

1 Slide 1

F. Description Logics – Part 2

This section is based on material from:

- Carsten Lutz, Uli Sattler: http://www.computationallogic.org/content/events/iccl-ss-2005/lectures/lutz/index.php?id=24
- Ian Horrocks: http://www.cs.man.ac.uk/~horrocks/Teaching/cs646/

	Syntax für DLs (ohne concrete domai					
	Concept	s		1	Or	ntology (=
	Atomic		А, В			
	Not		¬C			Concept
с	And		СПD			Subclass
ALC	Or		СЦД			Equivalent
	Exists		∃r.c			Role Axio
	For all		∀R.C			
ź	At least	≥n 1	R.C (≥n R)		Т	Subrole
е о	At most	≤n 1	R.C (≤n R)		S	Transitivity
0	Nominal	{	i ₁ ,, i _n }	_		Assertior
				_		Instance
[Roles					Role
ľ	Atomic		R	1		Same
	Inverse		R-	1		Different

S = ALC + Transitivity

rete domains) Hitzler & Sure, 2005						
Ontology (=Knowledge Base)						
	Concept Axiom	s (TBox)			4	
	Subclass	C⊑D				
	Equivalent	$C \equiv D$				
	Role Axioms (R	Role Axioms (RBox)				
Т	Subrole	R ⊑ S				
S	Transitivity	Trans(S)				
	Assertional Axioms (ABox)					
	Instance	C(a)				
	Role	R(a,b)				
	Same	a = b				
	Different	a≠b				

OWL DL = SHOIN(D) (D: concrete domain)

The Description Logic ALC: Syntax

	Atomic types:	concept names A, B, \ldots role names R, S, \ldots	
	Constructors:	- ¬ <i>C</i>	(negation)
		- $C \sqcap D$	(conjunction)
		- $C \sqcup D$	(disjunction)
		- ∃ <i>R.C</i>	(existential restriction)
		- $orall R.C$	(value restriction)
	Abbreviations	$c - C \rightarrow D = \neg C \sqcup D$	(implication)
		$\begin{array}{c} - \ C \leftrightarrow D = C \rightarrow D \\ \sqcap \ D \rightarrow C \end{array}$	· · ·
		$-\top = (A \sqcup \neg A)$	(top concept)
l		$-\perp = A \sqcap \neg A$	(bottom concept)
I	esden		

Examples

- Person □ Female
- Person □ ∃attends.Course
- Person $\sqcap \forall \text{attends.}(\text{Course} \rightarrow \neg \text{Easy})$
- Person □ ∃teaches.(Course □ ∀attended-by.(Bored ⊔ Sleeping))

D

resden

2

Folie 22

Interpretations

Semantics based on interpretations $(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where

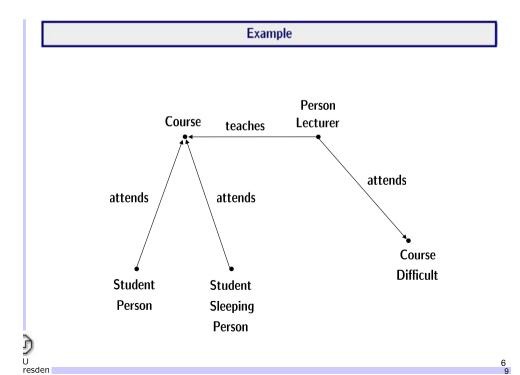
- $-\Delta^{\mathcal{I}}$ is a non-empty set (the domain)
- $\cdot^{\mathcal{I}}$ is the interpretation function mapping
 - each concept name A to a subset $A^{\mathcal{I}}$ of $\Delta^{\mathcal{I}}$ and
 - each role name R to a binary relation $R^{\mathcal{I}}$ over $\Delta^{\mathcal{I}}$.

Intuition: interpretation is complete description of the world

Technically: interpretation is first-order structure with only unary and binary predicates

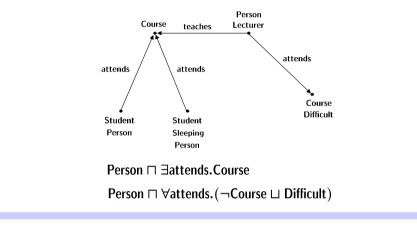
)

resden



Semantics of Complex Concepts

 $(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \qquad (C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}} \qquad (C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$ $(\exists R.C)^{\mathcal{I}} = \{d \mid \text{there is an } e \in \Delta^{\mathcal{I}} \text{ with } (d, e) \in R^{\mathcal{I}} \text{ and } e \in C^{\mathcal{I}} \}$ $(\forall R.C)^{\mathcal{I}} = \{d \mid \text{for all } e \in \Delta^{\mathcal{I}}, (d, e) \in R^{\mathcal{I}} \text{ implies } e \in C^{\mathcal{I}} \}$



TBoxes

Capture an application's terminology means defining concepts

TBoxes are used to store concept definitions:

Syntax:

9

Ð

resden

resden

5

finite set of concept equations $A \doteq C$ with A concept name and C concept

left-hand sides must be unique!

Semantics:

interpretation $\mathcal I$ satisfies $A \doteq C$ iff $A^{\mathcal I} = C^{\mathcal I}$

 ${\mathcal I}$ is model of ${\mathcal T}$ if it satisfies all definitions in ${\mathcal T}$

E.g.: Lecturer \doteq Person $\sqcap \exists$ teaches.Course

Yields two kinds of concept names: defined and primitive

TBox: Example

TBoxes are used as ontologies:

)

U

resden

resden

Woman \doteq Person ⊓ Female

Man ≟ Person □ ¬Woman

Lecturer \doteq Person $\sqcap \exists$ teaches.Course

Student \doteq Person $\sqcap \exists$ attends.Course

BadLecturer \doteq Person $\sqcap \forall$ teaches.(Course \rightarrow Boring)

9 12

10 13) U resden

Reasoning Tasks — Subsumption

		C subsumed by D w.r.t. ${\mathcal T}$ (we	ritten $C \sqsubseteq_{\mathcal{T}} D$)
		iff		
		$C^\mathcal{I} \subseteq D^\mathcal{I}$ holds for all mo	odels ${\mathcal I}$ of ${\mathcal T}$	
	Intuition:	If $C \sqsubseteq_{\mathcal{T}} D$, then D is more ge	eneral than $m{C}$	
	Example:			
		Lecturer \doteq Person \sqcap \exists teaches.	Course	
		Student \doteq Person \sqcap \exists attends.(Course	
		Then		
2		Lecturer □ ∃attends.Cours	se $\sqsubseteq_{\mathcal{T}}$ Student	
)				11 14
resden				14
		Reasoning Tasks — Clas	ssification	
	Classificati	ion: arrange all defined concepts fi hierarchy w.r.t. generality	rom a TBox in a	Damas
	Woma	n ≟ Person ⊓ Female	/	Person
	Ma	n ≐ Person ⊓ ¬Woman	Man	Woman
	MaleLecture	er ≐ Man ⊓ ∃teaches.Course	MaleLecturer	
	Can be co	mputed using multiple subsumptio	n tests	

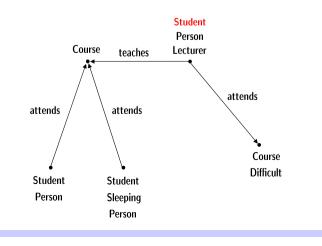
Provides a principled view on ontology for browsing, maintaining, etc.

