
42

Part II

Closure Systems and

Implications

43

Chapter 4

Closure systems

The algorithms that will be the central theme of our course were developed for con-

cept lattices, but can be rephrased without reference to Formal Concept Analysis.

The reason is that the algorithm essentially relies on a single property of concept

lattices, namely that the set of concept intents is closed under intersections. The

technique can be formulated for arbitrary intersection closed families of sets, that

is, for closure systems. Readers who are familiar with closure systems but not with

Formal Concept Analysis may prefer this approach.

But note that this means no generalization. We will show that closure systems

are not more general than systems of concept intents.

4.1 De�nition and examples

Closure systems occur frequently in mathematics and computer science. Their

de�nition is very simple, but not very intuitive when encountered for the �rst time.

The reason is their higher level of abstraction: closure systems are sets of sets with

certain properties.

Let us recall some elementary notions how to work with sets of sets. For clarity,

we shall normally use small latin letters for elements, capital latin letters for sets

and calligraphic letters for sets of sets. Given a (nonempty) set S of sets, we may

ask

� which elements occur in these sets? The answer is given by the union of S,
denoted by [

S := fx j 9S2S x 2 Sg:

� which elements occur in each of these sets? The answer is given by the inter-

section of S, denoted \
S := fx j 8S2S x 2 Sg:

Some confusion with this de�nition is caused by the fact that a set of sets may (of

course) be empty. Applying the above de�nition to the case S := � is no problem

for the union, since [
; = fx j 9S2Sx 2 Sg = fx j falseg = ; :

But it gives a problem for the intersection, because then the condition 8S2S x 2 S
is ful�lled by all x (because there is nothing to ful�ll). But there is no set of all x;

such sets are forbidden in set theory, because they would lead to contradictions.

45

46 CHAPTER 4. CLOSURE SYSTEMS

For the case S = � the intersection is de�ned only with respect to some base

set M . If we work with the subsets of some speci�ed set M (as we often do, for

example with the set of all attributes of some formal context), then we de�ne\
� :=M:

A set M with, say, n elements, has 2n subsets. The set of all subsets of a set M

is denoted P(M) and is called the power set of the set M . To indicate that S is

a set of subsets of M we may therefore simply write S � P(M).

4.1.1 Closure systems

A closure system on a setM is a set of subsets that containsM and is closed under

intersections. More formally,

De�nition 20 A closure system on a set M is a set C � P(M) satisfying

� M 2 C, and

� if D � C, then
T
D 2 C:

�

Closure systems are everywhere:

� The subtrees of any tree form a closure system, because the intersection of

subtrees in any case is a subtree.

That this is true can be seen as follows: recall that in a tree any two vertices

are connected by a (unique) path. A set of vertices induces a subtree if any

only if it contains with any two of its vertices also all vertices on the path

between these two. Now consider any selection of subtrees and let S be the

set of vertices common to all these subtrees (i.e., their intersection). Let

v; w be two vertices in S. The path between v and w belongs to every subtree

containing v and w and therefore to each of the selected subtree. It is therefore

also contained in their intersection. Thus, D is the vertex set of a subtree.

� Take any algebraic structure, for example a group or a vector space, and take

the set of its subalgebras (subgroups, sub-spaces, resp.). This is a closure

system, because the intersection of arbitrary subgroup is again a subgroup, the

intersection of arbitrary subspaces is again a subspace, and, more generally,

the intersection of subalgebras is a subalgebra.

Similarly, consider the setM := A
� of all (�nite) words over some alphabet A.

In other words, consider the free monoid over A. The set of its submonoids

is a closure system, because any intersection of submonoids is closed under

multiplication and contains the empty word.

� Or take the set of subintervals of the real interval [0; 1], including the empty

interval. Since any intersection of intervals is again an interval, we have a

closure system.

This example can be generalized to n dimensions, where we obtain the closure

system of convex sets.

� The set of downsets of any ordered set (M;�) is a closure system on M . A

downset (or order ideal) of (M;�) is a subset D �M such that whenever

d 2 D and m 2 M with m � d, then m 2 D. Dually, the set of all order

�lters (or upsets, respectively) is a closure system.

� Consider all preorders on some �xed base set S, that is, all transitive re
exive

relations R � S �S. Any intersection of transitive re
exive relations is again

transitive and re
exive. Therefore, preorders form a closure system.

4.1. DEFINITION AND EXAMPLES 47

4.1.2 Closure operators

De�nition 21 A closure operator ' onM is a map assigning a closure 'X �M

to each set X �M , which is

monotone: X � Y) 'X � 'Y

extensive: X � 'X , and

idempotent: ''X = 'X .

(Conditions to be ful�lled for all X;Y �M .) �

For every example in the above list of closure systems we can also give a closure

operator. In each of the following examples, ' is a closure operator on the set M .

� Let (M;E) be a tree with vertex set M and let ' be the mapping that maps

each set X of vertices to the vertex set of the smallest subtree containing X .

� For a group with carrier set M , de�ne 'X to be the subgroup generated by

X .

For a vector space with carrier setM , de�ne 'X to be the subspace generated

by X .

For a set X of words over an alphabet A, let 'X := X
� be the submonoid of

M := A
� which is generated by X .

� For any X � M := [0; 1] let 'X be the smallest interval containing X (i.e.,

the convex closure of X).

� If (M;�) is an ordered set then for any X �M let

'X := fm 2M j m � x for some x 2 Xg

be the downset generated by X .

� For any relation R on a set S, in other words, for any subset R � S�S =:M ,

let 'R denote the re
exive transitive closure of R.

The examples indicate why closure operators are so frequently met: their ax-

ioms describe the natural properties of a generating process. We start with some

generating set X , apply the generating process and obtain the generated set, 'X ,

the closure of X . Such generating processes occur in fact in many di�erent variants

in mathematics and computer science.

4.1.3 The closure systems of intents and of extents

Closure systems and closure operators are closely related. In fact, there is a natural

way to obtain from each closure operator a closure system and vice versa. It works

as follows:

Lemma 10 For any closure operator, the set of all closures is a closure system.

Conversely, given any closure system C on M , there is for each subset X of M a

unique smallest set C 2 C containing X. Taking this as the closure of X de�nes a

closure operator. The two transformations are inverse to each other.

Proof Exercise 1. �

48 CHAPTER 4. CLOSURE SYSTEMS

Thus closure systems and closure operators are essentially the same. We can

add to this:

Theorem 11 A closure system C on a set M can be considered as a complete

lattice, ordered by set inclusion �. The in�mum of any subfamily D � C is equal

to
T
D, and the supremum is the closure of

S
D. Conversely we can �nd for any

complete lattice L a closure system that is isomorphic to L.

Proof Exercise 2. �

So closure systems and complete lattices are also very closely related.

It comes as no surprise that concept lattices can be subsumed under this rela-

tionship. It follows from the Basic Theorem (Thm. 4 (p. 25)) that the set of all

concept intents of a formal context is closed under intersections and thus is a closure

system on M . Dually, the set of all concept extents always is a closure system on

G. The corresponding closure operators are just the two operators

X 7! X
00

on M and G, respectively.

Conversely, given any closure system C on a set M , we can construct a formal

context such that C is the set of concept intents. It can be concluded from the Basic

Theorem that for example (C;M;3) is such a context. In particular, whenever a

closure operator on some set M is considered, we may assume that it is the closure

operator

A 7! A
00

on the attribute set of some formal context (G;M; I).

Thus, closure systems and closure operators, complete lattices, systems of con-

cept intents, and systems of concept extents: all these are very closely related. It

is not appropriate to say that they are \essentially the same", but it is true that

all these structures have the same degree of expressiveness; none of them is a gen-

eralization of another. A substantial result proved for one of these structures can

usually be transferred to the others, without much e�ort.

4.2 Formal contexts in Computer Science: exam-

ples

We have seen that closure systems can be represented by formal contexts, and this

is often a very convenient way of handling a closure system. It is often bene�cial to

ask if a given closure system can nicely be described by a formal context.

On the other hand, formal contexts occur in mathematics and computer science

without being named that way. It is no surprise that in such situations closure

operators and complete lattices can be introduced.

4.2.1 Ontology Learning.

Ontologies are \explicit speci�cation[s] of a conceptualization" [Gr94]. They usually

consist of a set of concepts (not to be confused with formal concepts from FCA),

a hierarchical is-a relation and other (non-hierarchical) relations between the con-

cepts, and eventually axioms describing constraints on the relations and concepts.

One task in learning ontologies from data is the construction of the is-a hierarchy.

Suppose that the concepts are already learned (e. g., by applying linguistic and sta-

tistical methods [MaS00]) and stored in the set M . The set G contains instances,

4.2. FORMAL CONTEXTS IN COMPUTER SCIENCE: EXAMPLES 49

or documents annotated with the concepts. The relation I indicates if an instance

belongs to a concept, or if a document is annotated with a concept. In [SM01], this

approach has been used in FCA{Merge, a technique for supporting the merging of

ontologies. The concept lattice provides an is-a hierarchy on the set of the ontology

concepts. Additionally, it suggests new concepts which may simplify the structure

of the ontology.

