Semantic Web Methoden, Werkzeuge und Anwendungen

Rudi Studer & Peter Haase

Institut AIFB, Universität Karlsruhe (TH) & FZI Forschungszentrum Informatik & **Ontoprise GmbH**

5) F71	
Sontoprise	

Univ	versität	Kasse
26.	Janua	r 2006

06 February 2006

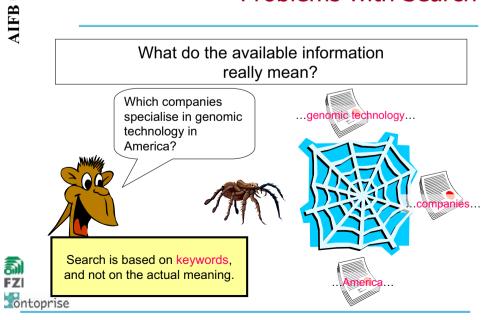
5

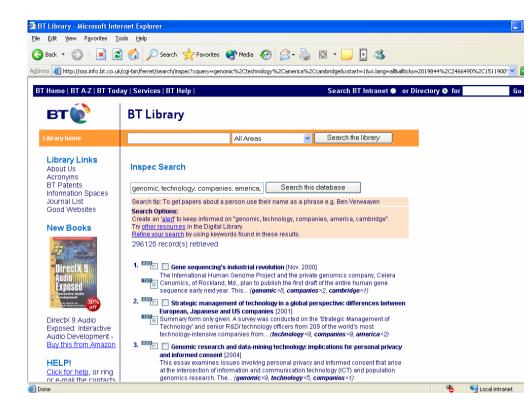
FZI

Karlsruhe: Location for Semantic Technologies and Applications

Scenario: Semantic Search in a Digital Library

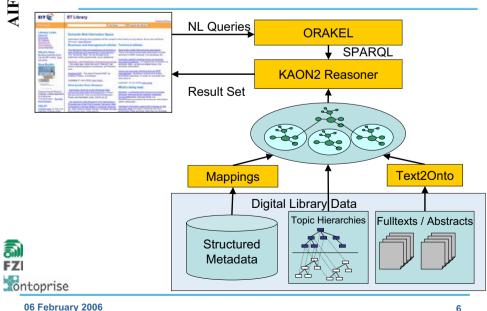
- Scalable Reasoning
- Mapping Ontologies
- Learning Ontologies
- Ontology Evolution
- Conclusion & Outlook •

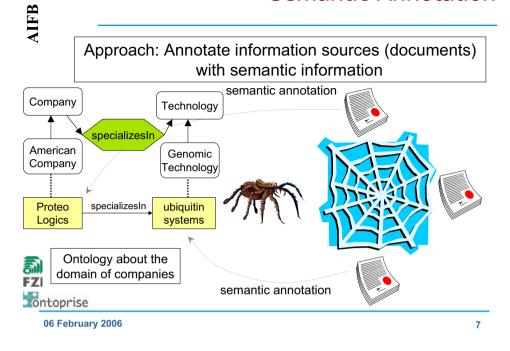



0

9) FZ

Problems with Search


Agenda



O AIFB

Conceptual Architecture

Semantic Annotation

O

AIFB

O

Web Ontology Language OWL

Company

American

Company

Proteo

Logics

- Web Ontology Language (OWL) is a W3C Standard
 - · three variants: OWL Lite, OWL DL, OWL Full
- Ontologies consist of:
 - concepts (=sets of objects)
 - roles (=connections between concepts)
 - individuals (=actual objects)
 - axioms (=truthful statements)

Advantages of OWL:

 precise semantics by grounding in description logics

5) FZ

ontoprise

Technology

Genomic

Technology

ubiquitin

systems

pecializes

specializesIn

Agenda

- Scenario: Semantic Search in a Digital Library
- Scalable Reasoning
- Mapping Ontologies
- Learning Ontologies
- Ontology Evolution
- Conclusion & Outlook