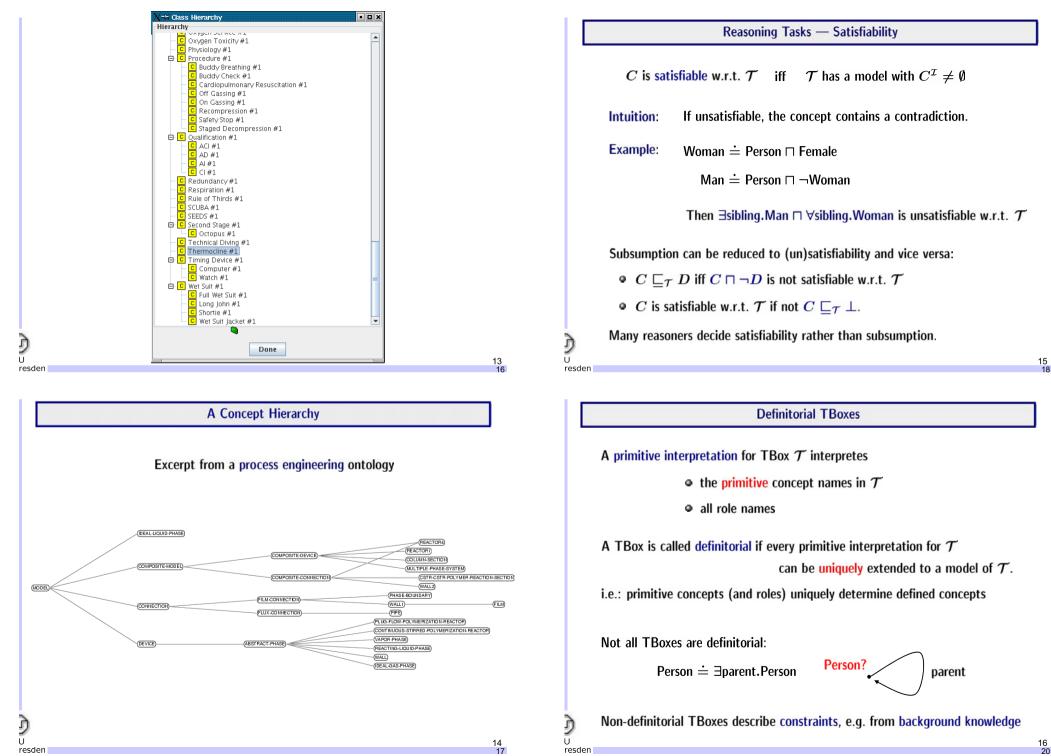
TBox: Example II

A TBox restricts the set of admissible interpretations.

Lecturer \doteq Person $\sqcap \exists$ teaches.Course

Student \doteq Person $\sqcap \exists$ attends.Course





Acyclic TBoxes

TBox \mathcal{T} is acyclic if there are no definitorial cycles:

Lecturer ÷ Person □ ∃teaches.Course Course ÷ ∃has-title.Title □ ∃tought-by.Lecturer

Expansion of acyclic TBox T:

exhaustively replace defined concept names with their definition (terminates due to acyclicity)

Acyclic TBoxes are always definitorial:

first expand, then set $A^{\mathcal{I}} := C^{\mathcal{I}}$ for all $A \doteq C \in \mathcal{T}$

Acyclic TBoxes II

For reasoning, acyclic TBox can be eliminated:

- to decide $C \sqsubseteq_{\mathcal{T}} D$ with \mathcal{T} acyclic,
 - expand ${\cal T}$

)

Ū

resden

resden

- replace defined concept names in C, D with their definition
- decide $C \sqsubset D$
- analogously for satisfiability

May yield an exponential blow-up:

$$egin{aligned} A_0 \doteq orall r.A_1 \sqcap orall s.A_1 \ A_1 \doteq orall r.A_2 \sqcap orall s.A_2 \ & \cdots \ & \dots \ & A_{n-1} \doteq orall r.A_n \sqcap orall s.A_n \end{aligned}$$

General Concept Inclusions

View of TBox as set of constraints

General TBox: finite set of general concept implications (GCIs)

 $C \sqsubseteq D$

with both C and D allowed to be complex

e.g. Course $\sqcap \forall$ attended-by.Sleeping \sqsubseteq Boring

Interpretation \mathcal{I} is model of general TBox \mathcal{T} if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for all $C \sqsubseteq D \in \mathcal{T}$.

 $C \doteq D$ is abbreviation for $C \sqsubseteq D$, $D \sqsubseteq C$

e.g. Student □ ∃has-favourite.SoccerTeam \doteq Student □ ∃has-favourite.Beer

Note: $C \sqsubseteq D$ equivalent to $\top \doteq C \rightarrow D$

ABoxes

ABoxes describe a snapshot of the world

An ABox is a finite set of assertions

a: C (a individual name, C concept) (a, b): R (a, b individual names, R role name)

E.g. {peter : Student, (dl-course, uli) : tought-by}

Interpretations \mathcal{I} map each individual name a to an element of $\Delta^{\mathcal{I}}$.

 ${\mathcal I}$ satisfies an assertion

 $\begin{array}{ll} a:C & \text{iff} & a^{\mathcal{I}} \in C^{\mathcal{I}} \\ (a,b):R & \text{iff} & (a^{\mathcal{I}},b^{\mathcal{I}}) \in R^{\mathcal{I}} \end{array}$

 ${\mathcal I}$ is a model for an ABox ${\mathcal A}$ if ${\mathcal I}$ satisfies all assertions in ${\mathcal A}.$

18

)

resden

)

resden

17

ABoxes II

Example for ABox Reasoning

Note:

)

Ì

resden

resden

- interpretations describe the state if the world in a complete way
- ABoxes describe the state if the world in an incomplete way
 - (uli, dl-course) : tought-by uli : Female

does not imply

- dl-course : ∀tought-by.Female
- An ABox has many models!

An ABox constraints the set of admissibile models similar to a TBox

ABox	dumbo : Mammal	t14 : Trunk
	g23 : Darkgrey	$({\sf dumbo}, {\sf t14}): {\sf bodypart}$
	(dumbo, g23) : color	
	dumbo : ∀color.Lightgrey	
TBox	Elephant ≐ Mammal ⊓ ∃bodypart.T	runk □ ∀color.Grey
	$Grey \doteq Lightgrey \sqcup Darkgrey$	
	⊥ ≐ Lightgrey ⊓ Darkgrey	
	1. ABox is inconsistent w.r.t. TBox.	
	2. dumbo is an instance of Elephant	

Reasoning with ABoxes

ABox consistency

Given an ABox \mathcal{A} and a TBox \mathcal{T} , do they have a common model?

Instance checking

Given an ABox \mathcal{A} , a TBox \mathcal{T} , an individual name a, and a concept Cdoes $a^{\mathcal{I}} \in C^{\mathcal{I}}$ hold in all models of \mathcal{A} and \mathcal{T} ?

(written $\mathcal{A}, \mathcal{T} \models a : C$)

The two tasks are interreducible:

- \mathcal{A} consistent w.r.t. \mathcal{T} iff $\mathcal{A}, \mathcal{T} \not\models a : \bot$
- $\mathcal{A}, \mathcal{T} \models a : C$ iff $\mathcal{A} \cup \{a : \neg C\}$ is not consistent

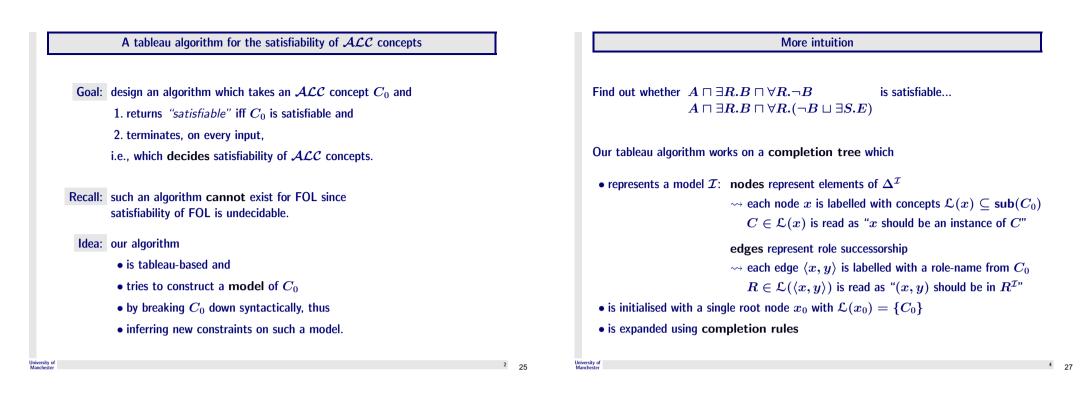
- 2. Tableau algorithms for \mathcal{ALC} and extensions
- We see a tableau algorithm for \mathcal{ALC} and extend it with ① general TBoxes and ② inverse roles
- **Goal:** Design sound and complete desicion procedures for satisfiability (and subsumption) of DLs which are well-suited for implementation purposes

22

9

resden

21



Preliminaries: Negation Normal Form

To make our life easier, we transform each concept C_0 into an equivalent C_1 in NNF

Equivalent: $C_0 \sqsubset C_1$ and $C_1 \sqsubset C_0$

NNF: negation occurs only in front of concept names

How? By pushing negation inwards (de Morgan et. al):

$$\neg (C \sqcap D) \rightsquigarrow \neg C \sqcup \neg D$$

$$\neg (C \sqcup D) \rightsquigarrow \neg C \sqcap \neg D$$

$$\neg \neg C \rightsquigarrow C$$

$$\neg \forall R.C \rightsquigarrow \exists R. \neg C$$

$$\neg \exists R.C \rightsquigarrow \forall R. \neg C$$

From now on: concepts are in NNF and sub(C) denotes the set of all sub-concepts of C