The use of (iceberg) concept lattices is not only restricted to knowledge discovery.

Here we give some more examples of typical applications, in which FCA has been

successfully applied in the past (before the introduction of Titanic). Their purpose

is to show that the weight function (whose existence is a necessary condition for the

applicability of Titanic) naturally appears in a wide variety of domains.

4.2.2 Con�guration space analysis.

In software re-engineering, one task is to analyze the source code of a given pro-

gram where no (or relatively few) documentation is given. In [KS94], the use of

Formal Concept Analysis for analyzing the con�guration space of C++ programs is

discussed. The set G of objects contains the lines of code, the set M consists basi-

cally of the C++ preprocessor symbols which appear in the code, and the relation

I indicates which lines of code are governed by which preprocessor symbols. De-

compositions of the concept lattice indicate possibilities for re-facturing the code.

4.2.3 Transformation of class hierarchies.

In object-oriented languages, one aim is to simplify the class hierarchy according

to a (number of) given program(s). In [ST98], this problem has been attacked by

using concept lattices. In the scenario, the set M of attributes contains all data

members and methods of a given class hierarchy, and the set G of objects consists

of all variables and pointers of the program(s). The relation I basically indicates

which variables and pointers are related to which data members and methods.

The resulting concept lattice provides an improved hierarchy which can be used

for restructuring the class hierarchy according to software engineering principles

without the need to modify the source code.

4.2.4 Model classes and theories, equational classes and equa-

tional theories

Consider propositional formulae over a set X of variables. The potential models of

such formulae are truth value assignments " : X ! ftrue; falseg. To express that
a certain " is a model of a formula f , one writes " j= f . Denoting by F(X) the set

of all formulae over X and byM(X) := ftrue; falseg
X
the set of all truth value

assignments, we can de�ne the formal context

(M(X);F(X); j=):

Given any subset A � M(X) of assignments, we may ask which formulae hold in

all these; the set of these formulae is the propositional theory of A. Conversely,

for each set F � F of formulae we have the set of assignments for which all these

50 CHAPTER 4. CLOSURE SYSTEMS

formulae hold; these are the models
1 of F . These two mappings

Th : P(M(X))! P(F(X)); A 7! ff 2 F(X) j a j= f 8 a 2 Ag

Mod : P(F(X))! P(M(X)); F 7! fm 2M(x) j m j= f 8 f 2 Fg

are of course the derivation operators of the context (M(X);F(X); j=). We obtain

two closure operators, one on M(X) and one on F(X). They are just the two

closure operators

X 7! X
00

associated to the derivation operators.

A 7! Mod(Th(A)) for A �M(X)

maps each set of truth value assignments to itself, because each model set can

completely be described by its theory;

F 7! Th(Mod(F)) for F � F(X)

extends each set F of formulae by those formulae that follow (semantically) from

F (to the theory generated by F).

The formal concepts of this formal context have as intents just the propositional

theories and as extents their model classes.

A very similar example can be obtained for (universal) algebras of a �xed sig-

nature, except that in that case we have to introduce some restrictions in order to

avoid proper classes (classes that are not sets). Writing

A j= e

to express that the equation e holds in the algebra A, we obtain, as above, model

classes (\varieties") and theories (\equational theories").

4.2.5 Equivalence relations

A binary relation � � S � S on a set S is called an equivalence relation if it is

re
exive, transitive, and symmetric. It is easy to check that these properties are

preserved under arbitrary intersections. Therefore the set of all evivalence relations

on S is a closure system. The associated closure operator takes as input any relation

R � S � S and outputs its re
exive, symmetric, transitive closure, that is, the

smallest eqivalence relation containing R.

It is easy to describe the supremum- and the in�mum-irreducible equivalence

relations in terms of their equivalence classes:

� An equivalence relation is supremum-irreducible i� all its classes, except one,

have only one element and the exceptional class has exactly teo elements.

� An equivalence relation is in�mum-irreducible i� it has exactly two equivalence

classes.

A formal context can be de�ned as��
S

2

�
;P(S n fsg) n f�g; I

�
; (for some �xed s 2 S)

1A truth value assignment " can be speci�ed by giving the set T � X of those variables to
which the value true is assigned:

T := fx 2 X j "(x) = trueg:

Models of a propositional theory can therefore be identi�ed with certain subsets of the set X.

4.3. THE NEXT CLOSURE ALGORITHM 51

where
�
S
2

�
denotes the set of all two-element subsets of S, and for a; b 2 S, C �

S n fsg,
fa; bg I C :() jfa; bg \ Cj 6= 1:

The concept extents of this formal context are precisely all equivalence relations on

S.

4.2.6 Orders, order �lters, order ideals

From an arbitrary ordered set (P;�) we can obtain several interesting parts, for

example its order ideals, its order �lters, and its cuts. Order �lters and -ideals have

been introduced above (on page 46). A cut of (P;�) is a pair (A;B) of subsets

A;B � P such that

� A is the set of all lower bounds of B, and

� B is the set of all upper bounds of A.

From an ordered set we can also derive several formal contexts. It is not diÆcult

to show that

� The cuts of (P;�) are precisely the formal concepts of the context (P; P;�).

� The order ideals of (P;�) are precisely the concept extents of the formal

context (P; P; 6�).

� The order �lters of (P;�) are precisely the concept intents of the formal

context (P; P; 6�). In fact, (A;B) is a formal concept of (P; P; 6�) i� A is a

downset, B is an upset and A = P nB.

4.2.7 Bracketings and permutations

4.3 The Next Closure algorithm

We present a simple algorithm that solves the following task: For a given closure

operator an a �nite set M , it computes all closed sets.

There are many ways to achieve this. Our algorithm is particularly simple. We

shall discuss eÆciency considerations below. It also allows many useful modi�ca-

tions, some of which will be used in our more advanced applications. We start with

the simplest version.

4.3.1 Representing sets by bit vectors

We start by giving our base set M an arbitrary linear order, so that

M = fm1 < m2 < � � � < mng;

where n is the number of elements ofM . Then every subset S �M can conveniently

be described by its characteristic vector

"S :M ! f0; 1g;

given by

"S(m) :=
n
1 if m 2 S
0 if m =2 S

:

For example, if the base set is

M := fa < b < c < d < e < f < gg;

52 CHAPTER 4. CLOSURE SYSTEMS

then the characteristic vector of the subset S := fa; c; d; fg is 1011010. In concrete

examples we prefer to write a cross instead of a 1 and a blank or a dot instead of a

0, similarly as in the cross tables representing formal contexts. The characteristic

vector of the subset S := fa; c; d; fg will therefore be written as

� . � � . � .
:

In this notation it is easy to see if a given set is a subset of another given set, etc.

The set P(M) of all subsets of the base setM is naturally ordered by the subset{

order �. This is a complete lattice order, and (P(M);�) is called the power set

lattice of M . The subset-order is a partial order. We can also introduce a linear or

total order of the subsets, for example the lexicographic or lectic order �, de�ned
as follows: Let A;B �M be two distinct subsets. We say that A is lectically smaller

than B, if the smallest element in which A and B di�er belongs to B. Formally,

A < B :() 9i (i 2 B; i =2 A; 8j<i (j 2 A () j 2 B)):

For example fa; c; e; fg < fa; c; d; fg, because the smallest element in which the two
sets di�er is D, and this element belongs to the larger set. This becomes even more

apparent when we write the sets as vectors and interprete them as binary numbers:

1 0 1 0 1 1 0

l
1 0 1 1 0 1 0 :

Note that the lectic order extends the subset-order, i.e.,

A � B) A � B:

The following notation is helpful:

A <i B :() (i 2 B; i =2 A; 8j<i (j 2 A () j 2 B)):

In words: A <i B i� i is the smallest element in which A and B di�er, and i 2 B.

Proposition 12 1. A < B if and only if A <i B for some i 2M .

2. If A <i B and A <j C with i < j, then C <i B.

4.3.2 Closures in lectic order

We consider a closure operator

A 7! A
00

on the base set M . To each subset A � M it gives2 its closure A00 � M . Our

task is to �nd a list of all these closures. In principle we might just follow the

de�nition, compute for each subset A � M its closure A00 and include that in the

list. The problem is that di�erent subsets may have identical closures. So if we want

a list that contains each closure exactly once, we will have to check many times if

a computed closure already exists in the list. Moreover, the number of subsets is

exponential: a set with n elements has 2n subsets. The naive algorithm \for each

A �M , compute A00 and check if the result is already listed" therefore requires an

exponential number of lookups in a list that may have exponential size.

A better idea is to generate the closures in some prede�ned order, thereby guar-

anteeing that every closure is generated only once. The reader may guess that we

2For our algorithm it is not important how the closure is computed.

4.3. THE NEXT CLOSURE ALGORITHM 53

shall generate the closures in lectic order. We will show how to compute, given a

closed set, the lectically next one. Then no lookups are necessary. Actually, it will

not even be necessary to store the list. For many applications it will suÆce to gen-

erate the list elements on demand. Therefore we do not have to store exponentially

many closed sets. Instead, we shall store just one!.