FZ		
ontoprise		
06 February 2006		

AIFB O

5

FZ

Practical Problem: Scalability

- Existing DL reasoners cannot answer queries over ontologies with many assertions
- Reasons:
 - reasoning in DL underlying OWL DL is NExpTime-complete
 - reasoning based on tableaux calculus
 - no specific query answering algorithms
- difficult to identify facts relevant for the query Contoprise

10

9

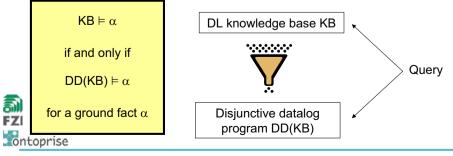
Comparison of Approaches

 General idea: use deductive database techniques for A-Box reasoning

Tableaux Calculi	Deductive Databases
 manage tuples one-by-one to answer C(X), check whether C(a) holds for each a 	 manage tuples in sets very important!
 join optimizations are difficult 	 join optimizations supported core feature of relational databases
 difficult to be goal-directed estimating relevant A-Box information is hard 	 magic sets provide goal-directed search selects only A-Box data relevant to the query
oprise	

06 February 2006

AIFB O


5 FZ

AIFB O

onto

Deductive Database Techniques for Description Logics Reasoning

- Deductive databases can efficiently handle large data quantities
- Idea: apply techniques from the field of (disjunctive) deductive databases
 - join-order optimization
 - magic sets optimization

11

OWL DL + Rules

- Extending OWL DL with rules is needed
- Query answering should be decidable (SWRL approach is undecidable)
- Chosen approach:
 - DL-safe rules:
 - restrict application of rules to individuals explicitly introduced in the ABox to achieve decidability
 - do not restrict component languages
 - ...can be simply appended to the result of the reduction of description logics to disjunctive datalog

```
06 February 2006
```

AIFB O

5

FZ

ontoprise

OWL Reasoner: KAON2

- Features
 - an API for programmatic management of OWL-DL ontologies,
 - a stand-alone server providing access to ontologies in a distributed manner,
 - an inference engine for answering queries (including support for SPARQL),
 - efficient access to instances via relational databases (available soon)
- Download (free for research purposes)
 - http://kaon2.semanticweb.org/

ontoprise

5

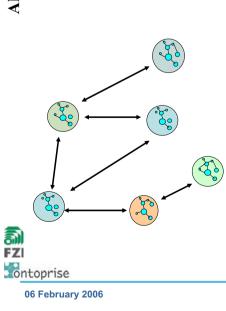
FZ

14

13

- Scenario: Semantic Search in a Digital Library
- Scalable Reasoning
- Mapping Ontologies
- Learning Ontologies
- Ontology Evolution
- Conclusion & Outlook

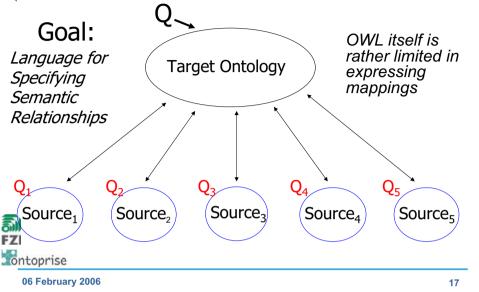
S FZ


AIFB O

Contoprise

06 February 2006

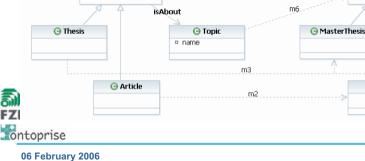
15


AIFB 🔿

Ontology Mappings

- Heterogeneous ontologies require mappings for interoperability
- Applications of mapping system:
 - Ontology Integration
 - Ontology Translation and Exchange
- Challenges:
 - Representation of and reasoning with mappings
 - Identification of mappings (alignment of ontologies)