Completion rules for \mathcal{ALC}

$C_1 \sqcap C_2 \in \mathcal{L}(x)$ and $\{C_1, C_2\} \not\subseteq \mathcal{L}(x)$ en set $\mathcal{L}(x) = \mathcal{L}(x) \cup \{C_1, C_2\}$
$C_1\sqcup C_2\in \mathcal{L}(x)$ and $\{C_1,C_2\}\cap \mathcal{L}(x)=\emptyset$ on set $\mathcal{L}(x)=\mathcal{L}(x)\cup\{C\}$ for some $C\in\{C_1,C_2\}$
$\exists S.C \in \mathcal{L}(x)$ and x has no S -successor y with $C \in \mathcal{L}(y)$, en create a new node y with $\mathcal{L}(\langle x, y \rangle) = \{S\}$ and $\mathcal{L}(y) = \{C\}$
$orall S.C\in\mathcal{L}(x)$ and there is an S -successor y of x with $C\notin\mathcal{L}(y)$ en set $\mathcal{L}(y)=\mathcal{L}(y)\cup\{C\}$

University o

Properties of the completion rules for \mathcal{ALC}

We only apply rules if their application does "something new"

 $\sqcap\text{-rule: if} \quad C_1 \sqcap C_2 \in \mathcal{L}(x) \text{ and } \{C_1, C_2\} \not\subseteq \mathcal{L}(x)$ then set $\mathcal{L}(x) = \mathcal{L}(x) \cup \{C_1, C_2\}$

- $\exists \text{-rule: if} \quad \exists S.C \in \mathcal{L}(x) \text{ and } x \text{ has no } S \text{-successor } y \text{ with } C \in \mathcal{L}(y), \\ \text{then create a new node } y \text{ with } \mathcal{L}(\langle x, y \rangle) = \{S\} \text{ and } \mathcal{L}(y) = \{C\}$
- \forall -rule: if $\forall S.C \in \mathcal{L}(x)$ and there is an S-successor y of x with $C \notin \mathcal{L}(y)$ then set $\mathcal{L}(y) = \mathcal{L}(y) \cup \{C\}$

Properties of the completion rules for ALC

Last details on tableau algorithm for \mathcal{ALC}

Clash: a c-tree contains a clash if it has a node x with $\bot \in \mathcal{L}(x)$ or $\{A, \neg A\} \subseteq \mathcal{L}(x)$ — otherwise, it is clash-free Complete: a c-tree is complete if none of the completion rules can be applied to it

Answer behaviour: when started for C_0 (in NNF!), the tableau algorithm

- ullet is initialised with a single root node x_0 with $\mathcal{L}(x_0) = \{C_0\}$
- repeatedly applies the completion rules (in whatever order it likes)
- answer " C_0 is satisfiable" iff the completion rules can be applied in such a way that it results in a complete and clash-free c-tree (careful: this is non-deterministic)

...go back to examples

8 31

Properties of our tableau algorithm

Lemma:	 Let C₀ an ALC-concept in NNF. Then 1. the algorithm terminates when applied to C₀ and 2. the rules can be applied such that they generate a clash-free and complete completion tree iff C₀ is satisfiable.
Corollary:	1. Our tableau algorithm decides satisfiability and subsumption of \mathcal{ALC} .
	2. Satisfiability (and subsumption) in \mathcal{ALC} is decidable in PSpace .
	3. <i>ALC</i> has the finite model property i.e., every satisfiable concept has a finite model.
	4. <i>ALC</i> has the tree model property i.e., every satisfiable concept has a tree model.
	5. <i>ALC</i> has the finite tree model property i.e., every satisfiable concept has a finite tree model.

University of Manchester

then set $\mathcal{L}(x) = \mathcal{L}(x) \cup \{C_1, C_2\}$

 \sqcap -rule: if $C_1 \sqcap C_2 \in \mathcal{L}(x)$ and $\{C_1, C_2\} \not\subseteq \mathcal{L}(x)$

The Li-rule is non-deterministic:

- $\label{eq:constraint} \begin{array}{ll} \sqcup \text{-rule: if} & C_1 \sqcup C_2 \in \mathcal{L}(x) \text{ and } \{C_1,C_2\} \cap \mathcal{L}(x) = \emptyset \\ \\ \text{ then set } \mathcal{L}(x) = \mathcal{L}(x) \cup \{C\} \text{ for some } C \in \{C_1,C_2\} \end{array}$
- $\exists \text{-rule: if} \quad \exists S.C \in \mathcal{L}(x) \text{ and } x \text{ has no } S \text{-successor } y \text{ with } C \in \mathcal{L}(y), \\ \text{then create a new node } y \text{ with } \mathcal{L}(\langle x, y \rangle) = \{S\} \text{ and } \mathcal{L}(y) = \{C\} \end{cases}$

orall-rule: if $\forall S.C \in \mathcal{L}(x)$ and there is an S-successor y of x with $C \notin \mathcal{L}(y)$ then set $\mathcal{L}(y) = \mathcal{L}(y) \cup \{C\}$

University of Manchester University o

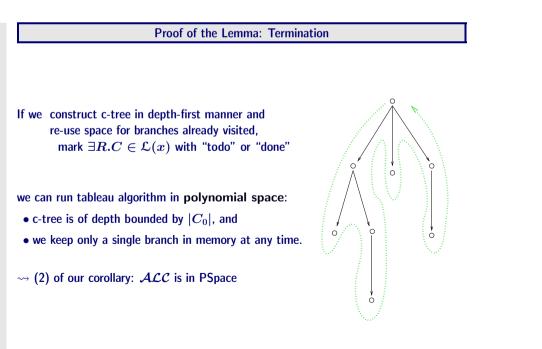
University of Manchostor

Proof of the Lemma: Termination

- (1) **Termination** is an immediate consequence of these observations:
- 1. the c-tree is constructed in a monotonic way, each rule either adds nodes or extends node labels, nothing is removed
- 2. node labels are restricted to subsets of $sub(C_0)$ and $\# sub(C_0) \le |C_0|$, at each position in C_0 , at most one sub-concepts starts
- 3. the c-tree is of bounded breadth $\leq |C_0|$, at most 1 successor for each $\exists R.C \in \mathsf{sub}(C_0)$
- 4. the c-tree is of bounded depth $\leq |C_0|$,

the maximal depth of concepts in node labels decreases from a node to its successor, i.e., for y a successor of x: $\max\{|C| \mid C \in \mathcal{L}(y)\} < \max\{|C| \mid C \in \mathcal{L}(x)\}$

University of Manchester



Proof of the Lemma: Soundness

(2) Let the algorithm stop with a complete and clash-free c-tree. From this, define an interpretation \mathcal{I} as follows:

 $\Delta^{\mathcal{I}} := \{x \mid x \text{ is a node in c-tree}\}\ A^{\mathcal{I}} := \{x \mid A \in \mathcal{L}(x)\} \text{ for concept names } A\ R^{\mathcal{I}} := \{(x, y) \mid y \text{ is an } R\text{-successor of } x \text{ in c-tree}\}$

and show, by induction on structure of concepts, for all $x \in \Delta^{\mathcal{I}}$, $D \in \mathsf{sub}(C_0, \mathcal{T})$:

$$D \in \mathfrak{L}(x)$$
 implies $x \in D^{\mathcal{I}}$

- \rightarrow concept names *D*: by definition of \mathcal{I}
- \rightarrow for negated concept names D: due to clash-freeness and induction
- → for conjunctions/disjunctions/existential restrictions/universal restrictions D: due to completeness and by induction
- \rightsquigarrow since C_0 is in label of root node, $\mathcal I$ is a model of C_0

Universit

33

Proof of the Lemma: Completeness

- (3) Let C_0 be satisfiable, and let \mathcal{I} be a model of it with $a_0 \in C_0^{\mathcal{I}}$.
 - Use \mathcal{I} to steer the application of the (only non-deterministic) \sqcup -rule:

Inductively define a total mapping π :