To �nd the next closure we de�ne for A �M and mi 2M

A�mi := ((A \ fm1; : : : ;mi�1g) [fmig)
00
:

We illustrate this de�nition by an example: Let A := fa; c; d; fg and mi := e.

#

� . � � . � .
:

We �rst remove all elements that are greater or equal mi from A:

#

� . � � . . .
:

Then we insert mi

#

� . � � � . .

and form the closure. Since we have not yet speci�ed the closure operator �00 (i. e.,
we have not given a formal context), the example stops here with

A� e = fa; c; d; eg00:

Proposition 13 1. If i =2 A then A < A� i.

2. If B is closed and A <i B then A� i � B, in particular A� i � B.

3. If B is closed and A <i B then A <i A� i.

Theorem 14 The smallest closed set larger than a given set A � M with respect

to the lectic order is

A� i;

i being the largest element of M with A <i A� i.

Now we are ready to give the algorithm for generating all extents of a given

context (G;M; I): The lectically smallest extent is �
00
. For a given set A � G we

�nd the lectically next extent by checking all elements i of G nA, starting from the

largest one and continuing in a descending order until for the �rst time A <i A� i.
A � i then is the \next" extent we have been looking for. These three steps are

made explicit in Figures 4.1 to 4.3.

Algorithm First Closure

Input: A closure operator X 7! X
00 on a �nite set M .

Output: The closure A of the empty set.

begin

A := �00;

end.

Figure 4.1: First Closure.

54 CHAPTER 4. CLOSURE SYSTEMS

Algorithm Next Closure

Input: A closure operator X 7! X
00 on a �nite set M ,

and a subset A �M .

Output: A is replaced by the lectically next closed set.

begin

i := largest element of M;

i := succ(i);

success := false;

repeat

i := pred(i);

if i =2 A then

begin

A := A [fig;
B := A

00;

if B nA contains no element < i then

begin

A:= B;

success := true;

end;

end else A := A n fig;
until erfolg or i = smallest element of M.

end.

Figure 4.2: Next Closure.

Algorithm All Closures

Input: A closure operator X 7! X
00 on a �nite set M .

Output: All closed sets in lectic order.

begin

First Closure;

repeat

Output A;

Next Closure;

until not success;

end.

Figure 4.3: Generating all closed sets.

There are several implementations of this algorithm. The best-known is probably

the program ConImp by Peter Burmeister, which is particularly common on DOS-

computers. For the world of Unix there is a version named Concepts by Christian

Lindig. Both programs are at present available for non-commercial purposes.3

4.3.3 Examples

||{(to be written)||{

3e.g. free of charge via the Internet:
ftp.mathematik.th-darmstadt.de:/pub/department/software/conceptanalysis
or ftp.ips.cs.tu-bs.de:/pub/local/softech/misc.

4.4. ICEBERG LATTICES AND TITANIC 55

4.3.4 The number of concepts may be exponential

The problem of computing concept lattices has exponential worst-case complexity:

The context K := (f1; : : : ; ng; f1; : : : ; ng; 6=) has n objects and n attributes, while

its concept lattice B(K) has 2n concepts. Therefore all algorithms necessarily have

an exponential worst-case complexity. However, it is of interest to analyze the

situation in more detail.

4.3.5 Computation time per concept is polynomial

||{(to be written)||{

4.4 Iceberg Lattices and Titanic

A current research domain common to both the AI and the database community

is Knowledge Discovery in Databases (KDD). Here FCA has been used as a formal

framework for implication and association rules discovery and reduction and for

improving the response times of algorithms for mining association rules. We will

discuss association rules later in Section .

In this section we show that, vice versa, FCA can also bene�t from ideas used for

mining association rules by presenting a second, eÆcient algorithm for computing

concept lattices, called Titanic.

In fact, Titanic can be used for a more general problem: Computing arbitrary

closure systems when the closure operator comes along with a so-called weight

function.

We also introduce the notion of iceberg concept lattices. Iceberg concept lattices

show only the top-most part of a concept lattice. Iceberg concept lattices have

di�erent uses in KDD: as conceptual clustering tool, as a visualization method |

especially for very large databases |, and as we will see later, as a condensed repre-

sentation of frequent itemsets, as a base of association rules, and as a visualization

tool for association rules.

4.4.1 Iceberg Concept Lattices

In the worst case, the size of concept lattices grows exponentially with the size of

the context. Hence for most applications one has to consider strategies for dealing

with such large concept lattices.

In this section, we present an approach based on frequent itemsets as known

from data mining [AIS93]: Our iceberg concept lattices will consist only of the top-

most concepts of the concept lattice. These are the concepts which provide the

most global structuring of the domain:

De�nition 22 Let B � M , and let minsupp 2 [0; 1]. The support count of the

attribute set (also called itemset) B in K is supp(B) :=
jB0

j

jGj
. B is said to be a

frequent attribute set if supp(B) � minsupp.

A concept is called frequent concept if its intent is frequent. The set of all frequent

concepts of a context K is called the iceberg concept lattice of the context K . �

Lemma 15 For all B �M , we have supp(B) = supp(B00).

Proof By applying Proposition 1, we obtain supp(B) =
jB0

j

jGj
=

jB000
j

jGj
supp(B00) �

56 CHAPTER 4. CLOSURE SYSTEMS

veil type: partial

ring number: one veil color: white

gill attachment: free100 %

92.30 % 97.62 %

97.43 %

97.34 %90.02 %

89.92 %

Figure 4.4: Iceberg concept lattice of the mushroom database with minsupp = 85%

Because the support function is monotonously decreasing (i. e., B1 � B2) supp(B1) �
supp(B2)), the iceberg concept lattice is an order �lter of the whole concept lattice,

and thus in general only a join-semi-lattice. But when we add a new bottom ele-

ment, it becomes a lattice again. This makes it possible to apply the same algorithm

(which will be introduced in the following sections) for computing concept lattices

and iceberg concept lattices. But before talking about their computation, let's have

a closer look to iceberg concept lattices:

Example 4 As running example, we use the Mushroom database from the UCI

KDD Archive (http://kdd.ics.uci.edu/). It consists of a database with 8,416

objects (mushrooms) and 22 (nominally valued) attributes. We obtain a formal

context by creating one (Boolean) attribute for each of the 80 possible values of the

22 database attributes. The resulting formal context has thus 8,416 objects and

80 attributes. Its concept lattice consists of 32,086 concepts, hence is by far too

large to be displayed. But for a �rst glance, it is suÆcient to see its top-most part:

Figure 4.4 shows the Mushroom iceberg concept lattice for a minimum support of

85%.

In the diagram one can clearly see that all mushrooms in the database have the

attribute `veil type: partial'. Furthermore the diagram tells us that the three next-

frequent attributes are: `veil color: white' (with 97.62% support), `gill attachment:

free' (97.43%), and `ring number: one' (92.30%). There is no other attribute having

a support higher than 85%. But even the combination of all these four concepts

is frequent (with respect to our threshold of 85%): 89.92% of all mushrooms in

our database have one ring, a white partial veil, and free gills. This concept with

a quite complex description contains more objects than the concept described by

the �fth-most attribute, which has a support below our threshold of 85%, since it

is not displayed in the diagram.

In the diagram, we can detect the implication

fring number: one, veil color: whiteg) fgill attachment: freeg .

It means that all mushrooms with one ring and a white veil have free gills. Implica-

tions are discussed in more detail in the next chapter. This implication is indicated

in the diagram by the fact that there is no concept having `ring number: one'

and `veil color: white' (and `veil type: partial') in its intent, but not `gill attach-

ment: free'. This implication has a support of 89.92% (and as it is an implication,

a con�dence of 100%). It is globally valid in the Mushroom database, i. e., it does

not change when we consider a di�erent minimum support.

If we want to see more details, we have to decrease the minimum support.

Figure 4.5 shows the Mushroom iceberg concept lattice for a minimum support of

4.4. ICEBERG LATTICES AND TITANIC 57

veil type: partial
ring number: one

veil color: white

gill attachment: free

gill spacing: close

100 %

92.30 % 97.62 %97.43 %

81.08 %

76.81 % 78.80 %

97.34 %90.02 %

89.92 %

78.52 %

74.52 %

Figure 4.5: Iceberg concept lattice of the mushroom database with minsupp = 70%

Table 4.1: Number of frequent closed itemsets and frequent itemsets for the Mush-

rooms example

minsupp # frequent closed itemsets # frequent itemsets

85% 7 8

70% 12 32

55% 32 116

0% 32.086 280

70%. One observes that, of course, its top-most part is just the iceberg lattice for

minsupp = 85%. Additionally, we obtain �ve new concepts, having the possible

combinations of the next-frequent attribute `gill spacing: close' (having support

81.08%) with the previous four attributes. The fact that the combination fveil
type: partial, gill attachment: free, gill spacing: closeg is not realized as a concept

intent indicates another implication:

fgill attachment: free, gill spacing: closeg) fveil color: whiteg (*)

This implication has 78.52% support (the support of the most general concept hav-

ing all three attributes in its intent) and| being an implication | 100% con�dence.

By further decreasing the minimum support, we discover more and more details.

