeating ourselves

Regain termination with a "cycle-detection" technique called blocking

Intuitively, whenever we find a situation where y has to satisfy stronger constraints than \boldsymbol{x}, we freeze \boldsymbol{x}, i.e., block rules from being applied to \boldsymbol{x}

- x is directly blocked if it has an ancestor y with $\mathcal{L}(x) \subseteq \mathscr{L}(y)$
\bullet in this case and if y is the "closest" such node to x, we say that x is blocked by y
- a node is blocked if it is directly blocked or one of its ancestors is blocked
\oplus restrict the application of all rules to nodes which are not blocked
\rightsquigarrow completion rules for $\mathcal{A L C}$ w.r.t. TBoxes
\sqcap-rule: if $\quad C_{1} \sqcap C_{2} \in \mathcal{L}(x),\left\{C_{1}, C_{2}\right\} \nsubseteq \mathcal{L}(x)$, and x is not blocked then set $\mathcal{L}(x)=\mathcal{L}(x) \cup\left\{C_{1}, C_{2}\right\}$
\sqcup-rule: if $\quad C_{1} \sqcup C_{2} \in \mathcal{L}(x),\left\{C_{1}, C_{2}\right\} \cap \mathcal{L}(x)=\emptyset$, and x is not blocked then set $\mathcal{L}(x)=\mathcal{L}(x) \cup\{C\}$ for some $C \in\left\{C_{1}, C_{2}\right\}$
\exists-rule: if $\quad \exists S . C \in \mathcal{L}(x), x$ has no S-successor y with $C \in \mathcal{L}(y)$, and x is not blocked then create a new node y with $\mathcal{L}(\langle x, y\rangle)=\{S\}$ and $\mathcal{L}(y)=\{C\}$
\forall-rule: if $\quad \forall S . C \in \mathcal{L}(x)$, there is an S-successor y of x with $C \notin \mathcal{L}(y)$ and x is not blocked then set $\mathcal{L}(\boldsymbol{y})=\mathcal{L}(\boldsymbol{y}) \cup\{\boldsymbol{C}\}$
\mathcal{T}-rule: if $\quad C_{1} \sqsubseteq C_{2} \in \mathcal{T}, \quad \operatorname{NNF}\left(\neg C_{1} \sqcup C_{2}\right) \notin \mathcal{L}(x)$ and x is not blocked then set $\mathcal{L}(x)=\mathcal{L}(x) \cup\left\{\operatorname{NNF}\left(\neg C_{1} \sqcup C_{2}\right)\right\}$

Tableaux Rules for $\mathcal{A L C}$

$x \bullet\left\{C_{1} \sqcap C_{2}, \ldots\right\}$	$\rightarrow \sqcap$	$x \bullet\left\{C_{1} \sqcap C_{2}, C_{1}, C_{2}, \ldots\right\}$
$x \bullet\left\{C_{1} \sqcup C_{2}, \ldots\right\}$	$\rightarrow \sqcup$	$x \bullet\left\{C_{1} \sqcup C_{2}, C, \ldots\right\}$ for $C \in\left\{C_{1}, C_{2}\right\}$
$x \bullet\{\exists R . C, \ldots\}$	$\rightarrow \exists$	$x \bullet\{\exists R . C, \ldots\}$ R y
$x \bullet\{C\}$		

Tableaux Rule for Transitive Roles

Where R is a transitive role (i.e., $\left(R^{\mathcal{I}}\right)^{+}=R^{\mathcal{I}}$)
No longer naturally terminating (e.g., if $C=\exists R$. \top)
Need blocking

- Simple blocking suffices for $\mathcal{A L C}$ plus transitive roles
- I.e., do not expand node label if ancestor has superset label
- More expressive logics (e.g., with inverse roles) need more sophisticated blocking strategies

Tableaux Algorithm - Example

Test satisfiability of $\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}$ where R is a transitive role

Tableaux Algorithm - Example

Test satisfiability of $\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}$ where R is a transitive role

$$
\mathcal{L}(w)=\{\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}
$$

Tableaux Algorithm - Example

Test satisfiability of $\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}$ where R is a transitive role

$$
\mathcal{L}(w)=\{\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R \cdot C \sqcap \forall R \cdot(\exists R . C)\}
$$