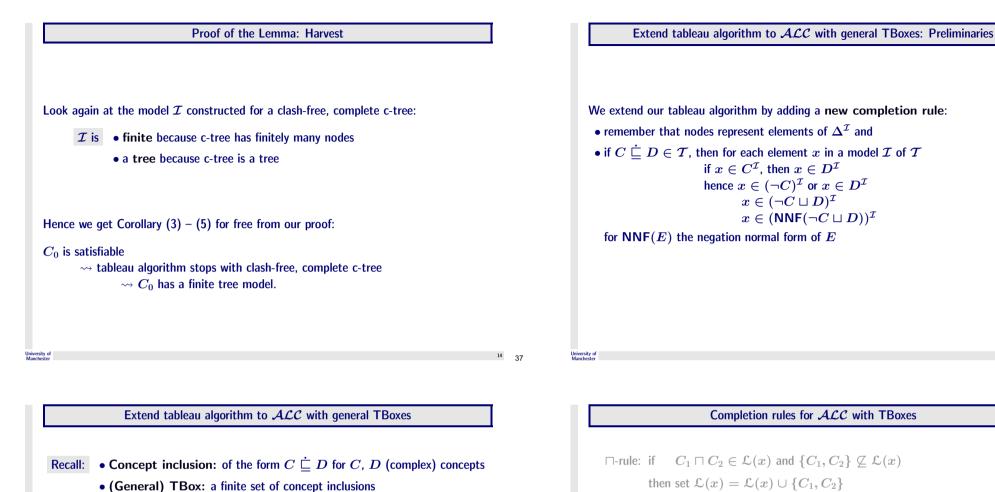
start with $\pi(x_0) = a_0$, and show that

each rule can be applied such that (*) is preserved

π 000

Completion tree Model of CO

- (*) if $C \in \mathcal{L}(x)$, then $\pi(x) \in C^{\mathcal{I}}$ if y is an *R*-succ. of x, then $\langle \pi(x), \pi(y) \rangle \in R^{\mathcal{I}}$
- easy for □- and ∀-rule,
- \bullet for $\exists\text{-rule, we need to extend }\pi$ to the newly created R-successor
- for \sqcup -rule, if $C_1 \sqcup C_2 \in \mathcal{L}(x)$, (*) implies that $\pi(x) \in (C_1 \sqcup C_2)^{\mathcal{I}}$ \rightsquigarrow we can choose C_i with $\pi(x) \in C_i^{\mathcal{I}}$ to add to $\mathcal{L}(x)$ and thus preserve (*)
- \rightsquigarrow easy to see: (*) implies that c-tree is clash-free



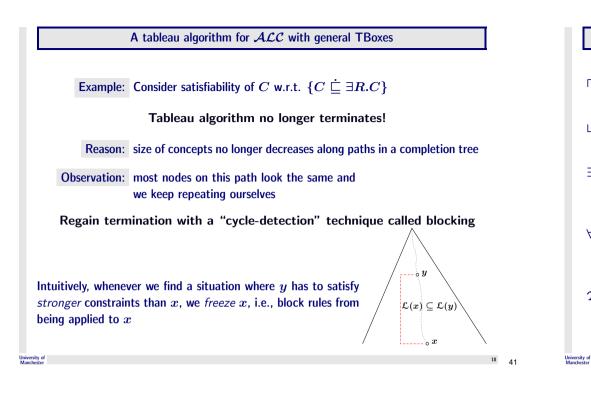
- \mathcal{I} satisfies $C \stackrel{.}{\sqsubset} D$ iff $C^{\mathcal{I}} \subset D^{\mathcal{I}}$
- \mathcal{I} is a model of TBox \mathcal{T} iff \mathcal{I} satisfies each concept equation in \mathcal{T}
- C_0 is satisfiable w.r.t. \mathcal{T} iff there is a model \mathcal{I} of \mathcal{T} with $C_0^{\mathcal{I}} \neq \emptyset$

Goal – Lemma: Let C_0 an \mathcal{ALC} -concept and \mathcal{T} be a an \mathcal{ALC} -TBox. Then

- 1. the algorithm terminates when applied to \mathcal{T} and C_0 and
- 2. the rules can be applied such that they generate a clash-free and complete completion tree iff C_0 is satisfiable w.r.t. \mathcal{T} .

- then set $\mathcal{L}(x) = \mathcal{L}(x) \cup \{C_1, C_2\}$
- \sqcup -rule: if $C_1 \sqcup C_2 \in \mathcal{L}(x)$ and $\{C_1, C_2\} \cap \mathcal{L}(x) = \emptyset$ then set $\mathcal{L}(x) = \mathcal{L}(x) \cup \{C\}$ for some $C \in \{C_1, C_2\}$
- \exists -rule: if $\exists S.C \in \mathcal{L}(x)$ and x has no S-successor y with $C \in \mathcal{L}(y)$, then create a new node y with $\mathcal{L}(\langle x, y \rangle) = \{S\}$ and $\mathcal{L}(y) = \{C\}$
- \forall -rule: if $\forall S.C \in \mathcal{L}(x)$ and there is an S-successor y of x with $C \notin \mathcal{L}(y)$ then set $\mathcal{L}(y) = \mathcal{L}(y) \cup \{C\}$

 \mathcal{T} -rule: if $C_1 \stackrel{.}{\sqsubset} C_2 \in \mathcal{T}$ and $\mathsf{NNF}(\neg C_1 \sqcup C_2) \not\in \mathcal{L}(x)$ then set $\mathcal{L}(x) = \mathcal{L}(x) \cup \{\mathsf{NNF}(\neg C_1 \sqcup C_2)\}$



A tableau algorithm for \mathcal{ALC} with general TBoxes: Blocking

- x is directly blocked if it has an ancestor y with $\mathcal{L}(x) \subseteq \mathcal{L}(y)$
- in this case and if y is the "closest" such node to x, we say that x is blocked by y
- a node is **blocked** if it is directly blocked or one of its ancestors is blocked

 \oplus restrict the application of all rules to nodes which are not blocked

 \rightsquigarrow completion rules for \mathcal{ALC} w.r.t. TBoxes

A tableau algorithm for \mathcal{ALC} with general TBoxes

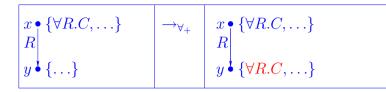
- $\label{eq:constraint} \begin{array}{ll} \sqcap \mbox{-rule:} \mbox{ if } & C_1 \sqcap C_2 \in \mathcal{L}(x) \text{, } \{C_1,C_2\} \not\subseteq \mathcal{L}(x) \text{, and } x \mbox{ is not blocked} \\ & \mbox{ then set } \mathcal{L}(x) = \mathcal{L}(x) \cup \{C_1,C_2\} \end{array}$
- $\label{eq:constraint} \begin{array}{ll} \sqcup \mbox{-rule:} \mbox{ if } & C_1 \sqcup C_2 \in \mathcal{L}(x), \ \{C_1,C_2\} \cap \mathcal{L}(x) = \emptyset, \mbox{ and } x \mbox{ is not blocked} \\ \mbox{ then set } \mathcal{L}(x) = \mathcal{L}(x) \cup \{C\} \mbox{ for some } C \in \{C_1,C_2\} \end{array}$
- $\begin{array}{ll} \exists \text{-rule:} & \text{if} & \exists S.C \in \mathcal{L}(x), \ x \text{ has no } S \text{-successor } y \text{ with } C \in \mathcal{L}(y), \\ & \text{ and } x \text{ is not blocked} \\ & \text{ then create a new node } y \text{ with } \mathcal{L}(\langle x, y \rangle) = \{S\} \text{ and } \mathcal{L}(y) = \{C\} \end{array}$
- $\forall \text{-rule: if } \forall S.C \in \mathcal{L}(x) \text{, there is an } S \text{-successor } y \text{ of } x \text{ with } C \notin \mathcal{L}(y)$ and x is not blockedthen set $\mathcal{L}(y) = \mathcal{L}(y) \cup \{C\}$
- \mathcal{T} -rule: if $C_1 \sqsubseteq C_2 \in \mathcal{T}$, $\mathsf{NNF}(\neg C_1 \sqcup C_2) \not\in \mathcal{L}(x)$ and x is not blocked then set $\mathcal{L}(x) = \mathcal{L}(x) \cup \{\mathsf{NNF}(\neg C_1 \sqcup C_2)\}$
- Tableaux Rules for \mathcal{ALC}

