
76

Chapter 5

Implications

Have another look at the concept lattice shown in Figure 2.1 (p. 21). The six

attributes describe how two unit squares can be placed with respect to each other.

Each of the ten objects is a pair of unit squares, representing a possible placement.

These ten pairs are representatives for an in�nite set of possible positions that such

pairs of squares may have. It is not stated, but perhaps expected by the reader,

that these ten examples cover all possible combinations of the given attributes.

Such a situation occurs often: attributes are given, but objects are not known, or

too many to handle them completely. We then have to study the possible attribute

combinations, the attribute logic of the respective situation.

Let M be some set. We shall call the elements of M attributes, so as if we

consider a formal context (G;M; I). However we do not assume that such a context

is given or explicitly known.

De�nition 28 An implication between attributes in M is a pair of subsets of

M , denoted by A ! B. The set A is the premise of the implication A ! B, and

B is its conclusion.

A subset T � M respects an implication A ! B if A 6� T or B � T . We

then also say that T is a model of the implication A ! B, and denote this by

T j= A ! B. T respects a set L of implications if T respects every single

implication in L. The implication A ! B holds in a set fT1; T2; : : :g of subsets if

each of these subsets respects A! B. With

ImpfT1; T2; : : :g

we denote the set of all implications that hold in fT1; T2; : : :g. �

5.1 Implications of a formal context

Now let us consider the special case of implications of a formal context.

De�nition 29 A! B holds in a context (G;M; I) if every object intent respects

A ! B, that is, if each object that has all the attributes in A also has all the

attributes in B. We then also say that A! B is an implication of (G;M; I). �

Proposition 25 An implication A! B holds in (G;M; I) if and only if B � A00
,

which is equivalent to A0 � B0
. It then automatically holds in the set of all concept

intents as well.

An implication A! B holds in (G;M; I) if and only if each of the implications

A! m; m 2 B;

77

78 CHAPTER 5. IMPLICATIONS

holds (A ! m is short for A ! fmg). We can read this o� from a concept lattice

diagram in the following manner: A ! m holds if the in�mum of the attribute

concepts corresponding to the attributes in A is less or equal than the attribute

concept for m, formally if ^
f�a j a 2 Ag � �m:

A! B holds in (G;M; I) if

^
f�a j a 2 Ag �

^
f�b j b 2 Bg:

5.2 Semantic and syntactical implication inference

As we will see, it is not necessary to store all implications of a formal context. We

will discuss how implications can be derived from already known implications. First

we discuss which kind of inference we want to model. This is �ven by the so-called

semantical inference. Then we discuss a calculus (syntactic inference, and argue

that the calculus is correct and complete with respect to our semantics.

5.2.1 When does an implication follow from other implica-

tions (semantically)?

Proposition 26 If L is a set of implications in M , then

ModL := fT �M j T respects Lg

is a closure system on M . If L is the set of all implications of a context, then ModL

is the system of all concept intents.

The respective closure operator

X 7! L(X)

can be described as follows: For a set X �M , let

XL := X [
[
fB j A! B 2 L; A � Xg:

Form the sets XL, XLL, XLLL, . . . until1 a set L(X) := XL:::L is obtained with

L(X)L = L(X). Later on we shall discuss how to do this computation eÆciently.

It is not diÆcult to construct, for any given set L of implications in M , a formal

context such that ModL is the set of concept intents of this formal context. In fact,

(ModL;M;3) will do.

De�nition 30 An implication A ! B follows (semantically) from a set L of

implications in M if each subset of M respecting L also respects A! B. A family

of implications is called closed if every implication following from L is already

contained in L. A set L of implications of (G;M; I) is called complete, if every

implication that holds in (G;M; I) follows from L. �

In other words: An implication A ! B follows semantically from L if it holds

in every model of L.

1If M is in�nite, this may require in�nitely many iterations.

5.2. SEMANTIC AND SYNTACTICAL IMPLICATION INFERENCE 79

Closure systems as extents

As an exercise in abstraction we demonstrate that the situation we have just dis-

cussed can neatly be formulated in formal context language. For a given set M , we

may de�ne a formal context

(P(M); fA! B j A;B �Mg; j=):

The attributes of this formal context are all implications in M , the objects are

all subsets of M , and T j= A ! B says that the subset T is a models of the

implication A! B. The derivation operators of this context are the operators Imp

and Mod. The concept intents are precisesly the complete sets of implications in

M , the corresponding extents are precisely the closure systems on M . Therefore,

the concept lattice of this formal context is isomorphic to the lattice of all closure

systems on M , and dually isomorphic to the lattice of all closed implication sets on

M .

We give an example for M := fa; b; cg, but display, for simplicity, only the

reduced context. We omit some of the set brackets.

�
!

a

�
!

b

�
!

c

a
!

b

a
!

c

b
!

a

b
!

c

c
!

a

c
!

b

a
;b
!

c

a
;c
!

b

b;c
!

a

� : : : � � � � � � � � �

fag � : : : : � � � � � � �

fbg : � : � � : : � � � � �

fa; bg � � : � : � : � � : � �

fcg : : � � � � � : : � � �

fa; cg � : � : � � � � : � : �

fb; cg : � � : � : � : � � � :

Note that the extents of this formal context form a closure system, while each

extent itself is a closure system. What we get is the closure system of all closure

systems onM . Even more brain-twisting seems the question which implications hold

in this context. The attributes themselves are implications. So we get implications

between sets of implications. We shall come back to that later.

5.2.2 When does an implication follow from other implica-

tions (syntactically)?

The semantic de�nition of implication inference has a syntactic counterpart. We

can give sound and complete inference rules (known as Armstrong rules [?]) and

an eÆcient algorithm for inference testing.

Proposition 27 A set L of implications in M is closed if and only if the following

conditions are satis�ed for all W;X; Y; Z �M :

1. X ! X 2 L,

2. If X ! Y 2 L, then X [Z ! Y 2 L,

3. If X ! Y 2 L and Y [Z !W 2 L, then X [Z !W 2 L.

Readers with a background in Computational Logic may prefer a di�erent no-

tation of these Armstrong rules:

X ! X
;

X ! Y

X [Z ! Y
;

X ! Y; Y [Z !W

X [Z !W
:

80 CHAPTER 5. IMPLICATIONS

The proposition says that a set of implications is the set of all implications of

some context if and only if it is closed with respect to these rules. In other words,

an implication follows from other implications if and only if it can be derived from

these by successive applications of these rules. In particular, semantic and syntactic

inference are the same.

However, these rules do not always suggest the best proof strategy. Instead, we

may note the following:

Proposition 28 An implication X ! Y follows from a list L of implications if

and only if Y � L(X).

Proof L(X) is a model of L containing X . If Y 6� L(X), then L(X) is no model

of X ! Y . Then, X ! Y does not follow from L. Conversely, any model of L

that contains X must also contain XL and, by induction, also contain L(X), which

proves the Proposition. �

The Closure Algorithm

We give an algorithm that eÆciently computes the closure L(X) for any given set

X . Such algorithms are used in the theory of relational data bases for the study of

functional dependencies. Later on, we shall show that this can be understood as a

special instance of our approach.