Tableaux Algorithm - Example

Test satisfiability of $\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}$ where R is a transitive role

$$
\mathcal{L}(w)=\{\exists S . C, \forall S .(\neg C \underset{\mho}{\square} \neg D), \exists R . C, \forall R .(\exists R . C)\}
$$

Tableaux Algorithm - Example

Test satisfiability of $\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}$ where R is a transitive role

$$
\mathcal{L}(w)=\{\exists S . C, \forall S .(\neg C \stackrel{\rightharpoonup}{\uplus} \neg), \exists R . C, \forall R .(\exists R . C)\}
$$

Tableaux Algorithm - Example

Test satisfiability of $\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}$ where R is a transitive role

$$
\begin{aligned}
& \mathcal{L}(w)=\{\exists S . C, \forall S \cdot(\neg C \sqcup \neg D), \exists R \cdot C, \forall R \cdot(\exists R \cdot C)\} \\
& \mathcal{L}(x)=\{C\} \circledast
\end{aligned}
$$

Tableaux Algorithm - Example

Test satisfiability of $\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}$ where R is a transitive role

$$
\mathcal{L}(w)=\{\exists S . C, \forall S .(\neg C \sqcup \neg D), \exists R . C, \forall R .(\exists R . C)\}
$$

Tableaux Algorithm - Example

Test satisfiability of $\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}$ where R is a transitive role

Tableaux Algorithm - Example

Test satisfiability of $\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}$ where R is a transitive role

Tableaux Algorithm - Example

Test satisfiability of $\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}$ where R is a transitive role

$$
\begin{aligned}
& \mathcal{L}(w)=\{\exists S . C, \forall S .(\neg C \sqcup \neg D), \exists R \cdot C, \forall R \cdot(\exists R \cdot C)\} \\
& \mathcal{L}(x)=\{C,(\neg C \sqcup \neg D), \neg C\} \times x^{(~}
\end{aligned}
$$

Tableaux Algorithm - Example

Test satisfiability of $\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}$ where R is a transitive role

$$
\begin{gathered}
\mathcal{L}(w)=\{\exists S . C, \forall S .(\neg C \sqcup \neg D), \exists R . C, \forall R .(\exists R . C)\} \\
\mathcal{L}(x)=\{C,(\neg C \sqcup \neg D), \neg C\} \underbrace{\text { clash }}
\end{gathered}
$$

Tableaux Algorithm - Example

Test satisfiability of $\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}$ where R is a transitive role

Tableaux Algorithm - Example

Test satisfiability of $\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}$ where R is a transitive role

$$
\begin{aligned}
& \mathcal{L}(w)=\{\exists S . C, \forall S .(\neg C \sqcup \neg D), \exists R . C, \forall R .(\exists R . C)\} \\
& \mathcal{L}(x)=\{C,(\neg C \sqcup \neg D), \neg D\} \times
\end{aligned}
$$

Tableaux Algorithm - Example

Test satisfiability of $\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}$ where R is a transitive role

$$
\begin{gathered}
\mathcal{L}(w)=\{\exists S . C, \forall S .(\neg C \sqcup \neg D), \exists R . C, \forall R .(\exists R . C)\} \\
\mathcal{L}(x)=\{C,(\neg C \sqcup \neg D), \neg D\} \times\left(\begin{array}{l}
\text { (}
\end{array}\right.
\end{gathered}
$$

Tableaux Algorithm - Example

Test satisfiability of $\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}$ where R is a transitive role

Tableaux Algorithm - Example

Test satisfiability of $\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}$ where R is a transitive role

Tableaux Algorithm - Example

Test satisfiability of $\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}$ where R is a transitive role

$$
\mathcal{L}(w)=\{\exists S . C, \forall S .(\neg C \sqcup \neg D), \exists R \cdot C, \forall R .(\exists R \cdot C)\}
$$

Tableaux Algorithm - Example

Test satisfiability of $\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}$ where R is a transitive role

$$
\begin{array}{r}
\mathcal{L}(w)=\{\exists S . C, \forall S .(\neg C \sqcup \neg D), \exists R . C, \forall R .(\exists R . C)\} \\
\mathcal{L}(x)=\{C,(\neg C \sqcup \neg D), \neg D\} \times(y) \mathcal{L}(y)=\{C,
\end{array}
$$

