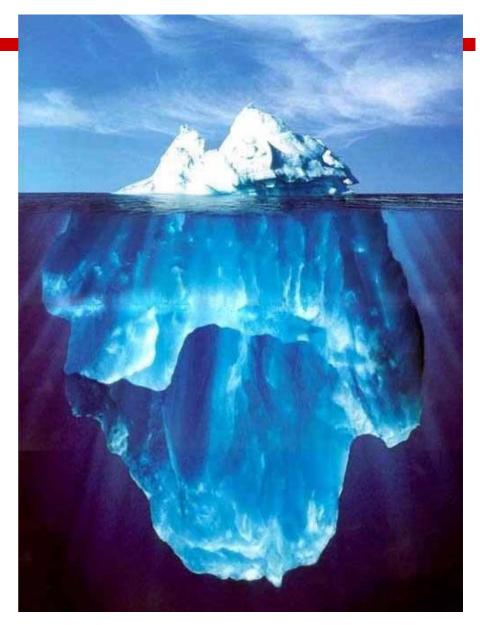
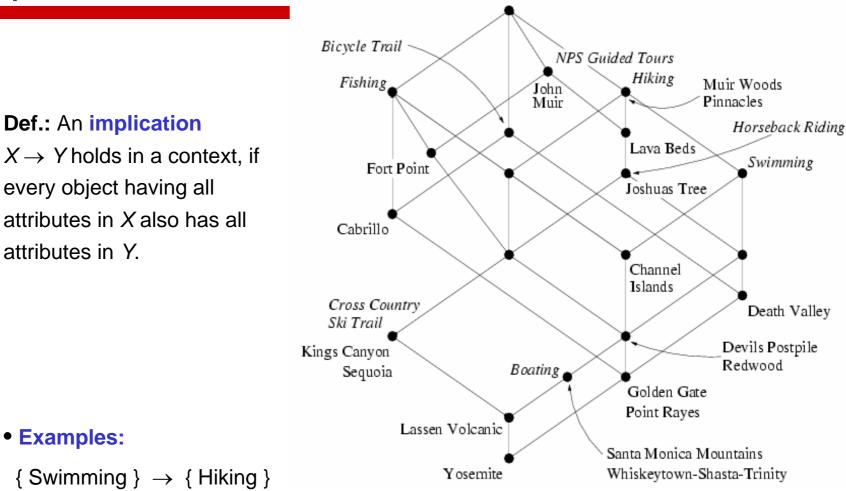
Formal Concept Analysis

2 Closure Systems and Implications

5 Implications



Implications



{ Boating } \rightarrow { Swimming, Hiking, NPS Guided Tours, Fishing }

{ Bicycle Trail, NPS Guided Tours } \rightarrow { Swimming, Hiking }

Independency

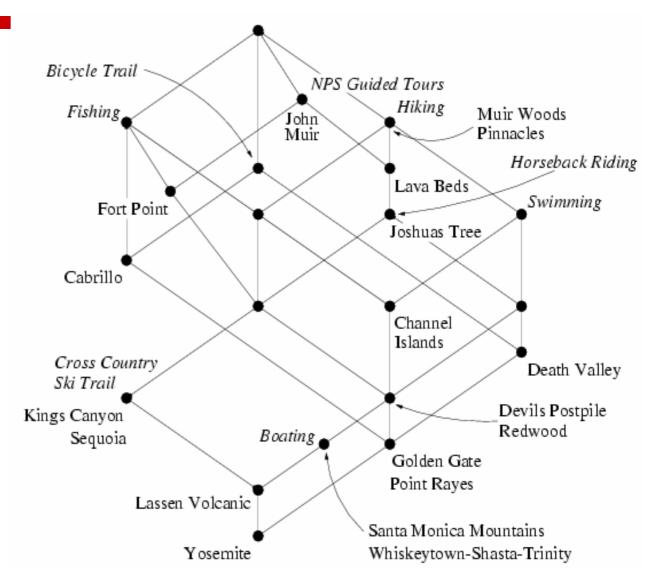
Def.: Let $X \subseteq M$. The attributes in X are **independent**, if there are no trivial dependencies between them.

Example:

• Fishing

- Bicycle Trail
- Swimming

are independent attributes.



Independency

Lemma: Attributes are independent if they span a hypercube.