Algorithm Closure

Input: A list L =: [L[1]; : : : ;L[n]] of implications in M

and a set X �M .

Output: The closure L(X) of X .

begin

for all x 2M do

begin

avoid[x] := f1; : : : ; ng;

for i := 1 to n do with A! B := L[i]

if x 2 A then avoid[x] :=avoid[x] n fig;

end;

used imps :=�;

old closure :=f�1g; (� some element not in M �);

new closure := X;

while new closure 6= old closure do

begin

old closure := new closure;

T :=M nnew closure;

usable imps :=
T
x2T

avoid[x];

use now imps := usable imps n used imps;

used imps := usable imps;

for all i 2 use now imps with A! B := L[i] do

new closure := new closure [B;

end;

L(x) :=new closure;

end.

Figure 5.1: Algorithm Closure.

5.3. THE STEM BASE 81

We can give a rough complexity estimation of the algorithm in Figure 5.1. Ex-

cept for manipulations of addresses, the main e�ort is to apply the implications.

Each implication is applied at most once, and each application requires a simple set

operation. Therefore the time required by the Linclosure algorithm is essentially

linear in the size of the input L.

Linear complexity of implication inference

Summarizing these considerations we learn that implication inference is easy: to

check if an implication X ! Y follows from a list L of implications, it suÆces to

check if Y � L(X) (by Proposition 28), and this can be done in time linear in the

size of the input.

In other words: implications are easy to use, much easier than many other logical

constructs. This may be a reason why implications are popular, and perhaps be

part of an explanation why our simple theory of formal concepts is so useful.

5.3 The Stem Base

The number of implications that hold in a given situation can be very large. For

example, if there is only one closed set, M , then every implication holds. If M has

n elements, then these are some 22n implications. But this is ridiculous, because all

these implications can be inferred from a single one, namely from �!M .

We see from this trivial example that the set of all implications of a given

formal context may be highly redundant. It is a natural question to ask for a small

implicational base, from which everything else follows. More precisely we ask, for

any given formal context (G;M; I), for a list L of implications that is

� sound (i.e., each implication in L holds in (G;M; I)),

� complete (i.e., each implication that holds in (G;M; I) follows from L), and

� non redundant (i.e., no implication in L follows from other implications in

L).

It is easy to see that (for �niteM) such sets L exist. We may start with some sound

and complete set of implications, for example, with the set of all implications that

hold in (G;M; I). We then can successively remove redundant implications from

this set, until we obtain a sound, complete, non redundant set.

But this is and unrealistic procedure. We therefore look for a better way to

construct an implicational base. Duquenne and Guigues [?] have shown that there

is a natural choice, the stem base.

5.3.1 A recursive de�nition

The following recursive de�nition is rather irritating on the �rst glance. We de�ne

a pseudo closet set to be a set which is not closed, but contains the closure of every

pseudo-closed proper subset. More precisely,

De�nition 31 Let X 7! X 00 be a closure operator on the �nite set M . We call a

subset P �M pseudo-closed, if (and only if)

� P 6= P 00, and

� if Q � P is a pseudo-closed proper subset of P , then Q00 � P .

�

82 CHAPTER 5. IMPLICATIONS

This is a valid recursive de�nition. It is not circular, because the pseudo-closed

set Q must have fewer elements than P , because it is a proper subset.2

Reformulating this de�nition for formal contexts, we obtain

De�nition 32 Let (G;M; I) be a formal context with M �nite. A subset P �M

is a pseudo intent of (G;M; I) i�

� P is not a concept intent, and

� if Q � P is a pseudo-closed proper subset of P , then there is some object

g 2 G such that Q � g0 but P 6� g0.

�

5.3.2 The stem base

Theorem 29 Let M be �nite and let X 7! X 00
be some closure operator on M .

The set of implications

fP ! P 00
j P pseudo-closed g

is sound, complete, and non redundant.

The Proof is so simple that we can give it here. Obviously all implications of the

form X ! X 00 hold in the given closure system, therefore the set is sound. Suppose

it were not complete. Then there is some implication X ! Y that holds, but

does not follow from the set L of implications given in the theorem. In particular,

Y � X 00 (because the implication holds) but Y 6� L(X) (because the implication

does not follow). Then L(X) 6= X 00, and thus L(X) is not closed. Now let Q � L(X)

be any pseudo-closed proper subset of L(X). Since the implication Q! Q00 belongs

to L, Q00 must be in L(X).

Therefore, L(X) is not closed but contains the closure of every pseudo closed

proper subset. By de�nition then L(X) must be pseudo-closed. But that gives a

contradiction, because then the implication L(X) ! L(X)00 is in L, which implies

L(X)00 � L(X) and consequently L(X) = L(X)00.

To see that the list L is non redundant, remove one of the implications, say,

P ! P 00. With respect to the smaller list L� then P is closed (because P respects

all implications Q! Q00 in L�), and thus L�(P) = P . By Proposition 28, P ! P 00

does not follow from L�. �

The implication set in the theorem deserves a name. It is sometimes called the

Duquenne{Guigues{base. We simply call it the stem base of the closure operator

(or the stem base of a given formal context, if the closure operator is given that

way). In practice one uses a slightly di�erent version of the stem base, namely

fP ! P 00
n P j P pseudo-closed g:

The stem base is not the only implicational base, but it plays a special rôle.

For example, no implicational base can consist of fewer implications, as the next

proposition shows:

Proposition 30 Every sound and complete set of implications contains, for every

pseudo closed set P , an implication A! B with A00 = P 00
.

2`Recursive' is meant here with respect to set inclusion. Compare with the following recursive

de�nition: A natural number is prime i� it is greater than 1 and not divisible by any smaller prime

number.

5.4. COMPUTING THE STEM BASE 83

5.3.3 (�) Some open questions about pseudo-closed sets.

Pseudo closed sets are not well understood. It is not even known how many there

are. More precisely: It is easy to give an example of a closure system with many

pseudo-closed sets. Take, for a given base set M with jM j = 2n > 2, as closed sets

all subsets with at most n elements, plus M itself. The pseudo-closed sets then are

precisely the subsets with n + 1 elements. There are
�
2n
n

�
of them, a number that

is exponential in n. Thus the number of pseudo-closed sets can be exponential in

comparison with the size of the base set.

But any formal context describing this closure system must have at least
�
2n
n

�

objects, and thus itself be of a size exponential in n. In other words, the number

of pseudo-closed sets in this example is large in comparison with the base set,

but small in comparison with the formal context. We do not know if there are

(in�nite series of) contexts with many pseudo-closed sets, meaning that the number

of pseudo-closed sets is exponential in the size of the formal contexts.

Another unresolved problem is how diÆcult it is to decide if a given set is

pseudo-closed.

Is the following problem in NP?

Instance: A formal context (G;M; I) and a set P �M .

Task: Decide if P is pseudo-closed.