Tableaux Algorithm - Example

Test satisfiability of $\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}$ where R is a transitive role

$$
\mathcal{L}(w)=\{\exists S . C, \forall S .(\neg C \sqcup \neg D), \exists R . C, \forall R .(\exists R . C)\}
$$

Tableaux Algorithm - Example

Test satisfiability of $\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}$ where R is a transitive role

Tableaux Algorithm - Example

Test satisfiability of $\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}$ where R is a transitive role

$$
\begin{array}{r}
\mathcal{L}(w)=\{\exists S . C, \forall S .(\neg C \sqcup \neg D), \exists R . C, \forall R .(\exists R . C)\} \\
\mathcal{L}(x)=\{C,(\neg C \sqcup \neg D), \neg D\}, x
\end{array}
$$

Tableaux Algorithm - Example

Test satisfiability of $\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}$ where R is a transitive role

$$
\mathcal{L}(x)=\{C,(\neg C \sqcup \neg D), \neg D\}
$$

Tableaux Algorithm - Example

Test satisfiability of $\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}$ where R is a transitive role

$$
\mathcal{L}(w)=\{\exists S . C, \forall S \cdot(\neg C \sqcup \neg D), \exists R \cdot C, \forall R .(\exists R \cdot C)\}
$$

Concept is satisfiable: T corresponds to model

Tableaux Algorithm - Example

Test satisfiability of $\exists S . C \sqcap \forall S .(\neg C \sqcup \neg D) \sqcap \exists R . C \sqcap \forall R .(\exists R . C)\}$ where R is a transitive role

Concept is satisfiable: T corresponds to model

Lemma: Let \mathcal{T} be a general $\mathcal{A L C}$-Tbox and C_{0} an $\mathcal{A L C}$-concept. Then

1. the algorithm terminates when applied to \mathcal{T} and C_{0} and
2. the rules can be applied such that they generate a clash-free and complete completion tree iff C_{0} is satisfiable w.r.t. \mathcal{T}.

Corollary: 1 . Satisfiability of $\mathcal{A L C}$-concept w.r.t. TBoxes is decidable
2. $\mathcal{A L C}$ with TBoxes has the finite model property
3. $\mathcal{A L C}$ with TBoxes has the tree model property
(1) termination is, again, due to the following properties: let $n=\left|C_{0}\right|+\left|C_{\mathcal{T}}\right|$ and

$$
\operatorname{sub}\left(C_{0}, \mathcal{T}\right)=\operatorname{sub}\left(C_{0}\right) \cup \bigcup_{C \sqsubseteq D \in \mathcal{T}} \operatorname{sub}(C) \cup \operatorname{sub}(D)
$$

1. the c- tree is built in a monotonic way: each rule either extends node labels or adds a node (with a label)
2. node labels are restricted to subsets of $\operatorname{sub}\left(C_{0}, \mathcal{T}\right)$ and $\# \operatorname{sub}\left(C_{0}, \mathcal{T}\right) \leq n$
3. the breadth of the c-tree is bounded by n : at most 1 successor per $\exists R . C \in \operatorname{sub}\left(C_{0}, \mathcal{T}\right)$
4. the depth of the c-tree is bounded:
on a path of length 2^{n}, blocking occurs, and thus it does not get longer

Important: in the presence of TBoxes, c-tree can be of exponential depth whereas without TBoxes, depth was linearly bounded

Proof of the Lemma: Soundness

(2) let the algorithm stop with a complete and clash-free c-tree.

Again, from this, we define an interpretation:
$\Delta^{\mathcal{I}}:=\{x \mid x$ is a node in \mathcal{T}, x is not blocked $\}$
$A^{\mathcal{I}}:=\left\{x \in \Delta^{\mathcal{I}} \mid A \in \mathcal{L}(x)\right\}$ for concept names A
$\boldsymbol{R}^{\mathcal{I}}:=\left\{\langle x, y\rangle \in \Delta^{\mathcal{I}^{2}} \mid y\right.$ is an R-succ of x in c-tree or y blocks an R-succ of x in c-tree $\}$
and show, by induction on the structure of concepts, for all $x \in \Delta^{\mathcal{I}}, D \in \operatorname{sub}\left(C_{0}, \mathcal{T}\right)$:

$$
D \in \mathcal{L}(x) \text { implies } x \in D^{\mathcal{I}} .
$$

This implies that \mathcal{I} is indeed a model of C_{0} and \mathcal{T} because
(a) C_{0} is in the label of the root node which cannot be blocked (!) and
(b) $\neg C \sqcup D$ is in the label of each node, for each $C \sqsubseteq D \in \mathcal{T}$
(3) Let C_{0} be satisfiable w.r.t. \mathcal{T} and \mathcal{I} a model of them with $a_{0} \in C_{0}^{\mathcal{I}}$. Use \mathcal{I} to steer the application of the (only non-deterministic) \sqcup-rule:

Inductively define a total mapping π : nodes of completion tree $\longrightarrow \Delta^{\mathcal{I}}$, start with $\pi\left(x_{0}\right)=a_{0}$, and show that
each rule can be applied in such a way that $(*)$ is preserved

$$
\begin{align*}
& \text { if } C \in \mathcal{L}(x) \text {, then } \pi(x) \in C^{\mathcal{I}} \tag{*}\\
& \text { if } y \text { is an } R \text {-succ. of } x \text {, then }\langle\pi(x), \pi(y)\rangle \in R^{\mathcal{I}}
\end{align*}
$$

- easy for \sqcap-, $\boldsymbol{\mathcal { T }}$-, and \forall-rule,
- for \exists-rule, we need to extend π to the newly created R-successor
- for \sqcup-rule, if $C_{1} \sqcup C_{2} \in \mathcal{L}(x),(*)$ implies that $\pi(x) \in\left(C_{1} \sqcup C_{2}\right)^{\mathcal{I}}$ \rightsquigarrow we can choose C_{i} with $\pi(x) \in C_{i}^{\mathcal{I}}$ to add to $\mathcal{L}(x)$ and thus preserve $(*)$
\rightsquigarrow easy to see: $(*)$ implies that c-tree is clash-free

Look again at the model \mathcal{I} constructed for a clash-free, complete c-tree:
\mathcal{I} is - finite because c-tree has finitely many nodes

- but it is not a tree if blocking occurs

Hence we get Corollary (2) for free from our proof:
C_{0} is satisfiable
\rightsquigarrow tableau algorithm stops with clash-free, complete c-tree
$\rightsquigarrow C_{0}$ has a finite model.

To obtain Corollary (3), the tree model property, we must work a bit more:
\rightsquigarrow build the model in a different way, "unravel" the c-tree into an infinite tree intuitively, instead of going to a blocked node, go to a copy of its blocking node

The tableau algorithm presented here
\rightarrow decides satisfiability of $\mathcal{A L C}$-concepts w.r.t. TBoxes, and thus also
\rightarrow decides subsumption of $\mathcal{A} \mathcal{L C}$-concepts w.r.t. TBoxes
\rightarrow uses blocking to ensure termination, and
\rightarrow is non-deterministic due to the $\rightarrow \square_{-}$rule
\rightarrow in the worst case, it builds a tree of depth exponential in the size of the input, and thus of double exponential size. Hence it runs in (worst case) 2NExpTime,
\rightarrow can be implemented in various ways,

- order/priorities of rules
- data structure
- etc.
\rightarrow is amenable to optimisations - more on this next week

Next, we could

- discuss implementation issues for our tableau algorithms, e.g.,
- datastructures,
- more efficient (i.e., less strict) blocking conditions,
- a good strategy for the order of rule applications,
- how to "determinise" our non-deterministic algorithm: e.g., backtracking
- etc.
- discuss other reasoning techniques for DLs
- analyse computational complexity of DLs
- further extend our tableau algorithm for more expressive DLs with one more expressive means

Naive Implementations

Problems include:
Space usage

- Storage required for tableaux datastructures
- Rarely a serious problem in practice
- But problems can arise with inverse roles and cyclical KBs

Time usage

- Search required due to non-deterministic expansion
- Serious problem in practice
- Mitigated by:
- Careful choice of algorithm
- Highly optimised implementation

Careful Choice of Algorithm

Transitive roles instead of transitive closure

- Deterministic expansion of $\exists R . C$, even when $R \in \mathbf{R}_{+}$
- (Relatively) simple blocking conditions
- Cycles always represent (part of) valid cyclical models