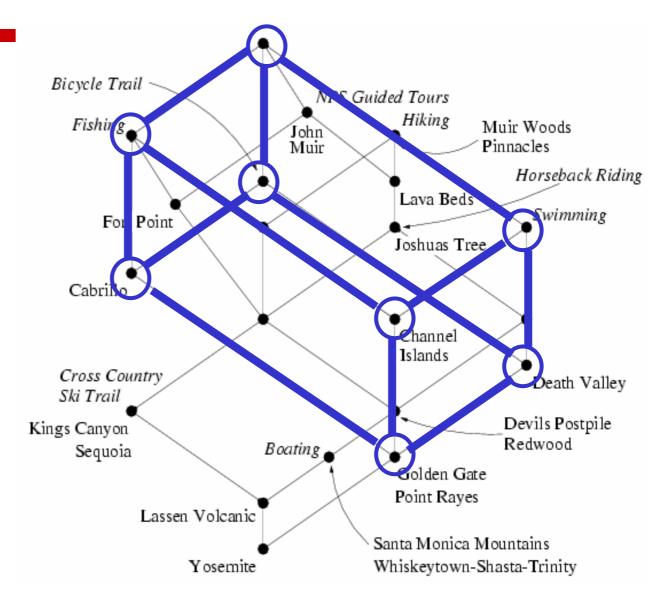
Example:

• Fishing

• Bicycle Trail

• Swimming

are independent attributes.



Concept Intents and Implications

Def.: A subset $T \subseteq M$ respects an implication $A \rightarrow B$, if $A \subseteq T$ or $B \subseteq T$.

T respects a set \pounds of implications, if *T* respects every single implication in \pounds .

Lemma: An implication $A \rightarrow B$ holds in a context iff $B \subseteq A^{"}$. It is then respected by all concept intents.

Lemma: Is \pounds a set of implications in *M*, then

 $\mathcal{H}(\mathcal{L}) := \{ X \subseteq M \mid X \text{ respects } \mathcal{L} \}$

is a closure system.

The related closure operator is constructed as follows: For a set $X \subseteq M$ let

$$X^{\,\&} := X \cup \bigcup \{ B \mid A \to B \in \mathcal{L}, A \subseteq X \}.$$

Compute X^{ℓ} , $X^{\ell \ell}$, $X^{\ell \ell \ell}$, ..., until a set

$$\pounds(X) := X^{\pounds_{\dots}\, \pounds}$$

with $\mathcal{L}(X)^{\mathcal{L}} = \mathcal{L}(X)$ (i.e., a fix point) is reached. (for infinite contexts this may be an infinite process). $\mathcal{L}(X)$ ist then the closure of X with respect to the closure system $\mathcal{H}(\mathcal{L})$.

Bem.: Dies ist der Algorithmus AttrHülle der Datenbankvorlesung!

Def.: An implication $A \to B$ is (semantically) entailed from a set \pounds of implications, if every subset of *M* respecting \pounds also respects $A \to B$. A family \pounds of implications ist called **closed** if every implication entailed from \pounds is already contained in \pounds .

Lemma: A set & of implications on M is closed iff the following conditions (Amstrong rules) are fulfilled for all $W, X, Y, Z \subseteq M$:

1. $X \to X \in \mathcal{L}$, 2. If $X \to Y \in \mathcal{L}$, then $X \cup Z \to Y \in \mathcal{L}$, 3. If $X \to Y \in \mathcal{L}$ and $Y \cup Z \to W \in \mathcal{L}$, then $X \cup Z \to W \in \mathcal{L}$.

Bem.: Auch diese Regeln sollten einem aus der Datenbankvorlesung bekannt vorkommen!

Def.: A set &led of implications of a context (G, M, I) is called **complete**, if every implication of (G, M, I) is entailed from &led.

A set \pounds of implications is called **non-redundant**, if no implication is entailed from the others.

Def.: $P \subseteq M$ is called **pseudo intent** of (G, M, I) if $P \neq P$ " and for every pseudo intent $Q \subseteq P$ with $Q \neq P$ holds $Q^{*} \subseteq P$.

Theorem: The set of implications

 $\mathcal{L} := \{ P \rightarrow P^{*} \mid P \text{ Pseudoinhalt } \}$

is non-redundant and complete. We call \pounds stem basis.