Figure 5.2: An open problem on pseudo-closed sets

5.3.4 Making stem base implications shorter

We have stated above that the stem base is non redundant. This means that

no implication in the stem base is dispensable. It is however possible that an

implication in the base may be shortened, for example because it has a redundant

premise. Such are occasionally counter{intuitive, in particular for mathematicians,

who are trained to base their proofs on minimal resources. Similarly, the conclusion

of an implication may be redundant. It may suÆce to prove only part of it, and

then to use other implications to obtain the rest.

It seems to be straightforward what to do: if an attribute is redundant in a

premise or a conclusion, just omit it. But things get more complicated if two or

more attributes are redundant. If each of m and n is redundant, it does not mean

that they may be omitted simultaneously. In general, there is no guarantee that a

set A contains a unique minimal generating set S � A satisfying A00 = S00. There

may be many such sets, and they may be diÆcult to �nd. For example, to �nd

such a set with minimum possible cardinality is an NP{hard problem. This can be

derived from the following observations:

(to be completed . . .)

5.4 Computing the Stem Base

As before, consider a closure operator X 7! X 00 on a �nite set M . We start with a

harmless de�nition:

De�nition 33 A set Q �M is �-closed if it contains the closure of every �-closed

set that is properly contained in Q.

84 CHAPTER 5. IMPLICATIONS

Formally, Q is �-closed i� for each �-closed set Q0 � Q with Q0 6= Q we have

Q00
0 � Q. �

This is a simple (but convenient) renaming, as the next proposition shows.

Proposition 31 A set is �-closed i� it is either closed or pseudo-closed.

Observe that if Q contains the closure of every �-closed subset, then Q must be

closed.

5.4.1 �-closed sets form a closure system

The �rst crucial step towards �nding pseudo-closed sets is this:

Proposition 32 The intersection of �-closed sets is �-closed.

Proof Let Q
t
, t 2 T , be �-closed and let Q :=

T
t2T

Q
t
. We have to show that Q

is �-closed. Actually, we show more: Either Q = Q
t
for some t 2 T , or Q is closed.

Assume Q 6= Q
t
for all t, and let Q0 (0 =2 T) be some �-closed set contained in Q.

Then Q0 is properly contained in each Q
t
, t 2 T , because Q is. Since each Q

t
is

�-closed, the closure of Q0 must also be contained in Q. Therefore Q is closed. �

In other words: the �-closed sets form a closure system. We have described an

algorithm to compute, for a given closure operator, all closed sets. We can apply

this algorithm for computing all �-closed sets, provided that we can access the cor-

responding closure operator. This is easy. We prepare the result with a proposition

that is an immediate consequence of De�nition 33.

Proposition 33 Q is �-closed i� Q satis�es the following condition:

If P � Q, P 6= Q, is pseudo-closed, then P 00 � Q.

5.4.2 The closure operator

Proposition 33 shows how to �nd the quasi closure of an arbitrary set S � M : As

long as the condition in the proposition is violated, we (are forced to) extend the

set S, until we �nally reach a �xed point.

Let L be the stem base3. De�ne, for X �M ,

XL
�

:= X [
[
fP 00

j P ! P 00
2 L; P � X;P 6= Xg;

iterate by forming

XL
�
L
�

; XL
�
L
�
L
�

; : : :

until a set

L
�(X) := XL

�
L
�
:::L

�

is obtained that satis�es

L
�(X) = L�(X)L

�

:

Proposition 34 L�(X) is the smallest �-closed set containing X.

Note that in order to �nd the quasi closure, we use only pseudo-closed sets which

are contained in the closure and therefore in particular are lectically smaller than

the quasi closure. Thus, the same result is obtained if L is a subset of the stem base,

containing thoses implications P ! P 00 for which P is pseudo-closed and lectically

smaller than L�(X).

3The reader wonder why we use the stem base to construct the stem base. As we shall see

soon, this works, due to the recursive de�nition of the stem base.

5.4. COMPUTING THE STEM BASE 85

Algorithm L�{Closure

Input: A list L =: [L[1]; : : : ;L[n]] of implications in M

and a set X �M .

Output: The closure L(X) of X .

begin

for all x 2M do

begin

avoid[x] := f1; : : : ; ng;

for i := 1 to n do with A! B := L[i]

if x 2 A then avoid[x] :=avoid[x] n fig;

end;

used imps :=�;

old closure :=f�1g; (� some element not in M �);

new closure := X;

while new closure 6= old closure do

begin

old closure := new closure;

T :=M n new closure;

usable imps :=
T
x2T

avoid[x] \
S
x2new closure avoid[x];

use now imps := usable imps n used imps;

used imps := usable imps;

for all i 2 use now imps with A! B := L[i] do

new closure := new closure [B;

end;

L(x) :=new closure;

end.

Figure 5.3: Computing the L�{Closure.

5.4.3 An algorithm for computing the stem base

Now it is easy to give an algorithm to compute all pseudo-closed sets for a given

closure operator. We use the Next Closure algorithm applied to the closure system

of �-closed sets. For short, we shall refer to this as the next quasi closure after a

given set A, next L� closure(A). This produces all �-closed sets in lectic order.

We record only those which are not closed. This yields a list of all pseudo-closed

sets.

Since the �-closed sets are generated in lectic order, we have, at each step, the

full information about the lectically smaller pseudo-closed sets. We have seen that

this suÆces to compute the \quasi closure" operator. The algorithm in Figure 5.4

uses a dynamic list L. Whenever a pseudo-closed set P is found, the corresponding

implication P ! P 00 is included in the list. Since the pseudo-closed sets and found

in lectic order, this makes sure that at any step we have suÆcient information to

compute the quasi closure.

5.4.4 An example

We compute the stem base for the context of triangles given on page 27. The steps

are shown in �gure 5.5. The �rst column contains all quasi closed sets, in lectic

order. The pseudo-closed sets are precisely those which are not closed (see middle

column). Each pseudo-closed set gives rise to an entry in the stem base (last column,

short form). This stem base is given again, in slightly modi�ed form, in Figure 6.1

(p. 101).

86 CHAPTER 5. IMPLICATIONS

Algorithm Stem base

Input: A closure operator X 7! X 00 on a �nite set M ,

for example given by a formal context (G;M; I).

Output: The stem base L

begin

L := �;

A := �;

while A 6=M do

begin

if A 6= A00 then L := L [fA! A00g;

A := next L� closure(A);

end;

end.

Figure 5.4: Computing the stem base for a given closure operator.

Since the closure operator is given in terms of a formal context, we may speak

of quasi intents and pseudo intents instead of �-closed sets or pseudo-closed

sets. We see that the algorithm generates all quasi intents to �nd the stem base.

In other words, to compute all pseudo intents we also compute all intents, possibly

exponentially many. This looks like a rather uneÆcient method. Unfortunately, we

do not know of a better strategy. It is an open problem to �nd a better algorithm for

the stem base. In practice, the algorithm is not fast, but nevertheless very useful.

�-closed set closed ? stem base implication

� yes

feg yes

fdg yes

fd; eg no fd; eg ! fa; b; cg

fcg yes

fc; eg no fc; eg ! fa; b; dg

fc; dg no fc; dg ! fa; b; eg

fbg yes

fb; eg yes

fb; dg yes

fb; cg yes

fag no fag ! fb; cg

fa; b; cg yes

fa; b; c; d; eg yes

Figure 5.5: Steps in the stem base algorithm

5.5 Database Dependencies

How can we apply the theory of implications in the case of many-valued contexts?