Figure 4.6 shows the Mushrooms iceberg concept lattice for a minimum support

of 55%. It shows four more partial copies of the 85% iceberg lattice, and three

new, single concepts.

The Mushrooms example shows that iceberg concept lattices are suitable es-

pecially for strongly correlated data. In Table 4.1, the size of the iceberg lattice

(i. e., the number of all frequent closed itemsets) is compared with the number of

all frequent itemsets. It shows for instance, that, for the minimum support of 55%,

only 32 frequent closed itemsets are needed to provide all information about the

support of all 116 frequent itemsets one obtains for the same threshold.

The observation that the top-most part of the iceberg lattice appears partially

again in combination with other attributes can be used for an alternative visu-

alization: Figure 4.7 shows the iceberg concept lattice as a nested line diagram.

The diagram provides exactly the same information than Figure 4.6, but in a more

58 CHAPTER 4. CLOSURE SYSTEMS

veil type: partial
ring number: one

veil color: white

stalk surface below ring: smoothstalk surface above ring: smooth

gill attachment: free

gill size: broad

gill spacing: close

stalk shape: tapering

stalk color below ring: white

stalk color above ring: white

no bruises

100 %

92.30 % 97.62 %

60.31 %

55.09 %

63.17 %

57.94 %

97.43 %69.87 %

62.17 % 67.59 %

81.08 %

76.81 % 78.80 %

97.34 %90.02 %

89.92 %

57.79 %

55.13 %

56.37 %

58.03 %60.88 %

55.66 %

67.30 %

59.89 %

78.52 %

74.52 %

59.89 %

55.70 % 57.51 %57.32 %

57.22 %

Figure 4.6: Iceberg concept lattice of the mushroom database with minsupp = 55%

structured way.

Each of the `satellites' contains a partial copy of the top-most iceberg lattice.

Only those concepts are copied which are, together with the new attribute(s), still

frequent. The lines of the outer diagram have to be read as a bundle of parallel

lines, linking corresponding concepts. For instance, the concept on the right side of

the diagram labeled by `78.80%' is not only an immediate subconcept of the one

labeled by `81.08%, but also of the one labeled by `97.62%'.

The empty circles indicate unrealized concepts : They are still frequent, but all

objects in an unrealized concept share at least one more attribute. For instance, the

unrealized concept on the right side left of the concept labeled by `78.80%' has as

intent fgill spacing: close, gill attachment: free, veil type: partialg. But implication
(*) tells us that all objects having these attributes also have the attribute `veil

color: white'. Therefore, `veil color: white' has to be in each realized concept which

contains the three other attributes. The largest of them is just the �rst realized

concept below: the one with 78.52% support. This way, each unrealized concept

indicates an implication: the attributes of its intent always imply all attributes

in the intent of its largest realized subconcept. For instance, the two unrealized

concepts below the attribute `no bruises' indicate the implications

fno bruises, gill attachment: freeg) fveil color: whiteg
fno bruises, veil color: whiteg) fgill attachment: freeg

respectively, each having 57.22% support.

For attributes which are labeled at concepts having no subconcepts in the di-

agram, we cannot decide whether they are part of interesting implications. For

4.4. ICEBERG LATTICES AND TITANIC 59

92.30%

90.02% 97.34%

89.92%

78.80%

78.52%

56,37%

55.09%

58.03%

57.79%

55.70%

57.22%

63.17%

57.94%

60.88%

55.66%

55.13%

67.59%

67.30%

58.89%

62.17%

69.87%

100%

97.62%
97.43% 81.08%

60.31%

58.89%

ring number: one veil color: white

veil type: partial

gill spacing: closegill size: broad

stalk color above ring: white

stalk surface above ring: smooth

stalk surface below ring: smooth

no bruisesstalk shape: tapering

stalk color below ring: white

gill attachment: free

Figure 4.7: Nested line diagram of the iceberg concept lattice in Figure 4.6

instance, the diagram does not show whether there is an implication having `stalk

color below ring: white' in its premise or conclusion (other than the trivial implica-

tion fstalk color below ring: whiteg) fveil type: partialg). If there are any such

rules, then their support is below the actual minimum support of 55%. In order to

study them, the threshold has to be decreased further.

In the way nested line diagrams are introduced in Section 2.4.2, the attributes

are grouped manually according to their semantics. Related attributes are grouped

together. This usually involves a human expert to decide which attributes are re-

lated. The support function, on the other hand, allows an automatic grouping:

In Figure 4.7, the inner diagram contains the top-most attributes, the outer dia-

gram the next-most attributes. The resulting diagram shows the most important

attributes for structuring the domain. The knowledge engineer only has to �x the

minimum support thresholds for the di�erent layers.

Observe that the iceberg concept lattices in this example are used for conceptual

clustering, which is a speci�c technique for un-supervised learning. Our aim was

to gain new insights about the mushrooms in the database, independent from a

speci�c purpose. In particular, the aim was not to learn how to distinguish between

poisonous and edible mushrooms. The question if and how iceberg concept lattices

60 CHAPTER 4. CLOSURE SYSTEMS

can be used in such a supervised learning scenario is an interesting open problem.

In general, Cluster Analysis comprises a set of unsupervised machine learning

techniques which split sets of objects into clusters (subsets) such that objects within

a cluster are as similar as possible while objects from di�erent clusters are as di�er-

ent as possible. Conceptual Clustering techniques additionally aim at determining

not only clusters | i. e., concept extensions | but to provide at the same time in-

tensional descriptions of these extensions. This aim �ts well with the understanding

of concepts formalized in FCA. Therefore FCA was considered as a framework for

conceptual clustering from the early 1990ies on.

Compared to `usual' clustering, conceptual clustering techniques pay their added

value (the intensional description) with increased computation time. In FCA, there

exist basically three ways to overcome this problem: local focusing (e. g., [CR93]),

vertical reduction by conceptual scaling (see Chapter3, and horizontal reduction.

Iceberg concept lattices are a horizontal approach to reduce the amount of infor-

mation (and the computation time) of a concept lattice. In comparison to other

conceptual clustering approaches, iceberg concept lattices have structural properties

which can be stated explicitly: they do not depend on diverse parameters (except

the minimum support threshold) whose semantics are often diÆcult to interpret,

nor on the order in which the input is presented to the algorithm, nor on any partic-

ularities of the implementation. Another distinction to other hierarchical clustering

results is that they allow for multiple hierarchies (and not only for trees), so that all

potentially interesting specialization paths are contained in the resulting hierarchy.

Up to now, we have discussed the use of iceberg concept lattices as a conceptual

clustering technique, equipped with a visualization method, which is very well suited

especially for analyzing very large databases containing strongly correlated data.

Now we brie
y discuss some more uses of iceberg concept lattices in KDD:

A condensed representation of frequent itemsets. The computation of fre-

quent attribute sets [itemsets] is the �rst (and most expensive) step in the com-

putation of association rules. One reason is that one needs to count the support

for each itemset. By using the fact that supp(B) = supp(B00), for B � M , we

can derive the supports of all itemsets from the supports of the frequent concept

intents only. In strongly correlated data, only relatively few of the frequent itemsets

are also concept intents. Hence only few support counts have to be e�ected in the

database. This is used for the Pascal algorithm [BTPSL00] which is related to

Titanic, and which eÆciently computes frequent itemsets.

A starting point for computing bases of association rules. One problem

in mining association rules is the large number of rules which are usually returned.

In [BPTSL00] and [STBPL01], di�erent bases for association rules are introduced,

which prune redundant rules, but from which all valid rules can still be derived. The

computation of the bases does not require all frequent itemsets, but only frequent

concept intents.

A visualizing technique for association rules. We have already discussed

how implications (i. e., association rules with 100% con�dence) can be read from

the line diagram. The Luxenburger basis for approximate association rules (i. e.,

association rules with less than 100% con�dence), which is presented in [STBPL01],

can also be visualized directly in the line diagram of an iceberg concept lattice. The

Luxenburger basis is derived from [Lu91]. It contains only those rules B1 ! B2

where B1 and B2 are frequent concept intents and where the concept (B
0
1; B1) is an

immediate subconcept of (B0
2; B2). Hence there corresponds to each approximate

rule in the Luxenburger base exactly one edge in the line diagram. Figure 4.8

4.4. ICEBERG LATTICES AND TITANIC 61

ing number: one

veil type: partial
gill attachment: free

gill spacing: close

97.0%

99.9% 99.6%

97.2%

97.4%

99.9%

99.7%

97.5%

veil color: white
97.6%

Figure 4.8: Visualization of the Luxenburger basis for minsupp = 70% and

minconf= 95%

visualizes all rules in the Luxenburger basis for minsupp=70% and minconf= 95%.

For instance, the rightmost arrow stands for the association rule fveil color: white,
gill spacing: closeg ! fgill attachment: freeg, which holds with a con�dence of

99.6%. Its support is the support of the concept the arrow is pointing to: 78.52%,

as shown in Figure 4.5. Edges without label indicate that the con�dence of the

rule is below the minimum con�dence threshold. The visualization technique is

described in more detail in [STBPL01]. In comparison with other visualization

techniques for association rules, the visualization of the Luxenburger basis within

the iceberg concept lattice bene�ts of the smaller number of rules to be represented

(without loss of information!), and of the presence of a `reading direction' provided

by the concept hierarchy.