Example: Membership of developing countries in supranational groups (Source: Lexikon Dritte Welt. Rowohlt-Verlag, Reinbek 1993)

Taken from: B. Ganter, R. Wille: Formal Concept Analysis -Mathematical Foundations. Springer, Heidelberg 1999

	Group of 77	Non-aligned	LLDC	MSAC	OPEC	ACP
Afghanistan	×	×	×	×		
Algeria	×	×			×	
Angola	×	×				×
Antigua and Barbuda	×					×
Argentina	×					
Bahamas	×					×
Bahrain	×	×				
Bangladesh	х	×	×	×		
Barbados	×	×				×
Belize	×	×				×
Benin	х	×	×	×		×
Bhutan	×	×	×			
Bolivia	х	х				
Botswana	×	×	×			×
Brazil	×					
Brunei						
Burkina Faso	х	×	×	×		×
Burundi	×	×	×	×		×
Cambodia	х	×		×		
Cameroon	х	×		×		×
Cape Verde	×	×	×	×		×
Central African Rep.	х	×	×	×		×
Chad	х	×	×	×		×
Chile	х					
China						
Colombia	×	×				
Comoros	×	х	×			×
Congo	×	×				×
Costa Rica	×					
Cuba	×	×				
Djibouti	×	×	×			×
Dominica	×	×				×
Dominican Rep.	×					×
				-		-

				_	_	_
	Group of 77	Non-aligned	LLDC	MSAC	OPEC	ACP
Ecuador	×	×			х	
Egypt	×	×		×		
El Salvador	×			×		
Equatorial Guinea	×	×	×			×
Ethiopia	×	×	×	×		×
Fiji	×					×
Gabon	×	×			×	×
Gambia	×	×	×	×		×
Ghana	\times	×	×	×		×
Grenada	×	×				×
Guatemala	×			×		
Guinea	×	×	×	×		×
Guinea-Bissau	×	×	×	×		×
Guyana	×	×		×		×
Haiti	×		×	×		×
Honduras	×			×		
Hong Kong						
India	×	×		×		
Indonesia	×	×			×	
Iran	×	×			×	
Iraq	×	×			×	
Ivory Coast	×	×		×		×
Jamaica	×	×				×
Jordan	×	×				
Kenya	×	×		×		×
Kiribati			×			×
Korea-North	×	×	×			
Korea-South	×					
Kuwait	×	×			×	
Laos	×	×	×	×		
Lebanon	×	×				
Lesotho	×	×	×	×		×
Liberia	×	х				×

	Group of 77	Non-aligned	LLDC	MSAC	OPEC	ACP	
Libya	×	×			×		Senegal
Madagascar	×	×	×	×		×	Seychelles
Malawi	×	×	×			×	Sierra Leone
Malaysia	×	×					Singapore
Maledives	×	×	×			Π	Solomon Islands
Mali	×	×	×	×		×	Somalia
Mauretania	×	×	×	×		×	Sri Lanka
Mauritius	×	×				×	St Kitts
Mexico	×						St Lucia
Mongolia			×				St Vincent& Grenad
Morocco	×	×				Π	Sudan
Mozambique	×	×		×		×	Surinam
Myanmar	×		×	×			Swaziland
Namibia	×					×	Syria
Nauru						Π	Taiwan
Nepal	×	×	×	×			Tanzania
Nicaragua	×	×					Thailand
Niger	×	×	×	×		×	Togo
Nigeria	×	×			×	×	Tonga
Oman	×	×					Trinidad and Tobago
Pakistan	×	×		×		Π	Tunisia
Panama	×	×					Tuvalu
Papua New Guinea	×					×	Uganda
Paraguay	×					Π	United Arab Emirate
Peru	×	×					Uruguay
Philippines	×						Vanuatu
Qatar	×	×			×	Π	Venezuela
Réunion							Vietnam
Rwanda	×	×	×	×		×	Yemen
Samoa	×		×	×		×	Zaire
São Tomé e Principe	×	×	×			×	Zambia
Saudi Arabia	×	×			×	Π	Zimbabwe

The abbreviations stand for: LLDC := Least Developed Countries, MSAC :=Most Seriously Affected Countries, OPEC := Organization of Petrol Exporting Countries, ACP := African, Caribbean and Pacific Countries.