The attribute implications in the derived context o�er one approach, however ele-

mentary. Basically, it describes implications between the individual attribute values,

at least as long as we keep to plain scaling.

In colloquial language we use the term dependency of many-valued attributes

5.5. DATABASE DEPENDENCIES 87

as exempli�ed by the following sentence

\The price of a real-estate depends on situation and size".

This is meant to express a simultaneous dependency of attribute values, perhaps

even a gradual one, in the sense of \the larger the more expensive".

There are di�erent notions of dependency for many-valued attributes, which

correspond to the di�erent possibilities of scaling. For an integration into a general

theoretic framework, please refer to the corresponding literature.

We now describe the case of functional dependency, the (stronger) one of ordinal

dependency and will indicate generalizations. For reasons of simplicity, we will �rst

concentrate on complete many-valued contexts.

5.5.1 Functional dependencies

De�nition 34 If X � M and Y � M are sets of attributes of a complete many-

valued context (G;M;W; I), then we say that Y is functionally dependent on X

if the following holds for every pair of objects g; h 2 G:

(8
m2X m(g) = m(h))) (8

n2Y n(g) = n(h)):

�

That is to say, if two objects have the same values with respect to all attributes

from X the same must be true for the attributes from Y . This notion of dependency

is often used in the theory of relational databases. The term \functional" can be

explained as follows: Y is functionally dependent on X if and only if there is a map

f :WX !W Y with

f(m(g) j m 2 X) = (n(g) j n 2 Y) for all g 2 G:

In the case of ordinal dependency, we consider an ordinal context, i.e., we have for

each attribute m 2M an order �
m
on the set m(G) of the values of m. (We obtain

the special case of functional dependency if we take the equality relation for each

of those orders.)

5.5.2 Ordinal dependencies

De�nition 35 Let (G;M;W; I) be a complete many-valued context and let �
m
be

an order relation on the set m(G) of the values of m for every attribute m 2M . If

X �M and Y �M are sets of attributes, we call Y ordinally dependent on X

if the following holds for each pair of objects g; h 2 G:

(8
m2X m(g) �

m
m(h))) (8

n2Y n(g) �
n
n(h)):

�

Irrespective of which orders �
m
we have chosen, ordinal dependency always implies

functional dependency, since from m(g) = m(h) it follows that m(g) �
m

m(h)

as well as m(h) �
m
m(g), and vice versa. Thus, one would expect that ordinal

dependency is a kind of \order-preserving functional dependency". Intuitively, this

is quite correct, but it is diÆcult to formulate, since the condition of being order-

preserving is only required for the tuples (m(g) j m 2 X) that appear in the context.

Not every map of this kind can be extended to form an order-preserving map of

WX to W Y .

88 CHAPTER 5. IMPLICATIONS

The ordinal dependencies (and as a special case within them the functional

dependencies) of many-valued contexts can be expressed elegantly by implications

of appropriate one-valued contexts. By means of the rule

(g; h)IO m :() m(g) �
m
m(h);

we de�ne a one-valued context

KO := (G�G;M; IO)

for a complete many-valued context (G;M;W; I) with orders �
m
on the values. For

the functional dependencies the context can be simpli�ed further: It is possible to

take advantage of the symmetry of the equality relation and to de�ne

KN := (P2(G);M; IN)

by

fg; hgIN m :() m(g) = m(h):

Then,

P2(G) := ffg; hg j g; h 2 G; g 6= hg:

The contexts de�ned in this way exactly �t the above-mentioned de�nitions of

the dependencies and it is easy to prove the following proposition:

Corollary 35 In (G;M;W; I) the attribute set Y is functionally dependent on X

if and only if the implication X ! Y holds in the context KN . In (G;M;W; I) the

attribute set Y is ordinally dependent on X if and only if the implication X ! Y

holds in the context KO . 2

Hereby we have traced back the theory of functional and ordinal dependencies

completely to the theory of implications. In particular, the algorithm mentioned in

the previous section can also be used for the creation of a basis for the functional

or ordinal dependencies, respectively.

The translation works even if the many-valued context (G;M;W; I) is not com-

plete. In this connection, �rst of all we observe that Y is ordinally dependent on

X if and only if this is true for every single attribute in Y , i.e., if fng is ordi-

nally dependent on X for every n 2 Y . This means that it is suÆcient to state

in which cases a single attribute is dependent on an attribute set. ... ||{(to be

written)||{

5.6 Association rules

| This section is still in a preliminary form |

One of the core tasks of Knowledge Discovery in Databases (KDD) is the mining

of association rules (conditional implications). Association rules are statements of

the type `67 % of the customers buying cereals and sugar also buy milk (where 7%

of all customers buy all three items)'. The task of mining association rules is to

determine all rules whose con�dences (67 % in the example) and supports (7 % in

the example) are above user-de�ned thresholds. Since the problem was stated [2],

various approaches have been proposed for an increased eÆciency of rule discovery in

very large databases [3, 8, 12, 31, 32]. However, fully taking advantage of exhibited

rules means providing capabilities to handle them. The problem is especially critical

when collected data is highly correlated or dense, like in statistical databases [12].

For instance, when applied to a census dataset of 10,000 objects, each of which

5.6. ASSOCIATION RULES 89

characterized by values of 73 attributes, experiments result in more then 2,000,000

rules with support and con�dence greater than or equal 90%. Thus the question

arises: How can long lists of association rules be reduced in size?

Formal Concept Analysis allows to signi�cantly reduce the number of rules with-

out losing any information. We extract only a subset of all association rules, called

basis, from which all other rules can be derived.

We use results of Duquenne and Guigues ([13], cf. also [16]) and Luxenburger [23,

24]. The former have studied bases (i. e., minimal non-redundant sets of rules from

which all other rules can be derived) for association rules with 100% con�dence,

and the latter association rules with less than 100% con�dence, but neither of them

considered the support of the rules. We adopt their results to association rules

(where both the support and the con�dence are considered) and provide algorithms

for computing the new bases by using iceberg concept lattices [40]. We follow an

approach in two steps. In the �rst step, we compute the iceberg concept lattice

for the given parameters. It consists of all FCA concepts whose extents exceed

the user-de�ned minimum support. In the second step, we derive the bases for the

association rules. In this paper, we focus on the second step. For the �rst step, we

refer to the Pascal [7] and Titanic [39] algorithms.

This two-step approach has two advantages compared to the classical two-step

approach [3] (which computes all frequent itemsets as intermediate result, and not

only those which are intents of frequent FCA concepts):

1. It allows to determine bases for non-redundant association rules and thus to

prune redundancy.

2. It speeds up the computation, especially for strongly correlated data or when

the minimum support is low.

5.6.1 Formal Concept Analysis and the Association Rule Frame-

work

In this section, we use (in the current version of this script) special notations.