4.4.2 Computing Closure Systems: the Problem

Instead of giving an algorithm for computing (iceberg) concept lattices, we provide

an algorithm for a more general task: computing closure systems using a weight

function. The reason is that closure systems are important in a variety of applica-

tions.

Section 4.1.3 shows that the set of all intents of a context (G;M; I) is a closure

system on M , and that B 7! B
00 is the corresponding closure operator. Thus

computing concept lattices is a special case of the following, more general task:

Let h be a closure operator on a �nite setM . The task is to determine eÆciently

the closure system Hh related to the closure operator h when there exists a weight

function compatible with the closure operator:

De�nition 23 A weight function on P(M) is a function s:P(M) ! P from the

powerset of M to a totally ordered set (P;�) having a largest element smax. For a
set X �M , s(X) is called the weight of X . The weight function is compatible with

a closure operator h if

(i) X � Y) s(X) � s(Y),

(ii) h(X) = h(Y)) s(X) = s(Y),

62 CHAPTER 4. CLOSURE SYSTEMS

(iii) X � Y ^ s(X) = s(Y)) h(X) = h(Y) :

�

Remark. In the sequel, we will consider (P;�) to be the interval [0; 1] in the real

numbers, but the theory presented in this paper can be applied to arbitrary totally

ordered sets.

Remark. If X � Y) s(X) � s(Y) holds instead of (i) (as, e. g., for functional

dependencies), then all `min' in the sequel have to be replaced by `max'.

Now we can formally state the problem:

Problem. Let h be a closure operator on a �nite setM , and let s be a compatible

weight function. Determine the closure system Hh related to the closure operator

h by using the weight function s.

4.4.3 Computing Closure Systems Based on Weights

We discuss the problem of computing the closure system by using a weight function

in three parts:

1. How can we compute the closure of a given set using the weight function only,

and not the closure operator?

2. How can we compute the closure system by computing as few closures as

possible?

3. Since the weight function is usually not stored explicitly, how can we derive

the weights of as many sets as possible from the weights already computed?

Questions 2 and 3 are not independent from each other. Hence we will not provide

an optimal answer for each of them, but one which improves the overall bene�t.

Weight-based computation of closures

We use the constraints on the function s for determining the closure of a set by

comparing its weight with the weights of its immediate supersets.

Proposition 16 Let X �M . Then

h(X) = X [fm 2M nX j s(X) = s(X [fmg)g :

Proof \�": Suppose that there exists m 2 h(X) n X with s(X) 6= s(X [fmg).
Then h(X) 6= h(X [fmg) by condition 2 of De�nition 23. Hence m =2 h(X).

Contradiction.

\�": Let m 2 M nX with s(X) = s(X [fmg). Then h(X) = h(X [fmg) by
condition 3 of De�nition 23. Hence m 2 h((X [fmg)) = h(X). �

Hence if we know the weights of all sets, then we can compute the closure

operator (! Algorithm 3, steps 3{7).4 In the next subsection we discuss for which

sets it is necessary to compute the closure in order to obtain all closed sets. In

Subsection 4.4.3 we discuss how the weights needed for those computations can be

determined.

4In this section, we give some references to the algorithms in the following section. These
references can be skipped at the �rst reading.

4.4. ICEBERG LATTICES AND TITANIC 63

A level-wise approach for computing all closed sets

One can now compute the closure systemH by applying Proposition 16 to all subsets

X of M . But this is not eÆcient, since many closed sets will be determined several

times.

De�nition 24 We de�ne an equivalence relation � on the powerset P(M) ofM by

(X;Y) 2 � :() h(X) = h(Y), for X;Y �M . The equivalence class of X is given

by [X] := fY �M j (X;Y) 2 �g. �

If we knew the equivalence relation � in advance, it would be suÆcient to com-

pute the closure for one set of each equivalence class only. But since we have to

determine the relation during the computation, we have to consider more than one

element of each class in general. As known from algorithms for mining association

rules, we will use a level-wise approach.

De�nition 25 A k-set is a subset X ofM with jX j = k. For X � P(M), we de�ne

Xk := fX 2 X j X is k-setg. For X = P(M), we also write Pk(M) for Xk. �

At the kth iteration, the weights of all k-sets which remained from the pruning

strategy described below are determined; and the closures of all (k � 1)-sets which

passed the pruning in the (k � 1)th iteration are computed.

The �rst sets of an equivalence class that we reach using such a level-wise ap-

proach are the minimal sets in the class:

De�nition 26 A set X � M is a key set (or minimal generator) if X is minimal

(with respect to set inclusion) in [X]. The set of all key sets is denoted by K. �

We have H = fh(X) j X 2 Kg, because there is at least one key set in each

equivalence class of �. Hence it is suÆcient to compute the closures of all key sets.

In a sense the key sets are the �rst sets one reaches when traversing the powerset

P(M) level-wise:

Proposition 17 The set K is an order ideal of (P(M);�); i. e., Y 2 K and X � Y

implies X 2 K, for all X;Y �M .

Proof Let X � Y and X be a non-key set. Then there exists a minimal Z 2 [X]

with Z � X .5 From h(Z) = h(X) it follows that h(Y) = h(Y n (X n Z)). Hence Y
is not minimal in [Y] and thus by de�nition not a key set. �

The de�nition of an order ideal is equivalent to X=2K, X�Y) Y =2K, for

all X;Y � M . This allows to use a pruning strategy for determining the key

sets. Originally the strategy we are going to apply was presented in [AS94], but

only for a special case: as a heuristic for determining all frequent sets (which are,

in our terminology, all sets with weights above a user-de�ned threshold). We re-

call this strategy, and show that it can be applied to arbitrary order ideals of the

powerset of M :

De�nition 27 Let I be an order ideal of P(M). A candidate set for I is a subset
of M such that all its proper subsets are in I. �

The de�nition is justi�ed by the fact that all combinations of the candidate sets

can appear as (k+1)th level of an order ideal for which the �rst k levels are known.

This statement is the subject of the �rst part of the following lemma. The second

part states that non-candidate sets cannot appear at the (k + 1)th level.

5We use X � Y to say that X � Y and X 6= Y .

64 CHAPTER 4. CLOSURE SYSTEMS

Lemma 18 Let X � Pk(M), and let Y be the set of all candidate (k + 1)-sets for

the order ideal #X := fY 2P(M) j 9X2X :Y�Xg (i. e., the order ideal generated

by X).

1. For each subset Z of Y, there exists an order ideal I of P(M) with Ik = X
and Ik+1 = Z.

2. For each order ideal I of P(M) with Ik = X the inclusion Ik+1 � Y holds.

Proof 1. Let I := (#X) [Z . Let Y 2 I and X � Y . We have to show that

X 2 I. If Y 2 #X then X 2 #X � I because #X is an order ideal. If Y 2 Z then

X 2 #X � I by De�nition 27.

2. Suppose that there exists Y 2 Ik+1 n Y . As Y =2 Y , there exists X � Y with

jX j = k and X =2 Ik. Hence Y =2 Ik+1. Contradiction. �

The eÆcient generation of the set of all candidate sets for the next level is described

in the following proposition (! Algorithm 2). We assume thatM is linearly ordered,

e. g., M = f1; : : : ; ng.

Proposition 19 Let X � Pk�1(M). Let

eC := ffx1 < x2 < : : : < xkg j fx1; : : : ; xk�2; xk�1g; fx1; : : : ; xk�2; xkg 2 Xg ;

and

C :=
n
X 2 eC j 8x 2 X :X n fxg 2 X

o
:

Then C = fX 2 Pk(M) j X is candidate set for # Xg.

Proof The de�nition of C is equivalent to C := fx 2 eC j X is candidate set

for #Xg. Hence it remains to show that all candidate sets are included in eC . Let
Xx be a candidate set, and let X = fx1; : : : ; xkg with x1 < : : : < xk. Since

X is a candidate set, all its proper subsets are in #X | especially the two sets

fx1; : : : ; xk�2; xk�1g and fx1; : : : ; xk�2; xkg. Since they have cardinality k, they

are also in X . Hence X 2 I by de�nition of eC. �

This generation procedure was �rst used in the Apriori algorithm [AS94] for the

speci�c case of frequent itemsets.

Unlike in the Apriori algorithm, in our application the pruning of a set can-

not be determined by its properties alone, but properties of its subsets (i. e., their

weights) have to be taken into account as well. This causes an additional step in

the generation function (! Algorithm 2, step 5) compared to the version presented

in [AS94]. Based on this additional step, at each iteration the non-key sets among

the candidate sets are pruned (! Algorithm 1, step 8) by using the second part of

the following proposition.

Proposition 20 Let X �M .

1. Let m 2 X. Then X 2 [X n fmg] if and only if s(X) = s(X n fmg).

2. X is a key set if and only if s(X) 6= min fs(X n fmg) j m 2 Xg.

Proof 1. The \if" part follows from De�nition 23 (iii), the \only if" part from

De�nition 23 (ii).