×

×

Ы

Group

× х × $\times |\times |\times |\times$ ×× × $\times | \times | \times | \times$ ××

× × × ×××× × × ×× XX

 $\times | \times | \times | \times$ × $\times |\times| \times$ × XX ××

 $\times \times \times \times$

××

 $\times \times \times$ XXXX ××× ×х l×

× × × × × ×

×

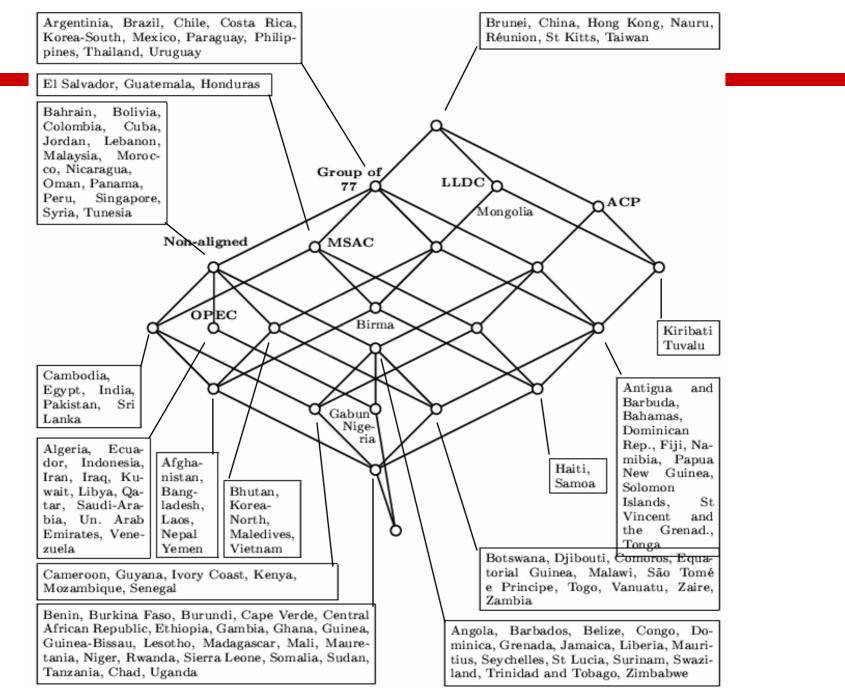
×

×

×

×

×



Stem basis of the 3rd World context:

- $\{ OPEC \} \rightarrow \{ Group of 77, Non-Alligned \}$
- $\{MSAC\} \rightarrow \{Group of 77\}$
- { Non-Alligned } \rightarrow { Group of 77 }
- { Group of 77, Non-Alligned, MSAC, OPEC } \rightarrow { LLDC, AKP }
- { Group of 77, Non-Alligned, LLDC, OPEC } \rightarrow { MSAC, AKP }

is based on the following theorem:

Theorem: The set of all intents and pseudo-intents is a closure system. Its corresponding closure operator is given as follows:

Starting from set *X* we compute successively

$$X^{\mathcal{I}^{\star}} := X \cup \bigcup \{ B \mid A \to B \in \mathcal{I}, A \subseteq X, A \neq X \}$$

$$X^{\mathcal{I}^{\star}\mathcal{I}^{\star}} := X^{\mathcal{I}^{\star}} \cup \bigcup \{ B \mid A \to B \in \mathcal{I}, A \subseteq X^{\mathcal{I}^{\star}}, A \neq X^{\mathcal{I}^{\star}} \}$$

etc, until a set $\ell^*(X)$ with $\ell^*(X) = \ell^*(\ell^*(X))$ is reached. This is then the desired intent or pseudo-intent.

The first part of the theorem is proven by using the following lemma:

Lemma: If P and Q are concept intents or pseudo-intents with $P \neq Q$, $P \not\subset Q$, and $Q \not\subset P$, then $P \cap Q$ is a concept intent.

Proof: P and Q, and therefore also $P \cap Q$, respect all implications in $\mathscr{L} \setminus \{P \to P^{"}, Q \to Q^{"}\}$. If $P \neq P \cap Q \neq Q$, then $P \cap Q$ respects these implications, too, and is hence a concept intent.

Algorithm **Next-Closure** for computing all concept intents and the stem basis:

0) The set \pounds of all implications is set to the empty set.

1) The lectically first intent or pseudo-intent is \emptyset .

2) Is A determined to be intent or pseudo-intent, then the lectically next intent/pseudo-intent is computed by checking all $i \in M \setminus A$ in decreasing order until $A <_i \mathcal{L}^*(A \bullet i)$ holds.

 $\mathcal{L}^*(A \bullet i)$ is then the next intent or pseudo-intent.