Therefore, we recall the basic de�nitions. ||{(to be written)||{

De�nition 36 A formal context is a triple K := (G;M;R) where G and M are

sets and R � G �M is a binary relation. A data mining context (or dataset) is a

formal context where G and M are �nite sets. Its elements are called objects and

items, respectively. (o; i) 2 R is read as \object o is related to item i".

For O � G, we de�ne f(O) := fi 2 M j 8o 2 O: (o; i) 2 Rg; and for I � M ,

we de�ne dually g(I) := fo 2 G j 8i 2 I : (o; i) 2 Rg. A formal concept is a pair

(O; I) 2 P(G) � P(M) with f(O) = I and g(I) = O. O is called extent and I is

called intent of the concept. The set of all concepts of a formal context K together

with the partial order (O1; I1) � (O2; I2) :() O1 � O2 (() I2 � I1) is a complete

lattice, called concept lattice of K .

In this setting, we call each subset of M also itemset, and each intent I also

closed itemset (since it satis�es the equation I = f(g(I))). For two closed itemsets

I1 and I2, we note I1 � I2 if I1 � I2 and if there does not exist a closed itemset I3
with I1 � I3 � I2.

4
�

In the following, we will use the composed function h := f Æg:P(M)! P(M) which

is a closure operator onM (i. e., it is extensive, monotonous, and idempotent). The

related closure system (i. e., the set of all I � M with h(I) = I) is exactly the set

of the intents of all concepts of the context.

4We write X � Y if and only if X � Y and X 6= Y .

90 CHAPTER 5. IMPLICATIONS

A B C D E

1 � � �

2 � � �

3 � � � �

4 � �

5 � � � �

C

A

D
13, 5

2

4

B, E

Exact rule Supp Approximate rule Supp Conf Approximate rule Supp Conf Approximate rule Supp Conf

ABC ! E 0.4 BCE ! A 0.4 2/3 C ! ABE 0.4 2/4 C ! BE 0.4 3/4

ABE ! C 0.4 AC ! BE 0.4 2/3 E ! ABC 0.4 2/4 E ! BC 0.6 3/4

ACE ! B 0.4 BE ! AC 0.4 2/4 A ! BC 0.4 2/3 A ! B 0.4 2/3

AB ! CE 0.4 CE ! AB 0.4 2/3 B ! AC 0.4 2/4 B ! A 0.4 2/4

AE ! BC 0.4 AC ! B 0.4 2/3 C ! AB 0.4 2/4 C ! A 0.6 3/4

AB ! C 0.4 BC ! A 0.4 2/3 A ! BE 0.4 2/3 A ! E 0.4 2/3

AB ! E 0.4 BE ! A 0.4 2/4 B ! AE 0.4 2/4 E ! A 0.4 2/4

AE ! B 0.4 AC ! E 0.4 2/3 E ! AB 0.4 2/4 C ! B 0.6 3/4

AE ! C 0.4 CE ! A 0.4 2/3 A ! CE 0.4 2/3 C ! E 0.6 3/4

BC ! E 0.6 BE ! C 0.6 3/4 C ! AE 0.4 2/4 E ! C 0.6 3/4

CE ! B 0.6 A ! BCE 0.4 2/3 E ! AC 0.4 2/4 ; ! E 0.8 4/5

A ! C 0.6 B ! ACE 0.4 2/4 B ! CE 0.6 3/4 ; ! BE 0.8 4/5

B ! E 0.8 ; ! C 0.8 4/5 ; ! AC 0.6 3/5 ; ! BC 0.6 3/5

E ! B 0.8 ; ! A 0.6 3/5 ; ! B 0.8 4/5 ; ! CE 0.6 3/5

; ! BCE 0.6 3/5

Figure 5.6: The example data mining context K and its concept lattice. The table

shows all association rules that hold in K for minsupp = 0.4 and minconf = 1/2.

De�nition 37 Let I �M , and let minsupp, minconf 2 [0; 1]. The support count of

the itemset I in K is supp(I) :=
jg(I)j

jGj
. I is said to be frequent if supp(I) �minsupp.

The set of all frequent itemsets of a context is denoted FI .

An association rule is a pair of itemsets I1 and I2, denoted I1 ! I2, where

I2 6= ;. I1 and I2 are called antecedent and consequent of the rule, respectively. The

support and con�dence of an association rule r := I1! I2 are de�ned as follows:

supp(r) :=
jg(I1[I2)j

jGj
, conf(r) :=

supp(I1[I2)

supp(I1)
. If conf(r)=1, then r is called exact

association rule (or implication), otherwise r is called approximate association rule.

An association rule r holds in the context if supp(r) � minsupp and conf(r) �

minconf. The set of all association rules holding in K for givenminsupp andminconf

is denoted AR. �

Remark. The de�nition of association rules often includes the additional condition

I1 \ I2 = ;. This condition helps pruning rules which are obviously redundant, as

I1 ! I2 and I1 ! I2 n I1 have same support and same con�dence. In this paper, we

omit the condition, in order to simplify de�nitions. When discussing the algorithms,

however, we will use the condition since it saves memory.

The association rule framework has �rst been formulated in terms of Formal

Concept Analysis independently in [29], [38], and [43]. [29] provided also the �rst

algorithm (named Close) based on this approach.

Example 7 An example data mining context K consisting of �ve objects (identi�ed

by their OID) and �ve items is given in Figure 5.6 together with its concept lattice.

The association rules holding for minsupp = 0.4 and minconf = 1/2 are shown in

the lower table.

In the line diagram, the name of an object g is always attached to the node

representing the smallest concept with g in its extent; dually, the name of an at-

tribute m is always attached to the node representing the largest concept with m

in its intent. This allows us to read the context relation from the diagram because

an object g has an attribute m if and only if there is an ascending path from the

node labeled by g to the node labeled by m. The extent of a concept consists of

all objects whose labels are below in the diagram, and the intent consists of all

5.6. ASSOCIATION RULES 91

attributes attached to concepts above in the hierarchy. For example, the concept

labeled by `A' has f1; 3; 5g as extent, and fA;Cg as intent.

An example for an exact rule (implication) which holds in the context is fA;Bg !

fC;Eg. It can also be read directly in the line diagram: the largest concept hav-

ing both A and B in its intent is the one labeled by 3 and 5, and it is below or

equal to (here the latter is the case) the largest concept having both C and E in

its intent. This implication can be derived from two simpler implications, namely

fAg ! fCg and fBg ! fEg. The aim of the frequent Duquenne-Guigues-basis

which we introduce in the next section is to provide only a minimal, non-redundant

set of implications to the user. That basis will include the two simpler implications.

At the end of this section, we give some simple facts about association rules.

We will refer to them later as derivation rules.

Lemma 36 Rules 1 and 2 hold for � 2 fconf; suppg.

1. �(X ! Y) = �(X ! Y n Z), for all Z � X �M , Y �M .

2. �(h(X)! h(Y)) = �(X ! Y), for all X;Y �M .

3. conf(X ! Y) = p ^ conf(Y ! Z) = q) conf(X ! Z) = p � q,

for all frequent concept intents X � Y � Z.

3'. supp(X ! Z) = supp(Y ! Z), for all X;Y � Z.

4. conf(X ! X) = 1, for all X �M .