Direct algorithm/implementation instead of encodings

- GCI axioms can be used to "encode" additional operators/axioms
- Powerful technique, particularly when used with FL closure
- Can encode cardinality constraints, inverse roles, range/domain,
- E.g., (domain $R . C) \equiv \exists R . \top \sqsubseteq C$
- (FL) encodings introduce (large numbers of) axioms
- BUT even simple domain encoding is disastrous with large numbers of roles

Dependency Directed Backtracking

Allows rapid recovery from bad branching choices
Most commonly used technique is backjumping

- Tag concepts introduced at branch points (e.g., when expanding disjunctions)
- Expansion rules combine and propagate tags
- On discovering a clash, identify most recently introduced concepts involved
- Jump back to relevant branch points without exploring alternative branches
- Effect is to prune away part of the search space

Highly effective - essential for usable system

- E.g., Galen KB, 30s (with) \longrightarrow months++ (without)

Backjumping

E.g., if $\exists R . \neg A \sqcap \forall R .(A \sqcap B) \sqcap\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \subseteq \mathcal{L}(x)$

Backjumping

E.g., if $\exists R . \neg A \sqcap \forall R .(A \sqcap B) \sqcap\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \subseteq \mathcal{L}(x)$

Backjumping

E.g., if $\exists R . \neg A \sqcap \forall R .(A \sqcap B) \sqcap\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \subseteq \mathcal{L}(x)$

Backjumping

E.g., if $\exists R . \neg A \sqcap \forall R .(A \sqcap B) \sqcap\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \subseteq \mathcal{L}(x)$

Backjumping

E.g., if $\exists R . \neg A \sqcap \forall R .(A \sqcap B) \sqcap\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \subseteq \mathcal{L}(x)$

Backjumping

E.g., if $\exists R . \neg A \sqcap \forall R .(A \sqcap B) \sqcap\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \subseteq \mathcal{L}(x)$

Backjumping

E.g., if $\exists R . \neg A \sqcap \forall R .(A \sqcap B) \sqcap\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \subseteq \mathcal{L}(x)$

Backjumping

E.g., if $\exists R . \neg A \sqcap \forall R .(A \sqcap B) \sqcap\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \subseteq \mathcal{L}(x)$

Backjumping

E.g., if $\exists R . \neg A \sqcap \forall R .(A \sqcap B) \sqcap\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \subseteq \mathcal{L}(x)$

Inverse Roles

Consider the following TBox

$$
\begin{aligned}
& \text { Control-rod } \grave{亡} \text { Device } \sqcap \exists \text { part-of.Reactor-core } \\
& \text { Reactor-core } \doteq \text { Device } \sqcap \text { ヨhas-part.Control-rod } \sqcap \\
& \exists \text { part-of.N-reactor, }
\end{aligned}
$$

Reactor－core $\sqcap \exists$ has part．Faulty $亡$ Dangerous，

Now，w．r．t．such a TBox，we find that
Control＿rod Π Faulty should be subsumed by \exists part－of．Dangerous
But this is not true：no interaction between part－of and has－part！
\rightsquigarrow also allow for $\exists \boldsymbol{R}^{-} . C$ and $\forall \boldsymbol{R}^{-} . C$ ，where $\left(\boldsymbol{R}^{-}\right)^{\mathcal{I}}=\left\{\langle\boldsymbol{y}, \boldsymbol{x}\rangle \mid\langle\boldsymbol{x}, \boldsymbol{y}\rangle \in \boldsymbol{R}^{\mathcal{I}}\right\}$
$\mathcal{A L C I}$ is the extension of $\mathcal{A L C}$ with inverse roles R^{-}in the place of role names:

$$
\left(\boldsymbol{R}^{-}\right)^{\mathcal{I}}:=\left\{\langle y, x\rangle \mid\langle x, y\rangle \in R^{\mathcal{L}}\right\}
$$

Example: does \forall parent. \forall child.Blond \sqsubseteq Blond w.r.t. $\{\top\lceil\exists$ parent. $\top\}$? does \forall parent. \forall parent ${ }^{-}$.Blond \sqsubseteq Blond w.r.t. $\{\top \doteq \exists$ parent. $\top\}$?