Mapping Systems for **Ontology Integration**



0 AIFB (

5

FZI

Sample Mapping

O Article

O PhDThesis

18

OWL DL Mapping System

- An OWL DL mapping system is a triple (S, T, M). • where
 - *S* is the source OWL DL ontology
 - T is the target OWL DL ontology
 - M is the mapping between S and T
- Mapping: set of assertions ٠
 - $q_s \sqsubset q_\tau$ (sound mapping)
 - $q_s \supseteq q_T$ (complete mapping)
 - $q_s \equiv q_T$ (exact mapping)
 - where q_s and q_T are conjunctive queries over S and T, respectively, with the same set of distinguished variables
- Semantics defined via translation into FOL, •
 - computing answers against $S \cup T \cup M$

ontoprise

5

FZ

AIFB 🟮

0

AIFB

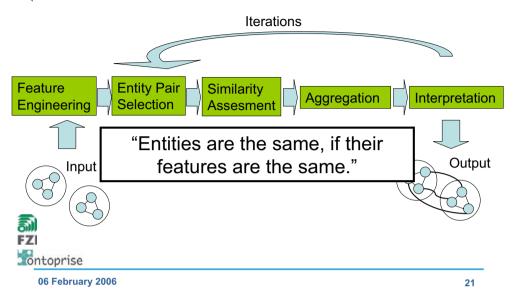
06 February 2006

19

Decidability of Query Answering

A mapping $q_S \sqsubseteq q_T$ is equivalent to an axiom • $\forall \mathbf{x} : \mathbf{q}_{\mathsf{T}}(\mathbf{x}, \mathbf{y}_{\mathsf{T}}) \leftarrow \mathbf{q}_{\mathsf{S}}(\mathbf{x}, \mathbf{y}_{\mathsf{S}})$

- Query answering undecidable with general implication mappings
- Decidable query answering: ٠
 - Disallow non-distinguished variables in g_T to obtain safe rules:
 - $\forall \mathbf{x} : q_T(\mathbf{x}) \leftarrow q_S(\mathbf{x}, \mathbf{y}_S)$
 - These rules directly correspond to SWRL rules
 - Require q_s to be DL-safe:
 - · Each variable in a DL-atom must also occur in a non-DL atom (makes gueries applicable only to explicitly introduced individuals)


ontoprise

5

FZ

06 February 2006

Ontology Alignment Process

Cincilarit

0 AIFB (

Similarities

	realure	Measure	
Concepts	label	String Similarity	
	subclassOf	Set Similarity	
	instances	Set Similarity	
Relations			
Instances			

From similarities to alignments:

sim(e, f) =
$$\sum_{k} w_k sim_k(e, f)$$

FZI
Sontoprise align(e) = f \leftarrow sim(e, f)>t

Machine learning can help to select and weight the features and measures.

22

http://www.aifb.uni-karlsruhe.de/WBS/meh/foam

1()))m

Framework for Ontology Alignment and Mapping

Fully or semi-automatic alignment of two or more ontologies

<u></u> FZ

AIFB O

ontoprise

06 February 2006

Agenda

23

- Scenario: Semantic Search in a Digital Library •
- Scalable Reasoning
- Mapping Ontologies
- Learning Ontologies
- Ontology Evolution
- Conclusion & Outlook •

06 February 2006

Ontology Learning

specializesIn(

ProteoLogics,

ubiguitin systems

- · Extraction of (domain) ontologies from natural language text
 - Natural Language Processing
 - Machine Learning
- Ontology Learning tasks •
 - Concepts, instances
 - Taxonomic relations: subclass-of, instance-of
 - Relations
 - Relation instantiations
- **Ontology Population**

ontoprise

06 February 2006

O AIFB (

5

FZI

FZI

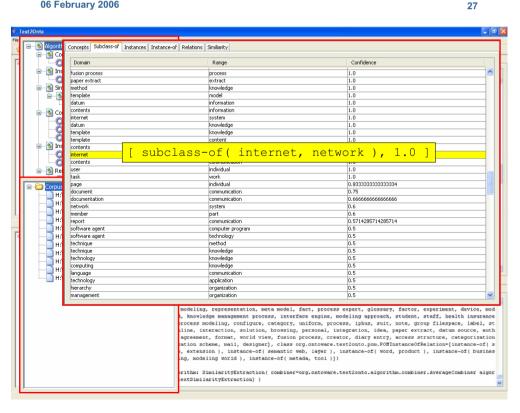
Ontology Learning - Challenges

Traceability •

- Explanations, references
- Independence of a specific ontology model
 - User-defined consistency conditions
- Knowledge is dynamic
 - Support for ontology maintenance
 - Efficient updates of the ontology in case of changes to the corpus
- **Uncertainty** in knowledge acquisition
 - Ontology model supporting notions of confidence and relevance

ontoprise 06 February 2006 25

Ontology Learning Tool: Text2Onto


- Support for semi-automatic ontology extraction from natural language text
- Support for **ontology maintenance** and data-driven ontology evolution by incremental ontology learning
- Model of Possible Ontologies (POM) based on confidence and relevance annotations