3) If $\ell^*(A \oplus i) = (\ell^*(A \bullet i))^{\prime\prime}$, then $\ell^*(A \bullet i)$ is a concept intent, else it is a pseudointent, and the implication $\ell^*(A \bullet i) \rightarrow (\ell^*(A \bullet i))^{\prime\prime}$ is added to ℓ .

4) If $\mathcal{L}^*(A \bullet i) = M$, then stop, else $A \leftarrow \mathcal{L}^*(A \bullet i)$ and continue at 2).

Exar	mple:	on blackb	ooard				
Α	i	A∙i	£*(A • i)	A < _i <i>⊥</i> *(A • i)?	(ℓ*(A • i)"	L	intents
						20.0	06.2005 16

Association Rules

{ veil color: white, gill spacing: close } \rightarrow { gill attachment: free } Support: 78,52 % Confidence: 99,6 %

The input data of association rules algorithms can be written as a formal context (G, M, I):

- *M* is a set of items,
- G consists of the transaction IDs,
- and the relation / is the list of transactions.

Association Rules

{ veil color: white, gill spacing: close } \rightarrow { gill attachment: free } Support: 78,52 % Confidence: 99,6 %

The **support** is the percentage of all objects having all attributes in premise and conclusion:

Def.: The support of an attribute set $X \subseteq M$ is given by $\operatorname{supp}(X) = \frac{|X|}{|G|}$

The support of an association rule $X \rightarrow Y$ is given by supp $(X \rightarrow Y) := \text{supp} (X \cup Y)$.

The **confidence** is the percentage of all objects fulfilling the premise among all objects fulfilling both premise and conclusion.

Def.: The confidence of a rule $X \to Y$ is given by $\operatorname{conf}(X \to Y) = \frac{\operatorname{supp}(X \cup Y)}{\operatorname{supp}(X)}$

Bases of Association Rules

{ veil color: white, gill spacing: close } \rightarrow { gill attachment: free } Support: 78,52 % Confidence: 99,6 %

Classical Data Mining Task: Find, for given minsupp, minconf \in [0,1], all rules with support and confidence above these thresholds

Our task: Find a **basis** of rules, i.e., a minimal set of rules out of which all other rules can be derived.

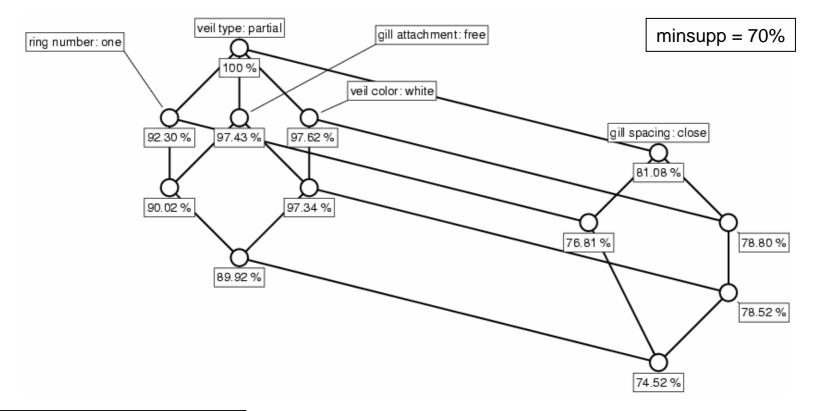
• From B' = B''' follows

$$\operatorname{supp}(B) = \frac{|B^{\uparrow}|}{|G|} = \frac{|B^{\prime\prime}|}{|G|} = \operatorname{supp}(B^{\prime})$$

Theorem: $X \to Y$ and $X' \to Y'$ have the same support and the same confidence.

Hence for computing association rules, it is sufficient to compute the supports of all frequent sets with B = B' (i.e., the intents of the iceberg concept lattice).