Example: is $C_{0}=\exists R . \exists S . \exists T . A$ satisf. w.r.t. $\{C \doteq \exists R . C \sqcap \forall R . B$

$$
\left.\top \doteqdot T^{-} . \forall S^{-} . \forall R^{-} . C\right\} ?
$$

Clear: inverse roles \rightsquigarrow tableau algorithm must reason up and down edges

Modifications necessary to handle inverse roles:
(1) extend edge labels in c-trees to inverse roles,
(2) call \boldsymbol{y} an \boldsymbol{R}-neighbour of \boldsymbol{x} if either
y is an R-successor of x or x is an R^{-}successor of y,

(3) substitute " R-successor" in the \forall - and \exists-rule with " R-neighbour"
still create an $\quad R$-successor of x if no R-neighbour exists for $\exists R . C \in \mathcal{L}(x)$ R^{-}-successor of x if no R^{-}-neighbour exists for an $\exists R^{-} . C \in \mathcal{L}(x)$
\sqcap-rule: if $\quad C_{1} \sqcap C_{2} \in \mathcal{L}(x),\left\{C_{1}, C_{2}\right\} \nsubseteq \mathcal{L}(x)$, and x is not blocked then set $\mathcal{L}(x)=\mathcal{L}(x) \cup\left\{C_{1}, C_{2}\right\}$
\sqcup-rule: if $\quad C_{1} \sqcup C_{2} \in \mathcal{L}(x),\left\{C_{1}, C_{2}\right\} \cap \mathcal{L}(x)=\emptyset$, and x is not blocked then set $\mathcal{L}(x)=\mathcal{L}(x) \cup\{C\}$ for some $C \in\left\{C_{1}, C_{2}\right\}$
\exists-rule: if $\quad \exists S . C \in \mathcal{L}(x), x$ has no S-neighbour y with $C \in \mathcal{L}(y)$, and x is not blocked then create a new node y with $\mathcal{L}(\langle x, y\rangle)=\{S\}$ and $\mathcal{L}(y)=\{C\}$
\forall-rule: if $\quad \forall S . C \in \mathcal{L}(x)$, there is an S-neighbour y of x with $C \notin \mathcal{L}(y)$ and x is not indirectly blocked then set $\mathcal{L}(y)=\mathcal{L}(y) \cup\{C\}$
\mathcal{T}-rule: if $\quad C_{1} \sqsubseteq C_{2} \in \mathcal{T}, \quad \operatorname{NNF}\left(\neg C_{1} \sqcup C_{2}\right) \notin \mathcal{L}(x)$ and x is not blocked
then set $\mathcal{L}(x)=\mathcal{L}(x) \cup\left\{\operatorname{NNF}\left(\neg C_{1} \sqcup C_{2}\right)\right\}$

Example: is A satisfiable w.r.t. $\left\{A \doteq \exists R^{-} . A \sqcap \forall R .(\neg A \sqcup \exists S . B)\right\}$?

Example: is $\exists \boldsymbol{R} . B$ satisfiable w.r.t. $\left\{B \dot{\sqsubseteq} \exists R . B \sqcap \forall \boldsymbol{R}^{-} . \forall \boldsymbol{R}^{-} \cdot \perp\right\}$?

Problem: algorithm returns "satisfiable" for unsatisfiable input \rightsquigarrow incorrect!

Reason: blocking condition $\mathcal{L}\left(\boldsymbol{y}^{\prime}\right) \subseteq \mathcal{L}(y)$ is too loose:
universal value restrictions from blocking node may be violated

Solution: tighten blocking condition to $\mathcal{L}\left(\boldsymbol{y}^{\prime}\right)=\mathcal{L}(\boldsymbol{y})$

(4) A node \boldsymbol{x} is directly blocked if it has an ancestor \boldsymbol{y} with $\mathcal{L}(x)=\mathcal{L}(y)$.

Lemma: Let \mathcal{T} be a general $\mathcal{A L C I}$-Tbox and C_{0} an $\mathcal{A L C I}$-concept. Then 1. the algorithm terminates when applied to \mathcal{T} and C_{0},
2. the rules can be applied such that they generate a clash-free and complete completion tree iff C_{0} is satisfiable w.r.t. \mathcal{T}.