$x \bullet \{C_1 \sqcap C_2, \ldots\}$	→⊓	$x \bullet \{C_1 \sqcap C_2, C_1, C_2, \ldots\}$
$x \bullet \{C_1 \sqcup C_2, \ldots\}$	\rightarrow_{\sqcup}	$x \bullet \{C_1 \sqcup C_2, \mathbf{C}, \ldots\}$ for $C \in \{C_1, C_2\}$
$x \bullet \{ \exists R.C, \ldots \}$	→∃	$ \begin{array}{c} x \bullet \{ \exists R.C, \ldots \} \\ R \\ y \bullet \{C \} \end{array} $
$\begin{bmatrix} x \bullet \{\forall R.C, \ldots\} \\ R \\ y \bullet \{\ldots\} \end{bmatrix}$	→∀	$\begin{array}{c} x \bullet \{\forall R.C, \ldots\} \\ R \\ y \bullet \{C, \ldots\} \end{array}$

20 43

University of Manchester

Tableaux Rule for Transitive Roles



Where R is a transitive role (i.e., $(R^{\mathcal{I}})^+ = R^{\mathcal{I}}$)

- \sim No longer naturally terminating (e.g., if $C = \exists R.\top$)
- Need blocking
 - Simple blocking suffices for ALC plus transitive roles
 - I.e., do not expand node label if ancestor has superset label
 - More expressive logics (e.g., with inverse roles) need more sophisticated blocking strategies

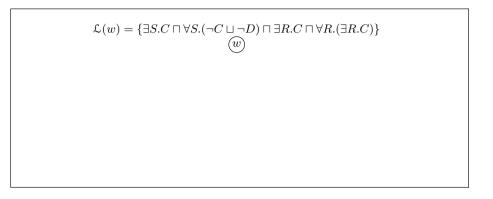
 $Reasoning \ with \ Expressive \ Description \ Logics - p. \ 6/27 \ 45$

Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$ where R is a **transitive** role

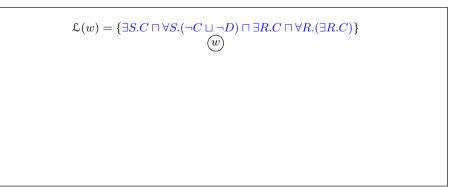
Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$ where *R* is a **transitive** role



Reasoning with Expressive Description Logics - p. 7/27

Tableaux Algorithm — Example

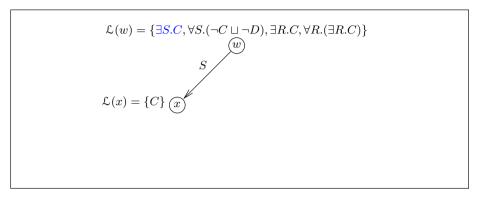


Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$ where R is a **transitive** role

```
\mathcal{L}(w) = \{ \exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C) \}
```

Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$ where R is a transitive role



Reasoning with Expressive Description Logics – p. 7/27 51

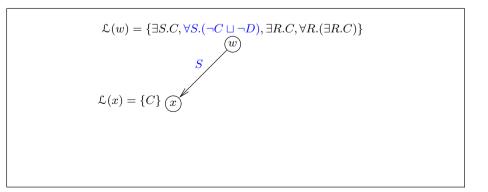
Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$ where R is a **transitive** role

 $\mathcal{L}(w) = \{ \exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C) \}$

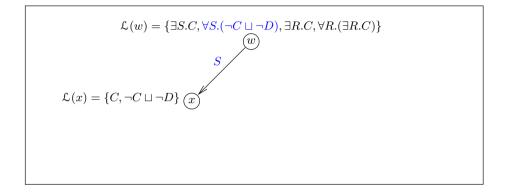
Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$ where R is a **transitive** role



 $Reasoning \ with \ Expressive \ Description \ Logics - p. \ 7/27 \ \ 49$

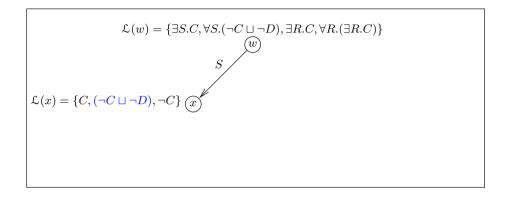
Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$ where R is a **transitive** role



 $Reasoning \ with \ Expressive \ Description \ Logics-p. \ 7/27 \ 53$

Tableaux Algorithm — Example

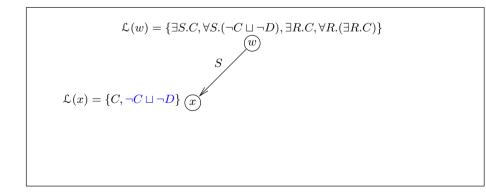
Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$ where *R* is a **transitive** role



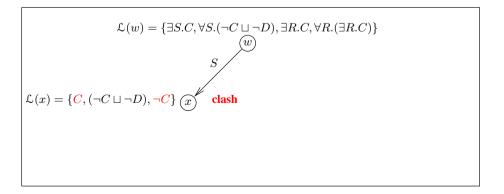
Reasoning with Expressive Description Logics - p. 7/27

Tableaux Algorithm — Example

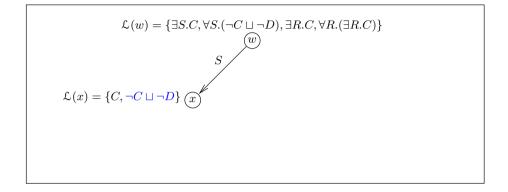
Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$ where R is a **transitive** role



Tableaux Algorithm — Example



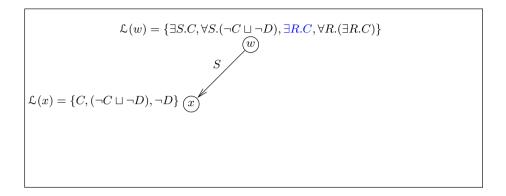
Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$ where R is a **transitive** role



Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

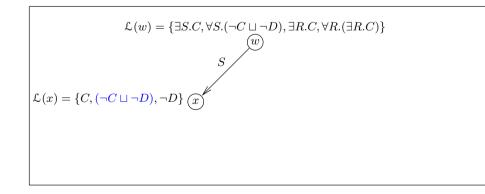
Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$ where *R* is a **transitive** role



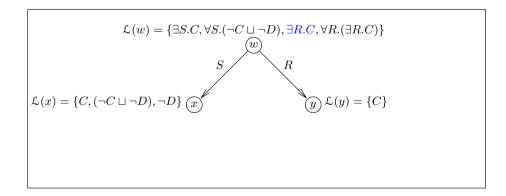
Reasoning with Expressive Description Logics - p. 7/27

Tableaux Algorithm — Example

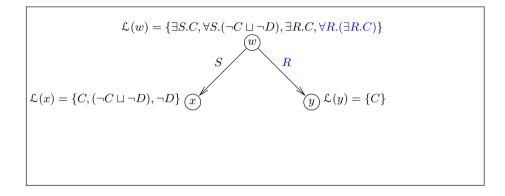
Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$ where R is a **transitive** role



Tableaux Algorithm — Example



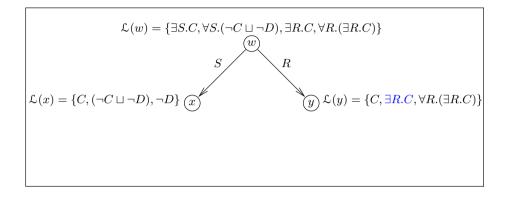
Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$ where R is a **transitive** role



Reasoning with Expressive Description Logics – p. 7/27 61

Tableaux Algorithm — Example

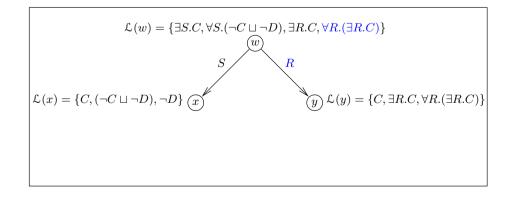
Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$ where *R* is a **transitive** role



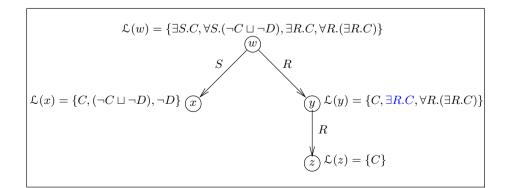
Reasoning with Expressive Description Logics - p. 7/27

Tableaux Algorithm — Example

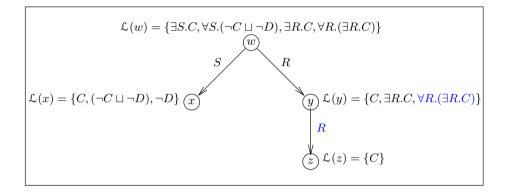
Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$ where R is a **transitive** role