<u>a</u> Available at http://ontoware.org/projects/text2onto/ FZ ontoprise

06 February 2006

0

AIFB

Agenda

- Scenario: Semantic Search in a Digital Library
- Scalable Reasoning
- Mapping Ontologies
- Learning Ontologies
- **Ontology Evolution**
- Conclusion & Outlook

FZI Fontoprise	
06 February 2006	29

0 AIFB (

FZI

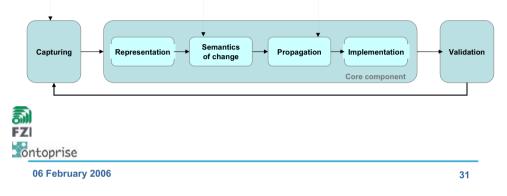
ontoprise

Ontology Evolution - requirements

Functionality

- · enable the handling of ontology changes
- ensure the **consistency** of the underlying ontology and all dependent artefacts, e.g. instances
- Guiding the user
 - support the user to manage changes more easily
- Refining the ontology
 - offer advice to the user for continual ontology refinement
 - discover changes that lead to an improved ontology

Ontology Evolution - Process


How to discover a change?

0

AIFB

How to ensure the consistency?

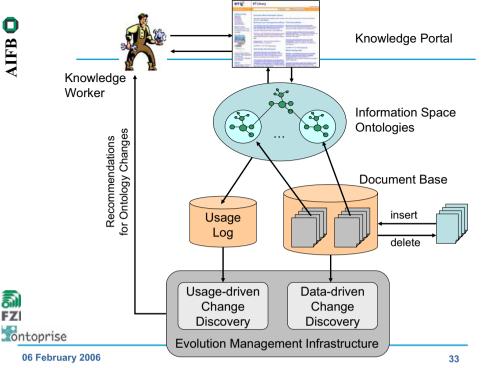
0 AIFB

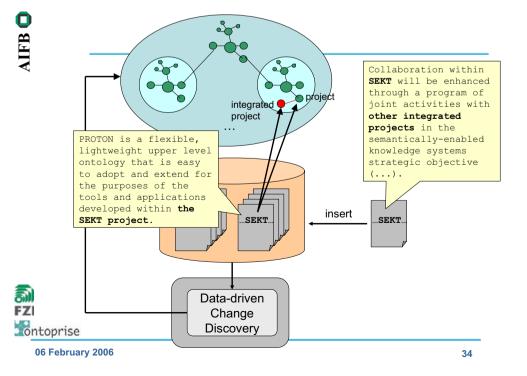
Capturing: Change Discovery

- Explicit request by the user
- Implicit request through learning

- Structure-driven - exploits a set of heuristics to improve an ontology based on the analysis of the ontology structure

- Data-driven detects the changes based on the analysis of the ontology instances
- Usage-driven takes into account the usage of the ontology




30

Top - Down

Bottom - Up

Change Discovery in Text2Onto

- Data-driven Change Discovery
 - · Deduction of ontology changes from changes to the data
- Incremental Ontology Learning
 - Update evidence for ontology elements based on observed corpus changes
 - Generate suggestions (and **explanations**) for **ontology** changes based on new evidence
- Ontology Change Strategies
 - How are different types of ontology elements affected by particular changes to the corpus?