Proof The proofs for the con�dence are given in [24].

1. supp(X ! Y) = supp(X ! Y n Z) follows from X [Y = X [(Y n Z) and

the de�nition of the support count.

2. supp(h(X)! h(Y)) = supp(X ! Y) follows from g(h(X)[h(Y)) = g(h(X))\

g(h(Y)) = g(f(g(X))) \ g(f(g(Y))) = g(X) \ g(Y) = g(X [Y) by using the

facts g(f(g(X))) = g(X) and g(X [Y) = g(X) \ g(Y) provided in [16].

3'. supp(X ! Z) =
jg(X[Z)j

jGj
=

jg(Z)j

jGj
=

jg(Y [Z)j

jGj
= supp(Y ! Z) 2

�

5.6.2 Bases for Association Rules

In this section, we recall the de�nition of iceberg concept lattices and show that one

can derive all frequent itemsets and association rules from them. Then we charac-

terize the Duquenne-Guigues basis for exact association rules and the Luxenburger

basis for approximate association rules and show that all other association rules can

be derived from these two bases.

De�nition 38 A concept (O; I) is called frequent concept if supp(I) (=
jOj

jGj
) �

minsupp. The set of all frequent concepts is called iceberg concept lattice. An

itemset I is called frequent intent (or frequent closed itemset) if it is intent of a

frequent concept (i. e., its support is at least minsupp). The set of all frequent

closed itemsets in K is denoted FC. �

92 CHAPTER 5. IMPLICATIONS

Frequent closed itemset support
; 1.0

fCg 0.8
fACg 0.6

fBEg 0.8
fBCEg 0.6
fABCEg 0.4

C

A

0.4

0.8

B, E 1.0

0.60.6

0.8

Figure 5.7: Frequent closed itemsets extracted from K for minsupp = 0.4.

Example 8 The frequent closed itemsets in the context K for minsupp=0.4 are

presented in Figure 5.7 together with the semi-lattice of all frequent concepts. Both

the table and the diagram provide the same information. Note that, in general,

the set of frequent concepts is not a lattice, but only a semi-lattice (consider e. g.

minsupp= 0:5 in the example).

Lemma 37 ([32]) i) The support of an itemset I is equal to the support of the

smallest closed itemset containing I, i. e., supp(I) = supp(h(I)).

ii) The set of maximal frequent itemsets fI 2 FI j @I 02FI : I � I 0g is identical

to the set of maximal frequent closed itemsets fI 2 FC j @I 02FC: I � I 0g.

The next theorem shows that the set of frequent closed itemsets with their

support is a small collection of frequent itemsets from which all frequent itemsets

with their support and all association rules can be derived. I. e., it is a condensed

representation in the sense of Mannila and Toivonen [25]. This theorem follows

from Lemma 37.

Theorem 38 All frequent itemsets and their support, as well as all association

rules holding in the dataset, their support, and their con�dence can be derived from

the set FC of frequent closed itemsets with their support.

Duquenne-Guigues Basis for Exact Association Rules

Next we present the Duquenne-Guigues basis for exact association rules. It is based

on the following closure operator.

Theorem 39 The set FI [fMg is a closure system on M , and its related closure

operator � is given by I := h(I) if supp(I) �minsupp and I :=M else.

Proof The set of all frequent itemsets together with M is a closure system, as

well as the set of all concept intents. Hence FI [fMg is, as intersection of those

two closure systems, also a closure system. The proof of the fact that � is the

corresponding closure operator is straightforward. 2 �

Our basis adopts the results of [13] to the association rule framework, where addi-

tionally the support of the rules has to be considered.

De�nition 39 An itemset I � M in K is a � {pseudo-closed itemset (or pseudo-

closed itemset for short) 5 if I 6= I and for all pseudo-closed itemsets J with J � I ,

we have J � I . The set of all frequent pseudo-closed itemsets in K is denoted FP,

the set of all infrequent pseudo-closed itemsets is denoted IP. In the (unlikely) case

that all itemsets are frequent except the whole set M , we let IP := fMg (in order

to distinguish this situation from the one where all itemsets are frequent).

The Duquenne-Guigues basis for exact association rules (or frequent Duquenne-

Guigues basis) is de�ned as the tuple FDG := (L; IP) with L := fI1 ! h(I1) j I1 2

FPg and IP as de�ned above. �

5We do not consider pseudo-closed itemsets with respect to other closure operators than �

(especially not with respect to h) in this paper.

5.6. ASSOCIATION RULES 93

Theorem 40 From the Duquenne-Guigues basis for exact association rules one can

derive all exact association rules holding in the dataset by applying the following

rules. Rules ii) to iv) can be applied to L as long as they do not contradict (i).

i) If there exists I 2 IP with I � I1 [I2, then I1 ! I2 does not hold (because

its support is too low).

ii) X ! X holds.

iii) If X ! Z holds, then also X [Y ! Z.

iv) If X ! Y and Y [Z !W hold, then also X [Z !W .

Proof We only sketch the proof here, which applies results of [13] (see also [16]).

One has to check that L[fI!M j I 2 IPg is the Duquenne-Guigues-basis (in the

traditional sense, cf. to [13, 16]) of the closure system FC [fMg. Rule (i) re
ects

the implications of the form I !M . 2 �

The Duquenne-Guigues basis for exact association rules is not only minimal with

respect to set inclusion, but also minimal with respect to the number of rules in L

plus the number of elements in IP , since there can be no complete set with fewer

rules than there are frequent pseudo-closed itemsets [13, 16]. Observe that, although

it is possible to derive all exact association rules from the Duquenne-Guigues basis,

it is not possible in general to determine their support.6

Example 9 The set of frequent pseudo-closed itemsets of K for minsupp=0:4 and

minconf=1=2 is FP = ffAg; fBg; fEgg, the set of infrequent pseudo-closed item-

sets is IP = ffDgg. The Duquenne-Guigues basis is presented in Figure 5.8.

Luxenburger Basis for Approximate Association Rules

In [23, 24], M. Luxenburger discusses bases for partial implications. A partial

implication is an association rule where the support is not considered. He ob-

served that it is suÆcient to consider rules between concept intents only, since

conf(X ! Y) = conf(h(X) ! h(Y)). However, his derivation process does not

only consist of deduction rules which can be applied in a straightforward manner,

but it requires to solve a system of linear equations.

In the KDD process, however, we have to consider the trade-o� between the

amount of information presented to the user, and the degree of its explicitness. The

appearance of the system of linear equations indicates that Luxenburger's results

are in favor for a minimal amount of information presented, and against a higher

degree of explicitness. As one of the requirements to KDD is that the results should

be \ultimately understandable" [14], we want to emphasize more on the explicitness

of the results. Therefore we restrict now the expressiveness of the derivation process.

This forces the association rules presented to the user to be more explicit.7

In the sequel, we consider the derivation rules given in Lemma 36. We present

a basis for the approximate association rules for these derivation rules.