Tableaux Algorithm — Example



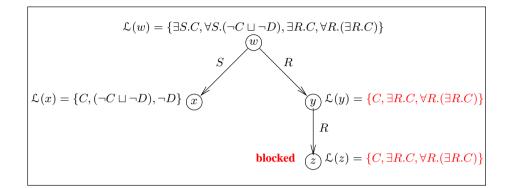
Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$ where R is a **transitive** role



Reasoning with Expressive Description Logics – p. $7\!/27$

Tableaux Algorithm — Example

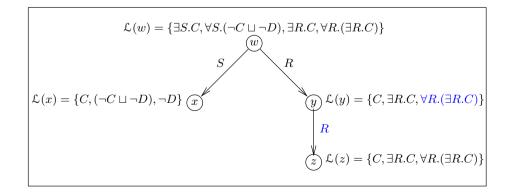
Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$ where R is a **transitive** role



Reasoning with Expressive Description Logics - p. 7/27

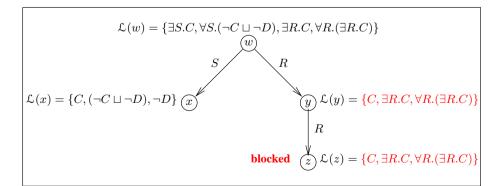
Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$ where R is a **transitive** role



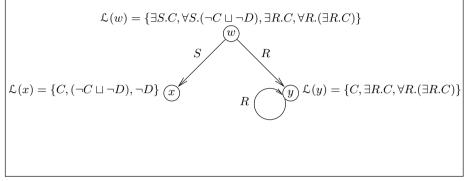
Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$ where *R* is a **transitive** role



Concept is satisfiable: T corresponds to model

Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$ where R is a **transitive** role



Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

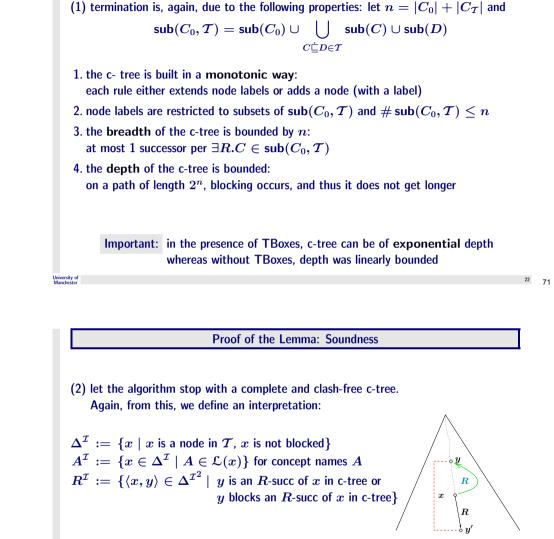
Properties of our tableau algorithm for ALC with TBoxes
Lemma: Let T be a general ALC-Tbox and C₀ an ALC-concept. Then

the algorithm terminates when applied to T and C₀ and
the rules can be applied such that they generate a clash-free and complete completion tree iff C₀ is satisfiable w.r.t. T.

Corollary: 1. Satisfiability of ALC-concept w.r.t. TBoxes is decidable

ALC with TBoxes has the finite model property
ALC with TBoxes has the tree model property

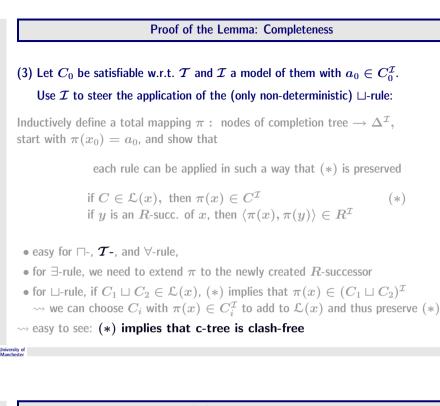
Proof of the Lemma: Termination



and show, by induction on the structure of concepts, for all $x \in \Delta^{\mathcal{I}}$, $D \in \mathsf{sub}(C_0, \mathcal{T})$: $D \in \mathcal{L}(x)$ implies $x \in D^{\mathcal{I}}$.

This implies that \mathcal{I} is indeed a model of C_0 and \mathcal{T} because (a) C_0 is in the label of the root node which cannot be blocked (!) and (b) $\neg C \sqcup D$ is in the label of each node, for each $C \sqsubseteq D \in \mathcal{T}$

University of Manchester ²³ 72



Proof of the Lemma: Harvest

Look again at the model $\mathcal I$ constructed for a clash-free, complete c-tree:

- \mathcal{I} is finite because c-tree has finitely many nodes
 - but it is not a tree if blocking occurs

Hence we get Corollary (2) for free from our proof:

C_0 is satisfiable

 \rightsquigarrow tableau algorithm stops with clash-free, complete c-tree $\rightsquigarrow C_0$ has a finite model.

- To obtain Corollary (3), the tree model property, we must work a bit more:
- →→ build the model in a different way, "unravel" the c-tree into an infinite tree intuitively, instead of going to a blocked node, go to a copy of its blocking node

A tableau algorithm for \mathcal{ALC} with general TBoxes: Summary

The tableau algorithm presented here

- → decides satisfiability of ALC-concepts w.r.t. TBoxes, and thus also
- → decides subsumption of *ALC*-concepts w.r.t. TBoxes
- → uses blocking to ensure termination, and
- → is non-deterministic due to the \rightarrow_{\sqcup} -rule
- in the worst case, it builds a tree of depth exponential in the size of the input, and thus of double exponential size. Hence it runs in (worst case) 2NExpTime,
- → can be implemented in various ways,
 - order/priorities of rules
 - data structure
 - etc.

University of

73

→ is amenable to optimisations – more on this next week

What next?

Next, we could

- discuss implementation issues for our tableau algorithms, e.g.,
 - datastructures,
 - more efficient (i.e., less strict) blocking conditions,
- $-\,a$ good strategy for the order of rule applications,
- how to "determinise" our non-deterministic algorithm: e.g., backtracking
 etc.
- discuss other reasoning techniques for DLs
- analyse computational complexity of DLs
- further extend our tableau algorithm for more expressive DLs with one more expressive means

University Manchest ²⁵ 74

U 1

Naive Implementations

Problems include:

- Space usage
 - Storage required for tableaux datastructures
 - Rarely a serious problem in practice
 - But problems can arise with inverse roles and cyclical KBs

Time usage

- Search required due to non-deterministic expansion
- Serious problem in practice
- Mitigated by:
 - Careful choice of algorithm
 - Highly optimised implementation

Dependency Directed Backtracking

- Allows rapid recovery from bad branching choices
- Most commonly used technique is backjumping
 - Tag concepts introduced at **branch points** (e.g., when expanding disjunctions)
 - Expansion rules combine and propagate tags
 - On discovering a clash, identify most recently introduced concepts involved
 - Jump back to relevant branch points without exploring alternative branches
 - Effect is to prune away part of the search space
- Highly effective essential for usable system
 - E.g., GALEN KB, 30s (with) \longrightarrow months++ (without)

Reasoning with Expressive Description Logics - p. 10/27

Careful Choice of Algorithm

- Transitive roles instead of transitive closure
 - Deterministic expansion of $\exists R.C$, even when $R \in \mathbf{R}_+$
 - (Relatively) simple blocking conditions
 - Cycles always represent (part of) valid cyclical models
- Direct algorithm/implementation instead of encodings
 - GCI axioms can be used to "encode" additional operators/axioms
 - Powerful technique, particularly when used with FL closure
 - Can encode cardinality constraints, inverse roles, range/domain,

– E.g., (domain R.C) $\equiv \exists R.\top \sqsubseteq C$

- (FL) encodings introduce (large numbers of) axioms
- **BUT** even simple domain encoding is **disastrous** with large numbers of roles

Backjumping

E.g., if $\exists R. \neg A \sqcap \forall R. (A \sqcap B) \sqcap (C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \subseteq \mathcal{L}(x)$

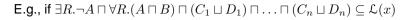
Reasoning with Expressive Description Logics - p. 13/27

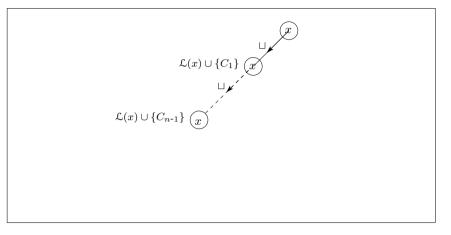
Backjumping

E.g., if $\exists R. \neg A \sqcap \forall R. (A \sqcap B) \sqcap (C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \subseteq \mathcal{L}(x)$