Proof: (1) termination is identical to the $\mathcal{A L C}$ case.
(2) let the algorithm stop with a complete and clash-free c-tree. Again, from this, we define an interpretation:

$$
\begin{aligned}
& \Delta^{\mathcal{I}}:=\{x \mid x \text { is a node in } \mathcal{T}, x \text { is not blocked }\} \\
& A^{\mathcal{I}}:=\left\{x \in \Delta^{\mathcal{I}} \mid A \in \mathcal{L}(x)\right\} \text { for concept names } A \\
& R^{\mathcal{I}}:=\left\{\langle x, y\rangle \in \Delta^{\mathcal{I}^{2}} \mid\right. \boldsymbol{y} \text { is an } R \text {-succ of } x \text { or } \\
& y \text { blocks an } R \text {-succ of } x \text { or } \\
& x \text { is an } R^{-} \text {-succ of } y \text { or } \\
&\left.x \text { blocks an } R^{-} \text {-succ of } y\right\}
\end{aligned}
$$

and show, by induction on the structure of concepts, for all $x \in \Delta^{\mathcal{I}}, D \in \operatorname{sub}\left(C_{0}, \mathcal{T}\right)$:

$$
D \in \mathcal{L}(x) \text { implies } x \in D^{\mathcal{I}} .
$$

As for $\mathcal{A L C}$, this implies that \mathcal{I} is indeed a model of C_{0} and \mathcal{T}
(3) completely identical to the $\mathcal{A L C}$ case...

That's it!

I hope you got an idea of how we can

- build tableau algorithms for description logics and
- see that they do indeed what we want them to do, i.e., decide satisfiability

Research Challenges

Challenges

Increased expressive power

- Existing DL systems implement (at most) $\mathcal{S H} \mathcal{I} \mathcal{Q}$
- OWL extends $\mathcal{S H} \mathcal{I} \mathcal{Q}$ with datatypes and nominals

Eq Scalability

- Very large KBs
- Reasoning with (very large numbers of) individuals

Other reasoning tasks

- Querying
- Matching
- Least common subsumer
- ...

Tools and Infrastructure

- Support for large scale ontological engineering and deployment

Increased Expressive Power: Datatypes

OWL has simple form of datatypes

- Unary predicates plus disjoint object-class/datatype domains

Well understood theoretically

- Existing work on concrete domains [Baader \& Hanschke, Lutz]
- Algorithm already known for $\mathcal{S H O Q}(\mathbf{D})$ [Horrocks \& Sattler]
- Can use hybrid reasoning (DL reasoner + datatype "oracle")

May be practically challenging

- All XMLS datatypes supported (?)

Already seeing some (partial) implementations

- Cerebra system (Network Inference), Racer system (Hamburg)

Increased Expressive Power: Nominals

OWL oneOf constructor equivalent to hybrid logic nominals

- Extensionally defined concepts, e.g., EU $\equiv\{$ France, Italy, ... $\}$

Theoretically very challenging

- Resulting logic has known high complexity (NExpTime)
- No known "practical" algorithm
- Not obvious how to extend tableaux techniques in this direction
- Loss of tree model property
- Spy-points: T $\sqsubseteq \exists R .\{S p y\}$
- Finite domains: $\{S p y\} \sqsubseteq \leqslant n R^{-}$

Standard solution is weaker semantics for nominals

- Treat nominals as (disjoint) primitive classes
- Loss of completeness/soundness

Increased Expressive Power: Extensions

OWL not expressive enough for all applications
Extensions wish list includes:

- Feature chain (path) agreement, e.g., output of component of composite process equals input of subsequent process
- Complex roles/role inclusions, e.g., a city located in part of a country is located in that country
- Rules—proposal(s) already exist for "datalog/LP style rules"
- Temporal and spatial reasoning
- ...