De�nition 40 The Luxenburger basis for approximate association rules is given

by LB := f(r; supp(r); conf(r)) j r = I1 ! I2, I1; I2 2 FC, I1 � I2, conf(r) �

minconf , supp(I2) � minsuppg . �

6Even if the support for all rules in the basis is known. With the knowledge about all frequent

closed itemsets and their support however, this is possible (see Theorem 38).
7Note that in the KDD setting the user will never actually perform longer series of inference

steps.

94 CHAPTER 5. IMPLICATIONS

Luxenburger basis

Approximate rule Support Con�dence

BCE ! A 0.4 2/3

AC ! BE 0.4 2/3

BE ! C 0.6 3/4

C ! BE 0.6 3/4

C ! A 0.6 3/4

; ! BE 0.8 4/5

; ! C 0.8 4/5

Duquenne-Guigues basis

L (Support)

A ! C 0.6

B ! E 0.8

E ! B 0.8

IP = ffDgg

C

A

0.4

0.8

B, E 1.0

0.60.6

0.8

3/4

4/5

3/4

2/3
3/42/3

4/5

Figure 5.8: Duquenne-Guigues and Luxenburger bases for minsupp=0.4 and min-

conf=1/2.

Theorem 41 From the Luxenburger basis LB for approximate association rules

one can derive all association rules holding in the dataset together with their support

and their con�dence by using the rules given in Lemma 36. Furthermore, LB is

minimal (with respect to set inclusion) with this property.

Proof In order to determine if an association rule r := I ! J holds in a context (and

for determining its support and its con�dence) one can consider the rule I 0 ! J 0

with I 0 := h(I) and J 0 := h(I [J) which has (by Rules 1 & 2) the same support

and the same con�dence. If I 0 = J 0, then conf (r) = 1 and supp(r) =supp(I 0).

If I 0 6= J 0, then exists a path of approximate rules, i. e., there are frequent closed

itemsets I1; : : : ; In with I
i
! I

i+1 2 LB and I 0 = I1 and I
n
= J 0. Support

and con�dence of r can now be determined by supp(r) = supp(I
n
) (Rule 3') and

conf (r) = �n�1
i=1 conf (Ii ! I

i+1) (Rule 3).

Now we show the minimality of LB. Let r := I ! J 2 LB. We show that the

con�dence of r cannot be derived from LB n frg by applying the rules of Lemma 2.

Rule 1 cannot be applied forward since J already contains I . It cannot be applied

backward because of I � J . Rule 2 cannot be applied forward since I = h(I)

and J = h(J). It cannot be applied backward as LB contains only rules with

closed antecedent and closed consequent. Rule 3 cannot be applied since there is

no K � M with I ! K 2 LB n frg and K ! J 2 LB n frg (because of I � J).

Rule 4 cannot be applied since I 6= J . 2 �

Remark. A basis in the sense of [24] is a maximal spanning tree of our basis (when

considered as undirected graph) containing at most one rule withM as conclusion.8

Example 10 The Luxenburger basis for approximate association rules of K for

minsupp=0.4 and minconf=1/2 is also presented in Figure 5.8. It provides the

same information as the list in Figure 5.6, but in a more condensed form. The

Luxenburger basis is visualized in the line diagram in Figure 5.8: From its de�nition

it is clear, that each approximate rule in the basis corresponds to (at most)9 one

edge in the diagram. The edge is labeled by the con�dence of the rule (as a fraction),

and its lower vertice is labeled by its support (as a rational). Implications (exact

rules) can be read in the diagram in the standard way described in Section 5.6.1.

As example for the proof of Theorem 41, let us check if fBg ! fAg holds in

the context for minsupp=0.4 and minconf=1/2. We have I := fBg and J := fAg.

8The second condition is negligible in KDD, as it follows directly from minsupp> 0%.
9In general, there may be edges which do not represent any rule in the Luxenburger basis.

Consider for instance minconf=7/10. In this case, the two lowest edges would not stand for a

valid approximate rule, and would hence not be labelled.

5.6. ASSOCIATION RULES 95

The smallest frequent closed itemset containing B is I 0 := fB;Eg and the smallest

one containing A and B is J 0 := fA;B;C;Eg. In the diagram, I 0 and J 0 are always

represented by the largest concepts which are below all attributes in I and I [J ,

resp. Between the two concepts we �nd the path I1 := I 0, I2 := fB;C;Eg, and

I3 := J 0. Hence supp(B ! A) =supp(J 0) = 0:4 �minsupp and conf (B ! A) =

conf (I1 ! I2)�conf (I2 ! I3) = 3=4 � 2=3 = 2=4 �minconf, which means that the

rule holds.

5.6.3 Algorithms for Computing the Bases

The algorithms presented in this paper assume that the iceberg concept lattice

is already computed. There are several algorithms for computing iceberg concept

lattices: the algorithm Close for strongly correlated data [32], the algorithm A-

Close for weakly correlated data [31], the algorithms CLOSET [33], ChARM [44],

and Titanic [39, 40]. The algorithm Pascal [7] computes all (closed and non-

closed) frequent itemsets, but can be upgraded to determine also their closures

with almost no additional computation time by using the fact that, for I �M ,

h(I) = I [fm 2M n I j supp(I) = supp(I [fmg)g :

When the iceberg concept lattice is computed, then the Duquenne{Guigues basis

and �nally the Luxenburger basis are computed.

Generating the Duquenne-Guigues basis for Exact Association Rules

with Gen-FDG

In this section, we present an algorithm that determines the Duquenne{Guigues

basis using the iceberg concept lattice. This algorithm (which has not been pre-

sented before) implements De�nition 39. As it needs to know the closure of frequent

itemsets, it is best applied after an algorithm like Pascal with the modi�cation

mentioned above, ChARM, or CLOSET.

The pseudo-code is given in Algorithm 8. The algorithm takes as input the sets

FI
i
, 1� i�k, containing the frequent itemsets and their support, and the sets FC

i
;

0� i�k, containing the frequent closed itemsets and their support. It �rst computes

the frequent pseudo-closed itemsets iteratively (steps 2 to 17). In steps 2 and 3, the

empty set is examined. (It must be either a closed or a pseudo-closed itemset by

de�nition.) The loop from step 4 to 17 is a direct implementation of De�nition 39 for

the frequent pseudo-closed itemsets. The frequent pseudo-closed i-itemsets, their

closure and their support are stored in FP
i
. They are used to generate the set L

of implications of the Duquenne-Guigues basis for exact association rules DG (step

18).

The set of infrequent pseudo-closed itemsets is determined in steps 19 to 21

using the function L�-closure (Algorithm 9). This function uses the fact that, for

a given closure system, the set of all closed or pseudo-closed sets forms again a

closure system [15]. Hence one can generate all closed sets and pseudo-closed sets

iteratively by using the corresponding closure operator L�-closure(Z) :=
S1

i=0 Zi
with Z0 := Z and Z

i+1 := Z
i
[
S
fY jX!Y 2 L; X � Z

i
g [15]. The set L of

implications has the form L = fX1 ! Y1; : : : ; Xn
! Y

n
g.

Generating the Luxenburger Basis for Approximate Association Rules

with Gen-LB

The pseudo-code generating the Luxenburger basis for approximate association rules

is presented in Algorithm 10. The algorithm takes as input the sets FC
i
, 0� i�

96 CHAPTER 5. IMPLICATIONS

Algorithm 8 Generating the Duquenne-Guigues basis with Gen-FDG.