Reasoning with Expressive Description Logics – p. 14/27

Backjumping

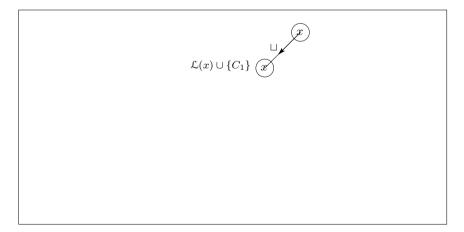




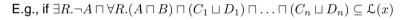
Reasoning with Expressive Description Logics – p. 14/27

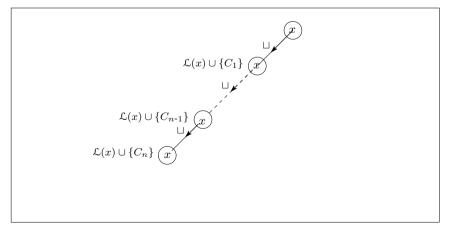
Backjumping

E.g., if $\exists R. \neg A \sqcap \forall R. (A \sqcap B) \sqcap (C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \subseteq \mathcal{L}(x)$



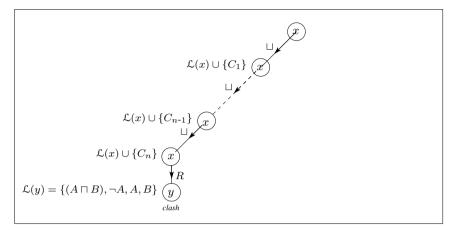
Backjumping





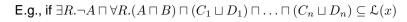
Backjumping

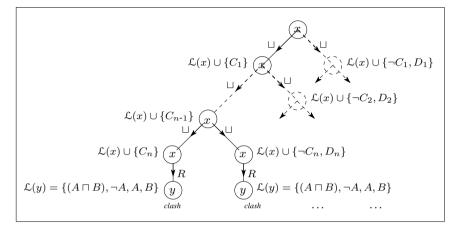
E.g., if $\exists R. \neg A \sqcap \forall R. (A \sqcap B) \sqcap (C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \subseteq \mathcal{L}(x)$



 $Reasoning \ with \ Expressive \ Description \ Logics-p. \ 14/27 \ 85$

Backjumping





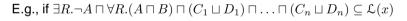
Reasoning with Expressive Description Logics - p. 14/27

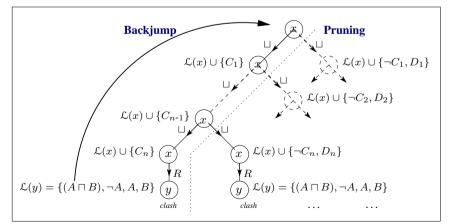
Backjumping

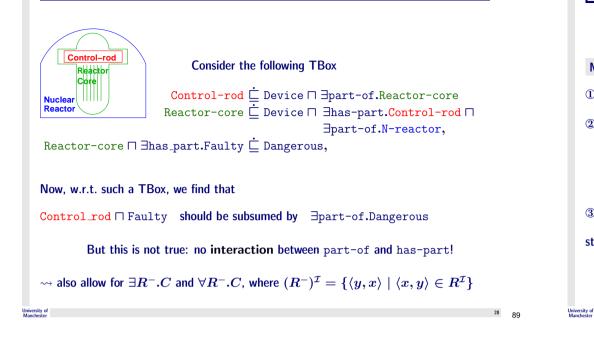
E.g., if $\exists R. \neg A \sqcap \forall R. (A \sqcap B) \sqcap (C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \subseteq \mathcal{L}(x)$



Backjumping







A tableau algorithm for \mathcal{ALCI} with general TBoxes

 \mathcal{ALCI} is the extension of \mathcal{ALC} with inverse roles R^- in the place of role names: $(R^-)^\mathcal{I} := \{ \langle y, x \rangle \mid \langle x, y \rangle \in R^\mathcal{I} \}$

Example:does \forall parent. \forall child.Blond \sqsubseteq Blond w.r.t. { $\top \doteq \exists$ parent. \top }?does \forall parent. \forall parent \neg .Blond \sqsubset Blond w.r.t. { $\top \doteq \exists$ parent. \top }?

Example: is $C_0 = \exists R. \exists S. \exists T. A \text{ satisf. w.r.t.} \{ C \stackrel{:}{\sqsubseteq} \exists R. C \sqcap \forall R. B \\ \top \stackrel{:}{\sqsubseteq} \forall T^-. \forall S^-. \forall R^-. C \}?$

Clear: inverse roles \rightsquigarrow tableau algorithm must reason up and down edges

Modifications necessary to handle inverse roles:

① extend edge labels in c-trees to inverse roles,

(2) call y an R-neighbour of x if either y is an R-successor of x or x is an R^- successor of y,

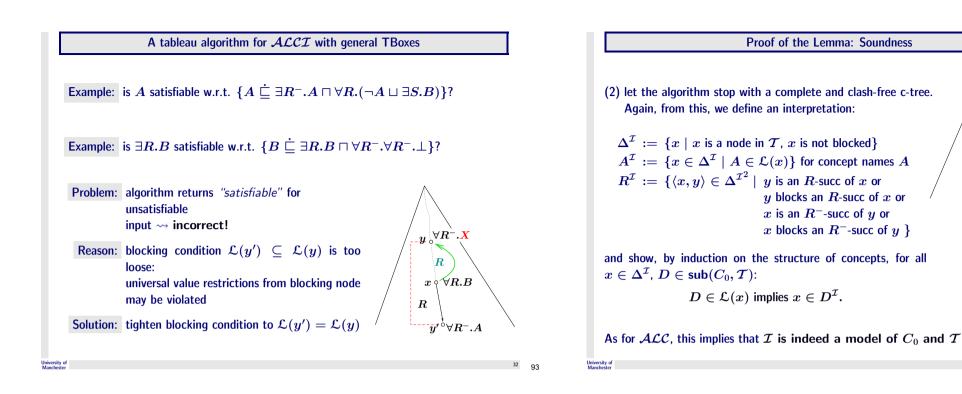
3 substitute "R-successor" in the $\forall \text{-}$ and $\exists \text{-rule}$ with "R-neighbour"

 $\begin{array}{ll} \mbox{still create an} & R\mbox{-successor} & \mbox{of } x \mbox{ if no } R\mbox{-neighbour exists for } \exists R.C \in \mathcal{L}(x) \\ & R\mbox{-successor of } x \mbox{ if no } R\mbox{-neighbour exists for an } \exists R\mbox{-}.C \in \mathcal{L}(x) \\ \end{array}$

A tableau algorithm for \mathcal{ALCI} with general TBoxes

- $\sqcap\text{-rule: if} \quad C_1 \sqcap C_2 \in \mathcal{L}(x), \ \{C_1, C_2\} \not\subseteq \mathcal{L}(x), \text{ and } x \text{ is not blocked} \\ \text{then set } \mathcal{L}(x) = \mathcal{L}(x) \cup \{C_1, C_2\}$
- \sqcup -rule: if $C_1 \sqcup C_2 \in \mathcal{L}(x)$, $\{C_1, C_2\} \cap \mathcal{L}(x) = \emptyset$, and x is not blocked then set $\mathcal{L}(x) = \mathcal{L}(x) \cup \{C\}$ for some $C \in \{C_1, C_2\}$
- $\exists \text{-rule: if } \exists S.C \in \mathcal{L}(x), x \text{ has no } S \text{-neighbour } y \text{ with } C \in \mathcal{L}(y), \\ \text{and } x \text{ is not blocked} \\ \text{then create a new node } y \text{ with } \mathcal{L}(\langle x, y \rangle) = \{S\} \text{ and } \mathcal{L}(y) = \{C\}$
- $\begin{array}{ll} \forall \text{-rule:} & \text{if} & \forall S.C \in \mathcal{L}(x) \text{, there is an } S\text{-neighbour } y \text{ of } x \text{ with } C \notin \mathcal{L}(y) \\ & \text{and } x \text{ is not indirectly blocked} \\ & \text{then set } \mathcal{L}(y) = \mathcal{L}(y) \cup \{C\} \end{array}$
- \mathcal{T} -rule: if $C_1 \stackrel{.}{\sqsubseteq} C_2 \in \mathcal{T}$, $\mathsf{NNF}(\neg C_1 \sqcup C_2) \not\in \mathcal{L}(x)$ and x is not blocked then set $\mathcal{L}(x) = \mathcal{L}(x) \cup \{\mathsf{NNF}(\neg C_1 \sqcup C_2)\}$

Jniversity o



Proof of the Lemma: Completeness

(3) completely identical to the ALC case...