2. From 1. we deduce that X is a key set if and only if s(X) 6= s(X n fmg), for
all m 2 X . Since s is a monotonous decreasing function, this is equivalent to 2. �

A candidate set X is hence pruned when s(X) = minfs(X n fmg) j m 2 Xg holds.

4.4. ICEBERG LATTICES AND TITANIC 65

Deriving weights from already known weights

If we reach a k-set which is known not to be a key set, then we already passed along

at least one of the key sets in its equivalence class in an earlier iteration. Hence we

already know its weight. Using the following proposition, we determine this weight

by using only weights already computed.

Proposition 21 If X is not a key set, then

s(X) = minfs(K) j K 2 K;K � Xg :

Proof \�": Let K be a key set with K�X and K � X . Then s(X) = s(K) �
minfs(K) j K 2 K;K � Xg.

\�": Suppose that there exists K 2 K with K � X and s(K) < s(X). Then

K 6� X by De�nition 23 (i). Contradiction. �

Hence it is suÆcient to compute the weights of the candidate sets only (by calling

a function depending on the speci�c application ! Algorithm 1, step 7). All other

weights can be derived from those weights.

Now we are able to put all pieces together and to turn them into an algorithm.

4.4.4 The TITANIC Algorithm

The pseudo-code is given in Algorithm 1. A list of notations is provided in Table 4.2.

Algorithm 1 Titanic

1) Weigh(f;g);
2) K0 f;g;
3) k 1;

4) forall m 2M do fmg:p s ;:s;
5) C ffmg j m 2Mg;
6) loop begin

7) Weigh(C);
8) forall X 2 Kk�1 do X:closure Closure(X);

9) Kk fX 2 C j X:s 6= X:p sg;
10) if Kk = ; then exit loop ;

11) k ++;

12) C Titanic-Gen(Kk�1);
13) end loop ;

14) return
Sk�1

i=0 fX:closure j X 2 Kig.

The algorithm starts with determining the weight of the empty set (step 1) and

stating that it is always a key set (step 2). Then all 1-sets are candidate sets by

de�nition (steps 4+5).

In later iterations, the candidate k-sets are determined by the function

Titanic-Gen (step 12 ; Algorithm 2) which is (except step 5) a straight-forward

implementation of Proposition 19. The result of step 5 of Algorithm 2 will be used

in step 9 of Algorithm 1 for pruning the non-key sets according to Proposition 20(2).

Once the candidate k-sets are determined, the function Weigh(X) is called to

compute, for each X 2 X , the weight of X and stores it in the variable X:s (step

7).

Remark. In the case of concept lattices, Weigh determines the weights (i. e.,

the supports) of all X 2 X with a single pass of the context (see Section 4.4.5).

66 CHAPTER 4. CLOSURE SYSTEMS

Table 4.2: Notations used in Titanic

k is the counter which indicates the current iteration. In the kth iteration, all

key k-sets are determined.

Kk contains after the kth iteration all key k-sets K together with their weight

K:s and their closure K:closure.

C stores the candidate k-sets C together with a counter C:p s which stores

the minimum of the weights of all (k� 1)-subsets of C. The counter is used
in step 9 to prune all non-key sets.

Algorithm 2 Titanic-Gen

Input: Kk�1, the set of key (k � 1)-sets K with their weight K:s.

Output: C, the set of candidate k-sets C
with the values C:p s := minfs(C n fmg j m 2 Cg.

The variables p s assigned to the sets fm1; : : : ;mkg which are generated in step 1

are initialized by fm1; : : : ;mkg:p s smax.

1) C ffm1 < m2 < : : : < mkg j fm1; : : : ;mk�2;mk�1g; fm1; : : : ;mk�2;mkg
2) forall X 2 C do begin eb 2 Kk�1g;
3) forall (k � 1)-subsets S of X do begin

4) if S =2 Kk�1 then begin C C n fXg; exit forall ; end;
5) X:p s min(X:p s; S:s);

6) end;

7) end;

8) return C.

This is the reason why we call the function Weigh for a set of sets instead of

calling it for each set separately. In general, computing the weights of di�erent sets

simultaneously may or may not be more eÆcient than doing it separately, depending

on the application.

For those sets which remained from the pruning (step 9) in the previous pass

(and which are now known to be key sets), their closures are computed (step 8

; Algorithm 3). The Closure function (Algorithm 3) is a straight-forward im-

plementation of Proposition 16 (steps 3{7) and Proposition 21 (step 5) plus an

additional optimization (step 2).

In step 9 of Algorithm 1, all candidate k-sets which are not key sets are pruned

according to Proposition 20 (2). Algorithm 1 terminates, if there are no key k-sets

left (step 10). Otherwise the next iteration begins (step 11).

The correctness of the algorithm is proved by the theorems in the previous

section. Examples for the algorithm are given in the next section.

4.4.5 Computing (Iceberg) Concept Lattices with TITANIC

In the sequel we will show that, for a given formal context, the support function

ful�lls the conditions of De�nition 23 for being compatible to the closure operator

h(X) := X
00 . Hence computing concept lattices is a typical application of the

problem. We will also discuss how to modify the closure operator such that the

problem description applies to iceberg concept lattices as well.

4.4. ICEBERG LATTICES AND TITANIC 67

Algorithm 3 Closure(X) for X 2 Kk�1

1) Y X ;

2) forall m 2 X do Y Y [(X n fmg):closure;
3) forall m 2M n Y do begin

4) if X [fmg 2 C then s (X [fmg):s
5) else s minfK:s j K 2 K; K � X [fmgg;
6) if s = X:s then Y Y [fmg
7) end;

8) return Y .

We demonstrate the Titanic algorithm by two examples: computing a con-

cept lattice, and computing an iceberg concept lattice. For other applications (for

instance those listed in Section 4.4.6), only the Weigh function has to be adapted.

Computation of Concept Lattices

In the following, we will use the closure operator B 7! B
00, for B � M . As said

before, it is a closure operator on M . The related closure system (i. e., the set of

all B � M with B
00 = B) is exactly the set of the intents of all concepts of the

context. The structure of the concept lattice is hence already determined by this

closure system. Therefore we restrict ourselves to the computation of the closure

system of all concept intents in the sequel. The computation makes extensive use

of the support function introduced in De�nition 22. We show �rst that the support

function ful�lls the conditions of De�nition 23:

Lemma 22 Let X;Y �M .

1. X � Y) supp(X) � supp(Y)

2. X
00 = Y

00) supp(X) = supp(Y)

3. X � Y ^ supp(X) = supp(Y)) X
00 = Y

00

Proof 1. Let X � Y . Then Y 0 � X
0 by Proposition 1, which implies

supp(Y) =
jY 0j

jGj
�
jX 0j

jGj
= supp(X).

2. X � Y () X
00 = Y

00 () X
000 = Y

000 () X
0 = Y

0)

s(X) =
jX 0j

jGj
=
jY 0j

jGj
= s(Y) :

3. supp(X) = supp(Y) implies jX 0j = jY 0j, and X � Y implies X 0 � Y
0. Hence

X
0 = Y

0, since X 0 and Y
0 are �nite. It follows X 00 = Y

00. �

Corollary 23 The support count is a weight function which is compatible with the

closure operator X 7! X
00
.

Thus we can use Titanic for computing concept lattices. In this special application,

we can bene�t from two optimizations:

1. In Algorithm 1, we can | in the case of (iceberg) concept lattices | replace

step 1 by

10) ;:s 1

since we know that supp(;) = 1. We avoid one call of the Weigh function.

68 CHAPTER 4. CLOSURE SYSTEMS

Algorithm 4 The Weigh algorithm for concept lattices

1) forall X 2 X do X:s 0;

2) forall g 2 G do

3) forall X 2 Subsets(g0;X) do X:s++;

4) forall X 2 X do X:s X:s
jGj

;

Mushroom 1
Mushroom 2
Mushroom 3
Mushroom 4
Mushroom 5
Mushroom 6
Mushroom 7
Mushroom 8
Mushroom 9
Mushroom 10

ed
ib

le
 (

e)
po

is
on

ou
s

(p
)

ca
p

sh
ap

e:
 c

on
ve

x
(c

)
ca

p
sh

ap
e:

 fl
at

 (
l)

ca
p

su
rf

ac
e:

 fi
br

ou
s

(i)

edible (e)

poisonous (p)cap shape: convex (c)

cap shape: flat (l)

cap surface: fibrous (i)

Mushroom 1

Mushroom 2 Mushroom 3
Mushroom 4Mushroom 5

Mushroom 6

Mushroom 7
Mushroom 8

Mushroom 9

Mushroom 10

Figure 4.9: Example for the Titanic algorithm

2. For concept lattices, Weigh determines the weights | that is, the supports

| of all X 2 X with a single pass over the context. This is (together with

the fact that only maxfjX j j X � M is candidate setg passes are needed)

the reason for the eÆciency of Titanic. The Weigh algorithm for concept

lattices is given in Algorithm 4. Subsets(Y;X) returns, for Y � M and

X � P(M), all X 2 X with Y � X . It uses a tree structure with hash tables

(as described in [PBTL98]) to eÆciently encode X .