1) L fg;

2) if (FC0 = fg) then FP0 ;;

3) else FP0 fg;

4) for (i 1; i � k; i++) do begin

5) FP
i
 FI

i
n FC

i
;

6) forall L 2 FP
i
do begin

7) pseudo true;

8) forall P 2 FP
j
with j < i do begin

9) if (P � L) and (P .closure 6� L)

10) then do begin

11) pseudo false;

12) FP
i
 FP

i
n fLg;

13) endif

14) end

15) if (pseudo = true) then L.closure min�(fC 2 FCj>i j L � Cg);

16) end

17) end

18) forall P 2
S
n

i=1 FPi do L L [fP ! (P .closurenP)g;

19) IP ;;

20) forall L 2MI do IP IP [fL�-closure(I)g;

21) IP min� IP ;

Algorithm 9 Function L�-closure reads X and returns its L�-closure L�(X).

1) Y X ;

2) for (i 1; i = n; i++) do i.used false;

3) repeat

4) changed false;

5) If Subsets(IP; Y) 6= ; then begin Y M ; changed true end

6) else for (i 1; i � n; i++) do

7) if X
i
� Y then begin Y Y [Y

i
; changed true end

8) until not changed;

9) return Y

k, containing the frequent closed itemsets and their support. The output of the

algorithm is the Luxenburger basis for approximate association rules LB.

The algorithm iteratively considers all frequent closed itemsets L 2 FC
i
for

2 � i � k. It determines which frequent closed itemsets L0 2
S
j<i

FC
j
are covered

by L and generates association rules of the form L0 ! L n L0 that have suÆcient

con�dence. During the ith iteration, each itemset L in FC
i
is considered (steps 3

to 13). For each set FC
j
, 1�j<i, a set S

j
containing all frequent closed j-itemsets

in FC
j
that are subsets of L is created (step 4). Then, all these subsets of L

are considered in decreasing order of their sizes (steps 5 to 12). For each of these

subsets L0 2 S
j
, the con�dence of the approximate association rule r := L0 ! LnL0

is computed (step 7). If the con�dence of r is suÆcient, r is inserted into LB (step 9)

and all subsets L00 of L0 are removed from S
l
, for l < j (step 10). At the end of the

algorithm, the set LB contains all rules of the Luxenburger basis for approximate

association rules. The proof of the correctness of the algorithm is given in [28].

5.6. ASSOCIATION RULES 97

Algorithm 10 Generating the Luxenburger basis with Gen-LB.

1) LB fg;

2) for (i 2; i � k; i++) do begin

3) forall L 2 FC
i
do begin

4) for (j 0; J < i; j ++) do S
j
 Subsets(FC

j
; L);

5) for (j i� 1; J � 1; j ��) do begin

6) forall L0 2 S
j
do begin

7) conf L.support /L0.support;

8) if (conf � minconf)

9) then LB LB [f(L0 ! (L n L0); L.support, conf)g;

10) for (l j; l � 1; l��) do S
l
 S

l
n Subsets(S

l
; L0);

11) end

12) end

13) end

14) end

5.6.4 Experimental Results

We have preformed several experiments on synthetic and real data. The charac-

teristics of the datasets used in the experiments are given in Table 5.1. These

datasets are the T10I4D100K synthetic dataset that mimics market basket data,10

the C20D10K and the C73D10K census datasets from the PUMS sample �le,11 and

theMushrooms dataset describing mushroom characteristics.12 In all experiments,

we attempted to choose signi�cant minimum support and con�dence threshold val-

ues. We varied these thresholds and, for each couple of values, we analyzed rules

extracted in the bases.

Table 5.1: Datasets.
Name Number of objects Average size of objects Number of items

T10I4D100K 100,000 10 1,000

Mushrooms 8,416 23 127

C20D10K 10,000 20 386

C73D10K 10,000 73 2,177

Number of Rules. Table 5.2 compares the size of the Duquenne-Guigues basis

for exact rules with the number of all exact association rules, and the size of the

Luxenburger basis for approximate rules with the number of all approximate rules.

In the case of weakly correlated data (T10I4D100K), no exact rule is generated.

The reason is that in such data all frequent itemsets are frequent closed itemsets.

However, the Luxenburger basis is relatively small compared to the number of all

rules, since only immediate neighbors with respect to the subset order (and not

arbitrary pairs of sets) are considered. In the case of strongly correlated data

(Mushrooms, C20D10K and C73D10K), the ratio between the size of the bases to

the number of all rules which hold is much smaller than in the weekly correlated

case, because here only few of the frequent itemsets are closed and have to be

considered.

10
http://www.almaden.ibm.com/cs/quest/syndata.html

11
ftp://ftp2.cc.ukans.edu/pub/ippr/census/pums/pums90ks.zip

12
ftp://ftp.ics.uci.edu/~cmerz/mldb.tar.Z

98 CHAPTER 5. IMPLICATIONS

Table 5.2: Number of exact and approximate association rules compared with the

number of rules in the Duquenne-Guigues and Luxenburger bases.

Dataset Exact D.-G. Approximate Luxenburger

(Minsupp) rules basis Minconf rules basis

90% 16,269 3,511

T10I4D100K 0 0 70% 20,419 4,004

(0.5%) 50% 21,686 4,191

30% 22,952 4,519

90% 12,911 563

Mushrooms 7,476 69 70% 37,671 968

(30%) 50% 56,703 1,169

30% 71,412 1,260

90% 36,012 1,379

C20D10K 2,277 11 70% 89,601 1,948

(50%) 50% 116,791 1,948

30% 116,791 1,948

95% 1,606,726 4,052

C73D10K 52,035 15 90% 2,053,896 4,089

(90%) 85% 2,053,936 4,089

80% 2,053,936 4,089

Relative Performance. Our experiments also show that in all cases the exe-

cution time of Gen-FDG and Gen-LB are insigni�cantly small compared to those

of the computation of the iceberg concept lattice, since both algorithms need not

access the database. We can conclude that without additional computation time

(compared to other approaches, like e. g. Apriori) our approach not only computes

all frequent closed itemsets but also the two bases described in Section 5.6.1.

5.7 Bibliographic Notes

Association rule mining with Formal Concept Analysis is a relatively new approach.

Other approaches addressing the problem of reducing large sets of association rules

provide users with mechanisms for �ltering rules, for instance by user de�ned tem-

plates [5, 22], Boolean [27, 36] or SQL-like [26] operators or by introducing further

measures of \usefulness" [9]; or they attempt to minimize the number of extracted

rules a priori by using information about taxonomies [18, 20, 35] or by applying sta-

tistical measures like Pearson' s correlation or the �2-test [11]. All these approaches

have in common that they lose some information.

In [6], we have presented another pair of bases which are di�erent from those

presented here. They provide rules with minimal antecedents and maximal con-

sequents. Compared to the results presented here, they have the disadvantage of

a higher total number of rules. For the approximate rules, M. Zaki has presented

similar results in [45].

||{(to be written)||{