That's it!

I hope you got an idea of how we can

- build tableau algorithms for description logics and
- see that they do indeed what we want them to do, i.e., decide satisfiability

2. the rules can be applied such that they generate a

clash-free and complete completion tree iff C_0 is satisfiable w.r.t. \mathcal{T} .

A tableau algorithm for \mathcal{ALCI} with general TBoxes

(4) A node x is directly blocked if it has an ancestor y with $\mathcal{L}(x) = \mathcal{L}(y)$.

Lemma: Let \mathcal{T} be a general \mathcal{ALCI} -Tbox and C_0 an \mathcal{ALCI} -concept. Then

1. the algorithm terminates when applied to \mathcal{T} and C_0 ,

Proof: (1) termination is identical to the ALC case.

University of Manchester University o

R

 \boldsymbol{R}

 \boldsymbol{R}

 R^{-}

Increased Expressive Power: Datatypes

Research Challenges

- OWL has simple form of datatypes
 - Unary predicates plus disjoint object-class/datatype domains
- Well understood theoretically
 - Existing work on concrete domains [Baader & Hanschke, Lutz]
 - Algorithm already known for SHOQ(D) [Horrocks & Sattler]
 - Can use hybrid reasoning (DL reasoner + datatype "oracle")
- May be practically challenging
 - All XMLS datatypes supported (?)
- Already seeing some (partial) implementations
 - Cerebra system (Network Inference), Racer system (Hamburg)

Reasoning with Expressive Description Logics - p. 15/27

Reasoning with Expressive Description Logics - p. 17/27

Challenges

- Increased expressive power
 - Existing DL systems implement (at most) SHIQ
 - OWL extends SHIQ with datatypes and nominals
- Scalability
 - Very large KBs
 - Reasoning with (very large numbers of) individuals
- Other reasoning tasks
 - Querying
 - Matching
 - Least common subsumer
 - ...
- Tools and Infrastructure
 - Support for large scale ontological engineering and deployment

Increased Expressive Power: Nominals

- OWL oneOf constructor equivalent to hybrid logic nominals
 - Extensionally defined concepts, e.g., $EU \equiv \{France, Italy, \ldots\}$
- Theoretically very challenging
 - Resulting logic has known high complexity (NExpTime)
 - No known "practical" algorithm
 - Not obvious how to extend tableaux techniques in this direction
 - Loss of tree model property
 - Spy-points: $\top \sqsubseteq \exists R. \{Spy\}$
 - Finite domains: $\{Spy\} \sqsubseteq \leq nR^-$
- Standard solution is weaker semantics for nominals
 - Treat nominals as (disjoint) primitive classes
 - Loss of completeness/soundness

Increased Expressive Power: Extensions

- OWL not expressive enough for all applications
- Extensions wish list includes:
 - Feature chain (path) agreement, e.g., output of component of composite process equals input of subsequent process
 - Complex roles/role inclusions, e.g., a city located in part of a country is located in that country
 - Rules—proposal(s) already exist for "datalog/LP style rules"
 - Temporal and spatial reasoning
 - ...
- May be impossible/undesirable to resist such extensions
- Extended language sure to be undecidable
- How can extensions best be integrated with OWL?
- How can reasoners be developed/adapted for extended languages
 - Some existing work on language fusions and hybrid reasoners

Reasoning with Expressive Description Logics - p. 19/27

Scalability

- Reasoning hard (ExpTime) even without nominals (i.e., SHIQ)
- Web ontologies may grow very large
- Good empirical evidence of scalability/tractability for DL systems
 - E.g., 5,000 (complex) classes; 100,000+ (simple) classes
- \blacktriangleleft But evidence mostly w.r.t. SHF (no inverse)
- $\ensuremath{\mathfrak{SHIQ}}$ Problems can arise when $\ensuremath{\mathfrak{SHF}}$ extended to $\ensuremath{\mathfrak{SHIQ}}$
 - Important optimisations no longer (fully) work
- Reasoning with individuals
 - **Deployment** of web ontologies will mean reasoning with (possibly very large numbers of) individuals/tuples
 - Unlikely that standard Abox techniques will be able to cope

Performance Solutions (Maybe)

- Excessive memory usage
 - Problem exacerbated by over-cautious double blocking condition (e.g., root node can never block)
 - Promising results from more precise blocking condition [Sattler & Horrocks]
- Qualified number restrictions
 - Problem exacerbated by naive expansion rules
 - Promising results from optimised expansion using Algebraic Methods [Haarslev & Möller]
- Caching and merging
 - Can still work in some situations (work in progress)
- Reasoning with very large KBs
 - DL systems shown to work with ${\approx}100k$ concept KB [Haarslev & Möller]
 - But KB only exploited small part of DL language

Reasoning with Expressive Description Logics – p. 21/27

Other Reasoning Tasks

- Querying
 - · Retrieval and instantiation wont be sufficient
 - Minimum requirement will be DB style query language
 - May also need "what can I say about *x*?" style of query
- Explanation
 - To support ontology design
 - Justifications and proofs (e.g., of query results)
- "Non-Standard Inferences", e.g., LCS, matching
 - To support ontology integration
 - To support "bottom up" design of ontologies

Summary

- Description Logics are family of logical KR formalisms
- Applications of DLs include DataBases and Semantic Web
 - Ontologies will provide vocabulary for semantic markup
 - OWL web ontology language based on \mathcal{SHIQ} DL
 - Set to become W3C standard (OWL) & already widely adopted
 - Use of DL provides formal foundations and reasoning support
- DL Reasoning based on tableau algorithms
- Highly Optimised implementations used in DL systems
- Challenges remain
 - Reasoning with full OWL language
 - (Convincing) demonstration(s) of scalability
 - New reasoning tasks
 - Development of (high quality) tools and infrastructure

Reasoning with Expressive Description Logics – p. 23/27

Select Bibliography

I. Horrocks. DAML+OIL: a reason-able web ontology language. In *Proc. of EDBT 2002*, number 2287 in Lecture Notes in Computer Science, pages 2–13. Springer-Verlag, Mar. 2002.

I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. Reviewing the design of DAML+OIL: An ontology language for the semantic web. In *Proc. of AAAI 2002*, 2002. To appear.

I. Horrocks and S. Tessaris. Querying the semantic web: a formal approach. In I. Horrocks and J. Hendler, editors, *Proc. of the 2002 International Semantic Web Conference (ISWC 2002)*, number 2342 in Lecture Notes in Computer Science. Springer-Verlag, 2002.

C. Lutz. *The Complexity of Reasoning with Concrete Domains*. PhD thesis, Teaching and Research Area for Theoretical Computer Science, RWTH Aachen, 2001.

Reasoning with Expressive Description Logics – p. 26/27

Resources

Slides from this talk

http://www.cs.man.ac.uk/~horrocks/Slides/Innsbruck-tutorial/

FaCT system (open source)

http://www.cs.man.ac.uk/FaCT/

OilEd (open source)

http://oiled.man.ac.uk/

OIL

http://www.ontoknowledge.org/oil/

W3C Web-Ontology (WebOnt) working group (OWL)

http://www.w3.org/2001/sw/WebOnt/

DL Handbook, Cambridge University Press

http://books.cambridge.org/0521781760.htm

Select Bibliography

I. Horrocks and U. Sattler. Ontology reasoning in the $\mathcal{SHOQ}(D)$ description logic. In B. Nebel, editor, *Proc. of IJCAI-01*, pages 199–204. Morgan Kaufmann, 2001.

F. Baader, S. Brandt, and R. Küsters. Matching under side conditions in description logics. In B. Nebel, editor, *Proc. of IJCAI-01*, pages 213–218, Seattle, Washington, 2001. Morgan Kaufmann.

A. Borgida, E. Franconi, and I. Horrocks. Explaining \mathcal{ALC} subsumption. In *Proc. of ECAI 2000*, pages 209–213. IOS Press, 2000.

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. A principled approach to data integration and reconciliation in data warehousing. In *Proceedings of the International Workshop on Design and Management of Data Warehouses (DWDM'99)*, 1999.