Example 5 For explaining how Titanic works, we will use the mushroom example

again, but will reduce it to the �rst ten objects, and to the �rst �ve attributes (see

Figure 4.9).

In the �rst pass, the algorithm deals with the empty set and all 1-sets. It returns

the results for k = 0 and k = 1:

k = 0:

step 1 step 2

X X:s X 2 Kk?

; 1 yes

k = 1:

4.4. ICEBERG LATTICES AND TITANIC 69

steps 4+5 step 7 step 9

X X:p s X:s X 2 Kk?

feg 1 6=10 yes

fpg 1 4=10 yes

fcg 1 4=10 yes

flg 1 6=10 yes

fig 1 7=10 yes

Step 8 returns: ;:closure ;

Then the algorithm repeats the loop for k = 2; 3, and 4:

k = 2:

step 12 step 7 step 9

X X:p s X:s X 2 Kk?

fe; pg 4=10 0 yes

fe; cg 4=10 4=10 no

fe; lg 6=10 2=10 yes

fe; ig 6=10 4=10 yes

fp; cg 4=10 0 yes

fp; lg 4=10 4=10 no

fp; ig 4=10 3=10 yes

fc; lg 4=10 0 yes

fc; ig 4=10 2=10 yes

fl; ig 6=10 5=10 yes

Step 8 returns: feg:closure feg
fpg:closure fp; lg
fcg:closure fc; eg
flg:closure flg
fig:closure fig

k = 3:

step 12 step 7 step 9

X X:p s X:s X 2 Kk?

fe; l; ig 2=10 2=10 no

fp; c; ig 4=10 0 yes

fc; l; ig 4=10 0 yes

Step 8 returns: fe; pg:closure fe; p; c; l; ig
fe; lg:closure fe; l; ig
fe; ig:closure fe; ig
fp; cg:closure fe; p; c; l; ig
fp; ig:closure fp; l; ig
fc; lg:closure fe; p; c; l; ig
fc; ig:closure fe; c; ig
fl; ig:closure fl; ig

k = 4:

Step 12 returns the empty

set. Hence there is nothing

to weigh in step 7. Step 9

sets K4 equal to the empty

set; and in step 10, the loop

is exited.

Step 8 returns: fp; c; ig:closure fe; p; c; l; ig
fc; l; ig:closure fe; p; c; l; ig

Finally the algorithm collects all concept intents (step 14):

;, feg, fp; lg, fc; eg, flg, fig, fe; p; c; l; ig,
fe; l; ig, fe; ig, fp; l; ig, fe; c; ig, fl; ig

(which are exactly the intents of the concepts of the concept lattice in Figure 4.9).

The algorithm determined the support of 5 + 10 + 3 = 18 attribute sets in three

passes of the database.

70 CHAPTER 4. CLOSURE SYSTEMS

Algorithm 5 Titanic improved for iceberg concept lattices

1) ;:s 1;

2) K0 f;g;
3) k 1;

4) forall m 2M do fmg:p s ;:s;
5) C ffmg j m 2Mg;
6) loop begin

7) Weigh(C);
8) forall X 2 Kk�1 do X:closure Closure(X);

9) Kk fX 2 C j X:s 6= X:p sg;
10) if fX 2 Kk j X:s 6= �1g = ; then exit loop ;

11) k ++;

12) C Titanic-Gen(Kk�1);
13) end loop ;

14) return
Sk�1
i=0 fX:closure j X 2 Ki; X:s 6= �1g.

Equipping Titanic for Iceberg Concept Lattices

The structure of an iceberg concept lattice is determined by the semi-lattice of its

frequent intents. If we add the setM (which is not frequent in general) to the set of

frequent intents, it becomes a closure system. The next lemma presents its closure

operator.

Lemma 24 Let K := (G;M; I) be a context, and let minsupp 2 [0; 1]. The set

F := fB � M j (A;B) 2 B(K); supp(B) � minsuppg [fMg is a closure system

on M . Its closure operator is given by h(X) := X
00
if supp(X) � minsupp and

h(X) :=M else. The weight function s(X) := supp(X) if supp(X) � minsupp and

s(X) := �1 else is compatible with the closure operator.

Proof eF := fB � M j supp(B) � minsuppg [fMg is a closure system, since it

is closed under arbitrary intersections. Int(K) := fB � M j (A;B) 2 B(K)g is

a closure system as shown in Section 4.1.3. Hence F is | as intersection of the

two closure systems eF and Int(K) | also a closure system. Verifying that h is the

related closure operator and that s is compatible is straightforward. �

The lemma shows that the Titanic algorithm as presented in Section 4.4.4 can

directly be applied to iceberg concept lattices. However we can bene�t from the

fact that weight �1 indicates that the closure of the set is the whole set M . In this

case we can improve the algorithm. The improved version is discussed now.

Algorithm 5 di�ers from Algorithm 1 in steps 1, 10, and 14; Algorithm 6 di�ers

from Algorithm 2 in steps 1 and 4; and Algorithm 7 is extending Algorithm 3 by

step 1. We discuss these di�erences step by step:

� Algorithm 5, step 1: See the remark about the �rst optimization in Sec-

tion 4.4.5.

� Algorithm 5, step 10: The loop can be exited when no or only infrequent key

sets remain, as they are not used for generating candidate sets in the next

iteration (see Algorithm 6, step 1)

� Algorithm 5, step 14: The algorithm returns only frequent intents, i. e. only

closures of frequent key sets.

4.4. ICEBERG LATTICES AND TITANIC 71

Algorithm 6 Titanic-Gen for iceberg concept lattices

Input: Kk�1, the set of key (k � 1)-sets K with their support K:s.

Output: C, the set of candidate k-sets C with the values

C:p s := minfs(C n fmg j m 2 Cg.

The variables p s assigned to the sets fm1; : : : ;mkg which are generated in step 1

are initialized by fm1; : : : ;mkg:p s 1.

1) C ffm1 < m2 < : : : < mk�1 < mkg j fm1; : : : ;mk�2;mk�1g;
fm1; : : : ;mk�2;mkg 2 fK 2 Kk�1 j K:s 6= �1gg;

2) forall X 2 C do begin
3) forall (k � 1)-subsets S of X do begin

4) if S =2 Kk�1 or S:s = �1 then begin C C n fXg; exit forall ; end;
5) X:p s min(X:p s; S:s);

6) end;

7) end;

8) return C.

Algorithm 7 Closure for iceberg concept lattices

1) if X:s = �1 then return M ;

2) Y X ;

3) forall m 2 X do Y Y [(X n fmg):closure;
4) forall m 2M n Y do begin

5) if X [fmg 2 C then s (X [fmg):s
6) else s minfK:s j K 2 K; K � X [fmgg;
7) if s = X:s then Y Y [fmg
8) end;

9) return Y .

� Algorithm 6, step 1: Only frequent key sets are used to construct new candi-

date sets. See next item.

� Algorithm 6, step 4: S is a candidate set only if all (k � 1)-subsets of S are

frequent key sets, because sets containing an infrequent key set are known not

to be key sets.

� Algorithm 7, step 1: If the weight of a set is �1, its closure must be M by

Lemma 24.

As before, the function Weigh(X) determines, in one pass of the context, for each

X 2 X the support of X and stores it in the variable X:s. If s(X) < minsupp, then

Weigh returns X:s �1.

Example 6 Although Titanic only needs three passes of the database to compute

the iceberg lattice in Figure 4.4 (and four passes for the one in Figure 4.6), we

decided not to use it as example for explaining the mechanism of Titanic for

iceberg lattices. The reason is, that at the �rst pass the algorithm has to handle

80 candidate itemsets of size one. Of course, this is no problem in praxis, but is

too large for demonstration purposes. Therefore we reuse the context in Figure 4.9,

and show the computation of its iceberg concept lattice for minsupp = 30%.

In the �rst pass, the algorithm deals with the empty set and all 1-sets. It returns

the results for k = 0 and k = 1. As no infrequent sets are considered here, the results

are exactly the same as in Example 5:

72 CHAPTER 4. CLOSURE SYSTEMS

k = 0:

step 1 step 2

X X:s X 2 Kk?

; 1 yes

k = 1:

steps 4+5 step 7 step 9

X X:p s X:s X 2 Kk?

feg 1 6=10 yes

fpg 1 4=10 yes

fcg 1 4=10 yes

flg 1 6=10 yes

fig 1 7=10 yes

Step 8 returns: ;:closure ;

Then the algorithm repeats the loop for k = 2. Here, the �rst infrequent sets are

reached:

k = 2:

step 12 step 7 step 9

X X:p s X:s X 2 Kk?

fe; pg 4=10 �1 yes

fe; cg 4=10 4=10 no

fe; lg 6=10 �1 yes

fe; ig 6=10 4=10 yes

fp; cg 4=10 �1 yes

fp; lg 4=10 4=10 no

fp; ig 4=10 3=10 yes

fc; lg 4=10 �1 yes

fc; ig 4=10 �1 yes

fl; ig 6=10 5=10 yes

Step 8 returns: feg:closure feg
fpg:closure fp; lg
fcg:closure fc; eg
flg:closure flg
fig:closure fig

Remark. As the weight of the key sets fe; pg, fe; lg, fc; lg, and fc; ig is �1, we
know that these sets are infrequent (with respect to our minimum support threshold

of 30%). In the corresponding closure system, they will hence generate the whole

set M . These infrequent key sets are important if we want to provide a basis for

association rules. See [STBPL01] for details. If our aim is conceptual clustering,

we can neglect these infrequent key sets and can improve the performance of the

algorithm by modifying step 9 in Algorithm 5 to

90) Kk fX 2 C j X:s 6= X:p s and X:s 6= 1g :

This would yield `yes' instead of `no' in the last column for the �ve sets mentioned

above.

k = 3:

Step 12 returns the empty

set (because of the condition

K:s 6= �1 in step 1 of Al-

gorithm 2). Hence there is

nothing to weigh in step 7.