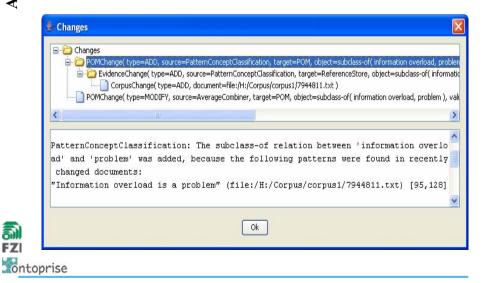
5 FZ ontoprise

0

AIFB

5

FZ


O

AIFB

06 February 2006

35

Data-driven Change Discovery

Semantics of Change

- Consistency conditions
 - An ontology is consistent if it satisfies a given set if consistency conditions
 - Structural Consistency
 with respect to syntactic fragments
 - Logical Consistency (model-theoretic satisfiability)
 - User-defined Consistency outside of ontology model

FZI Sontoprise	
06 February 2006	37

FZI

ontoprise

SEKT Facts

- "Semantically Enabled Knowledge Technologies"
- EU IST Integrated Project (IP)
 - Start: Janurary 2004
 - Duration: 3 years
 - Budget: ~13 MEUR
 - Funding: ~10 MEUR
 - see http://www.sekt-project.com

38

Information Society

- Part of ESSI Cluster
 - European Semantic Systems Initiative
 - SEKT, DIP (IP), Knowledge Web (NoE), ASG
 - see <u>http://www.essi-cluster.org</u>

AIFB O

<u>)</u>

FZ

0

AIFB

Conclusion

Scalable reasoning

- Promising results for DL reasoning based on disjunctive deductive database techniques
- Rule extensions to close paradigm gap

Ontology Mappings

- Methods for representation and identification of mappings
- · Query answering against heterogeneous ontologies

Ontology Learning

- POM to capture confidence and relevance in knowledge acquisition
- Traceability: explanations, references

Ontology Evolution

- Support for ontology maintenance by data-driven change discovery
- Semantics of change to ensure consistency

06 February 2006

Future Work

39

Networked ontology models

- Including mappings, dependencies, modularization, ...
- Dynamics and change propagation
- Global vs. local / partial consistency

Collaborative aspects

- Distributed engineering
- Argumentation and negotiation
- · Context sensitivity
 - Representation of context
 - · Combination of logic-based and probabilistic models
 - Reasoning with contexts

ontoprise

5)

FZ

Lifecycle Support for Networked Ontologies

"Shaping the future infrastructures for semantic applications"

- EU IST Integrated Project
 - Start date: March 2006
 - Duration: 4 year project
 - Funding: € 10M (FP6)
 - http://www.neon-project.org/

- Key outcomes from NeOn
 - · Open, scalable and service-centred reference architecture
 - The **NeOn toolkit** a resource for engineering contextualized networked ontologies and semantic applications
 - · Industry-strength documentation and reference material
 - Three case studies in two sectors: pharmaceuticals and agriculture/fisheries

Thank You!

For further information and relevant publications see <u>http://www.aifb.uni-karlsruhe.de/WBS</u>

AIFB Portal enriched with OWL annotations, see <u>http://www.aifb.uni-karlsruhe.de/about.html</u>

0

AIFB

06 February 2006

43

S FZ

ontoprise

References

- Ullrich Hustadt, Boris Motik, Ulrike Sattler: Reducing SHIQ-Description Logic to Disjunctive Datalog Programs. International Conference on Principles of Knowledge Representation and Reasoning, <u>KR 2004</u>
- Boris Motik, Ulrike Sattler, Rudi Studer: Query Answering for OWL-DL with Rules.
 International Semantic Web Conference 2004
- Marc Ehrig, York Sure: Ontology Mapping An Integrated Approach. European Semantic Web Symposium, <u>ESWS 2004</u>
- Philipp Cimiano, Johanna Völker: Text2Onto. International Conference on Applications of Natural Language to Information Systems, <u>NLDB 2005</u>
- Peter Haase, Ljiljana Stojanovic: Consistent Evolution of OWL Ontologies. <u>European Semantic Web Conference 2005</u>
- Haase et al.: A Framework for Handling Inconsistency in Changing Ontologies, International Semantic Web Conference 2005
- York Sure, Rudi Studer: Semantic Web Technologies for Digital Libraries, Library Management 26 (4/5). April 2005.