May be impossible/undesirable to resist such extensions
Extended language sure to be undecidable
How can extensions best be integrated with OWL?
How can reasoners be developed/adapted for extended languages

- Some existing work on language fusions and hybrid reasoners

Scalability

Reasoning hard (ExpTime) even without nominals (i.e., $\mathcal{S H} \mathcal{I} \mathcal{Q}$)
Web ontologies may grow very large
Good empirical evidence of scalability/tractability for DL systems

- E.g., 5,000 (complex) classes; 100,000+ (simple) classes

But evidence mostly w.r.t. $\mathcal{S H} \mathcal{F}$ (no inverse)
Problems can arise when $\mathcal{S H} \mathcal{F}$ extended to $\mathcal{S H} \mathcal{I} \mathcal{Q}$

- Important optimisations no longer (fully) work

Reasoning with individuals

- Deployment of web ontologies will mean reasoning with (possibly very large numbers of) individuals/tuples
- Unlikely that standard Abox techniques will be able to cope

Performance Solutions (Maybe)

Excessive memory usage

- Problem exacerbated by over-cautious double blocking condition (e.g., root node can never block)
- Promising results from more precise blocking condition [Sattler \& Horrocks]
Qualified number restrictions
- Problem exacerbated by naive expansion rules
- Promising results from optimised expansion using Algebraic Methods [Haarslev \& Möller]
Caching and merging
- Can still work in some situations (work in progress)

Reasoning with very large KBs

- DL systems shown to work with $\approx 100 \mathrm{k}$ concept KB [Haarslev \& Möller]
- But KB only exploited small part of DL language

Other Reasoning Tasks

Querying

- Retrieval and instantiation wont be sufficient
- Minimum requirement will be DB style query language
- May also need "what can I say about x ?" style of query

Explanation

- To support ontology design
- Justifications and proofs (e.g., of query results)
"Non-Standard Inferences", e.g., LCS, matching
- To support ontology integration
- To support "bottom up" design of ontologies

Summary

Description Logics are family of logical KR formalisms
Applications of DLs include DataBases and Semantic Web

- Ontologies will provide vocabulary for semantic markup
- OWL web ontology language based on $\mathcal{S H} \mathcal{H} \mathcal{Q}$ DL
- Set to become W3C standard (OWL) \& already widely adopted
- Use of DL provides formal foundations and reasoning support

DL Reasoning based on tableau algorithms
Highly Optimised implementations used in DL systems
Challenges remain

- Reasoning with full OWL language
- (Convincing) demonstration(s) of scalability
- New reasoning tasks
- Development of (high quality) tools and infrastructure

Resources

Slides from this talk
http://www.cs.man.ac.uk/~horrocks/Slides/Innsbruck-tutorial/
FaCT system (open source)
http://www.cs.man.ac.uk/FaCT/
OilEd (open source)
http://oiled.man.ac.uk/
OIL
http://www.ontoknowledge.org/oil/
W3C Web-Ontology (WebOnt) working group (OWL)
http://www.w3.org/2001/sw/WebOnt/
DL Handbook, Cambridge University Press
http://books.cambridge.org/0521781760.htm

Select Bibliography

I. Horrocks. DAML+OIL: a reason-able web ontology language. In Proc. of EDBT 2002, number 2287 in Lecture Notes in Computer Science, pages 2-13. Springer-Verlag, Mar. 2002.
I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. Reviewing the design of DAML+OIL: An ontology language for the semantic web. In Proc. of AAAI 2002, 2002. To appear.
I. Horrocks and S. Tessaris. Querying the semantic web: a formal approach. In I. Horrocks and J. Hendler, editors, Proc. of the 2002 International Semantic Web Conference (ISWC 2002), number 2342 in Lecture Notes in Computer Science. Springer-Verlag, 2002.
C. Lutz. The Complexity of Reasoning with Concrete Domains. PhD thesis, Teaching and Research Area for Theoretical Computer Science, RWTH Aachen, 2001.

Select Bibliography

I. Horrocks and U. Sattler. Ontology reasoning in the $\mathcal{S H O Q}(\mathbf{D})$ description logic. In B. Nebel, editor, Proc. of IJCAI-01, pages 199-204. Morgan Kaufmann, 2001.
F. Baader, S. Brandt, and R. Küsters. Matching under side conditions in description logics. In B. Nebel, editor, Proc. of IJCAI-01, pages 213-218, Seattle, Washington, 2001. Morgan Kaufmann.
A. Borgida, E. Franconi, and I. Horrocks. Explaining $\mathcal{A L C}$ subsumption. In Proc. of ECAI 2000, pages 209-213. IOS Press, 2000.
D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. A principled approach to data integration and reconciliation in data warehousing. In Proceedings of the International Workshop on Design and Management of Data Warehouses (DWDM'99), 1999.