Step 9 sets K3 equal to the

empty set; and in step 10, the

loop is exited.

Step 8 returns: fe; pg:closure M

fe; lg:closure M

fe; ig:closure fe; ig
fp; cg:closure M

fp; ig:closure fp; l; ig
fc; lg:closure M

fc; ig:closure M

fl; ig:closure fl; ig

4.4. ICEBERG LATTICES AND TITANIC 73

Finally the algorithm collects all frequent concept intents (step 14):

;, feg, fp; lg, fc; eg, flg, fig, fe; ig, fp; l; ig, fl; ig

The resulting concept iceberg lattice is shown in Figure 4.10.

100%

60%

30%

poisonous

cap shape: flatedible

40% 50%

60%

cap surface: fibrous

40%
30%

cap shape: convex
60%

Figure 4.10: Iceberg concept lattice for the context in Figure 4.9 for minsupp = 30%

4.4.6 Some Typical Applications

In Section 4.4.1, we have already discussed the use of (iceberg) concept lattices for

knowledge discovery and conceptual clustering. Here we present two examples, in

which iceberg concept lattices have been applied:

Database marketing. The purpose of database marketing is the study of cus-

tomers and their buying behavior in order to create and validate marketing strate-

gies. In [HSWW00], the use of iceberg concept lattices for database marketing in

a Swiss department store is discussed in more detail. In that scenario, the ob-

ject set G consists of all customers of the warehouse paying by credit card, and

the attribute set M consists of attributes describing the customers (e. g., `lives in

Western Switzerland') and their buying behavior (e. g., `has spent more than 1000

Swiss francs in the last year'). For a given set X of attributes, the weight function

returns the number of customers ful�lling all attributes in X . By decreasing the

minimum support, one can study the customer clusters in more and more detail. In

Figure 4.11, for instance, the customers of the warehouse are clustered according to

their year of birth. The minimum support threshold is set to 0.3, i. e., all concepts

whose extents do not comprise at least 30% of all customers, are pruned.

Another situation where a weight function arises naturally in the computation

of a closure system is the following. This scenario is more diÆcult to state in terms

of a formal context:

Discovery of functional dependencies. One important task of logical database

tuning is the discovery of minimal functional dependencies from database relations

[HKPT99, LPL00]. This is equivalent to computing a closure system on the set M

of all database attributes. The closed sets are just those which are closed under all

functional dependencies which hold in the database. Titanic can be applied for

this computation, using as weight of a given attribute set X the minimal number

of rows which have to be deleted from the database such that X is closed under

all functional dependencies which are valid for the remaining rows. This weight

function is derived from the g3 measure introduced in [KM95]. For this application,

all `min' in this section have to be replaced by `max' (refer to Remark 2).

74 CHAPTER 4. CLOSURE SYSTEMS

since 1924until 1973

since 1934

since 1944

until 1963
unknown

100,00

47,7546,04

44,3944,77

37,01

35,23

33,97 41,41

34 0330 61

50,98

Figure 4.11: Iceberg concept lattice for customers clustered by their year of birth.

4.4.7 Complexity

There are several algorithms known for computing concept lattices: [MiS89], [GR91],

[GM94], [NR99], [PBTL99a], [PBTL99b], and [PHM00]. The most eÆcient algo-

rithm for practical applications to the best of our knowledge is Ganter's Next-

Closure algorithm [GR91]; the algorithm with the best worst-case complexity is the

In this section, we will compare Titanic with Next Closure (Section 4.3) and an

algorithm from Nourine and Raynaud [NR99], which substantiates in an eÆcient

way the approach described in Section 2.3.1.

As shown in Section 4.3.4, the problem of computing concept lattices has expo-

nential worst-case complexity. However, for practical purposes, it is interesting to

examine the situation in more detail. In the sequel, we assume that jM j � jGj.
The Next Closure algorithm computes the concepts sequentially. In Section 4.3.5

is shown that the complexity for computing one concept is in O(jGj � jM j2), so that
the overall complexity could be stated as O(jB(K)j � (jGj � jM j2)). For each concept,
the context has to be accessed. If we consider additionally the access time db of the

formal context (which can be signi�cantly large when the context is too large to be

stored in main memory!), we obtain O(jB(K)j � (db+ jGj � jM j2)).
The algorithm of Nourine and Raynaud also computes the concepts sequentially.

For each concept, the algorithm needs time O((jM j + jGj) � jGj), thus improving
Ganter's worst-case complexity. Both algorithms need to access the context for

each concept to be computed: If we add the access time db of the formal context to

Nourine and Raynaud's algorithm, it is in O(jB(K)j �(db+(jM j+ jGj) � jGj)). On the
other hand, Nourine and Raynaud's algorithm needs exponential space, since the

whole lattice must be stored during run-time; while Next-Closure needs the context

only, and has thus linear space complexity.

Both algorithms have di�erent bene�ts. While Next-Closure needs only linear

space, Nourine and Raynaud's algorithm provides the best worst-case complexity

known so far. On the other hand, Next-Closure can be easily adapted to eÆciently

compute iceberg lattices, while the structure of Nourine and Raynaud's algorithm

prohibits this. Furthermore, for the latter algorithm, the need to access the results

computed so far makes it impractical for very large databases (contexts). Therefore,

we will compareTitanic in the experimental evaluation with Ganter's Next-Closure

algorithm only.

From a complexity point of view, Titanic is in between those two algorithms.

Its worst-case space complexity is reached, when all
j
jMj

2

k
-sets are candidate sets.

Then all these
jM jj
jMj

2

k !
=
jM j � : : : �

�j
jMj

2

k
+ 1
�

l
jM j

2

m
� : : : � 1

sets have to be stored. This is the widest level of the powerset of jM j, and its width

4.5. EXERCISES 75

grows exponentially relatively to jM j.
Titanic's time complexity can be determined as follows: The algorithm accesses

the context as often as the size L of the largest candidate set is. This size is

bounded by jM j, the height of the powerset of M . At each access, the algorithm

considers a number of candidate sets. Let N be the maximal number of candidate

sets considered at one of the accesses of the context. Then the time complexity is

O(L � (db+N � jGj � jM j)). By using the upper limits for L and N , we obtain

O

jM j �

db+

jM jj
jMj

2

k !
� jGj � jM j

!!
:

We see that the number of accesses of the context is at most jM j (rather than 2jMj

as for the other two algorithms), which is especially important, when the context is

so large that it doesn't �t into main memory. In that case, db can be a signi�cant

(or even the dominant) time factor.

The results showTitanic's worst-case complexity. In praxis the values for L and

N are usually much lower. Especially for N (which contributes the exponentiality),

the upper limit is, in the average case for computing iceberg concept lattices, the

number of 2-itemsets, which is at most�
jM j
2

�
=
jM j � (jM j � 1)

2
:

4.5 Exercises

1. Give a proof of Lemma 10.

2. Give a proof of Theorem 11.

3. LetM be a set. Show that the set C := fC � P(M) j (C) is a closure system on Mg
is a closure system on P(M).

4.6 Bibliographic Notes

||{(to be written)||{

There are several algorithms known for computing concept lattices: [MiS89],

[GR91], [GM94], [YLBC96], [NR99], [PBTL99a], [PBTL99b], and [PHM00]. The

most eÆcient algorithm for practical applications to the best of our knowledge is

Ganter's Next-Closure algorithm [GR91]; the algorithm with the best worst-case

complexity is the one from Nourine and Raynaud presented in [NR99]. The latter

one substantiates in an eÆcient way the approach proposed by R. Wille [Wi82],

which we presented in Section 2.3.1.

The way of computing concept lattices with Titanic follows a data mining

viewpoint by using a level-wise approach [AS94, MT97]. Titanic was presented in

[1], where also an experimental evaluation of its performance is discussed. Concep-

tual Clustering techniques were introduced �rst in [Mi80], see also [WMJ00]. FCA

was considered as a framework for conceptual clustering from the early 1990ies on

[StrW93, CR93, MG95].

FCA has been used as a formal framework for implication and association rules

discovery and reduction [PBTL99a, STBPL01] and for improving the response times

of algorithms for mining association rules [PBTL99b, PBTL99a]. The interaction

of FCA and KDD in general has been discussed in [SWW98] and [HSWW00].