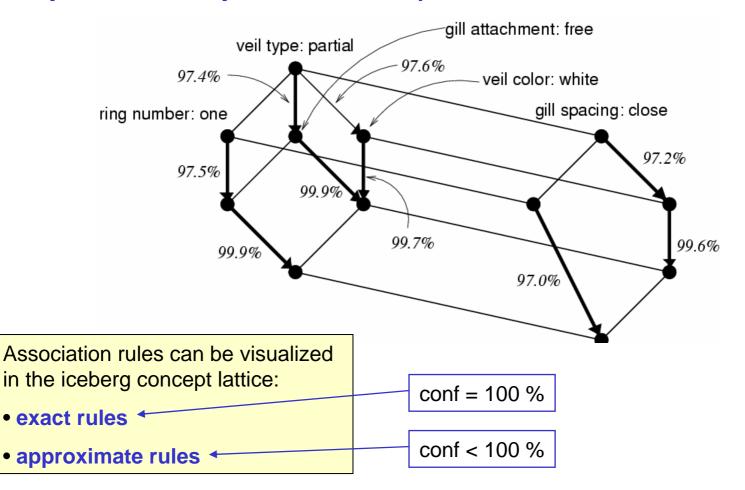
Advantage of the use of iceberg concept lattices (compared to frequent itemsets)



32 frequent itemsets are represented by 12 frequent concept intents

- \rightarrow more efficient computation (e.g. TITANIC)
- \rightarrow fewer rules (without information loss!)

Advantage of the use of iceberg concept lattices (compared to frequent itemsets)

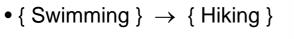


Exact Association Rules

can be derived from the stem basis In concept lattices, they can be dire

• Lemma: An implication $X \rightarrow Y$ he all concepts generated by the attributes in *Y*.

• Examples:



 $(supp=10/19 \approx 52.6\%, conf = 100\%)$

- Bicycle Trail NPS Guided Tours Hiking Fishing Muir Woods John **P**innacles Muir Horseback Riding Lava Beds Swimming Fort Point Joshuas Tree Cabrillo Channel Islands Cross Country Death Valley Ski Trail Devils Postpile Kings Canyon Redwood Boating Sequoia Golden Gate Point Rayes Lassen Volcanic Santa Monica Mountains Yosemite Whiskeytown-Shasta-Trinity
- { Boating } → { Swimming, Hiking, NPS Guided Tours, Fishing } (supp=4/19 ≈ 21.0%, conf = 100%)
- { Bicycle Trail, NPS Guided Tours } → { Swimming, Hiking } (supp=4/19 ≈ 21.0%, conf = 100%)

Approximate Association Rules

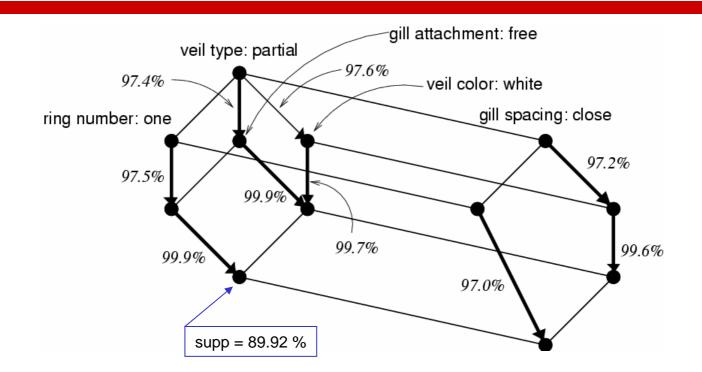
Def.: The Luxenburger basis consists of all valid association rules $X \rightarrow Y$ such that there are concepts (A_1, B_1) and (A_2, B_2) where (A_1, B_1) is a direct upper neighbor of (A_2, B_2) , $X = B_1$, and $X \cup Y = B_2$.



Each arrow indicates a rule of the basis, e.g. the rightmost arrow stands for { veil type: partial, gill spacing: close, veil color: white } \rightarrow { gill attachment: free } (conf = 99.6 %, supp = 78.52 %) **Theorem:** From the Luxenburger-Basis all approximate rules (incl. support und confidence) can be derived with the following rules:

- $\phi(X \rightarrow Y) = (X \rightarrow Y \setminus Z)$, für $\phi \in \{ \text{ conf, supp } \}, Z \subseteq X$
- $\phi(X'' \rightarrow Y'') = \phi(X \rightarrow Y)$
- $conf(X \rightarrow X) = 1$
- $conf(X \rightarrow Y) = p$, $conf(Y \rightarrow Z) = q \Rightarrow conf(X \rightarrow Z) = p \cdot q$ for all frequent concept intents $X \subset Y \subset Z$.
- supp $(X \rightarrow Z)$ = supp $(Y \rightarrow Z)$, for all X, Y \subseteq Z.

The basis is minimal with this property.



Example:

{ ring number: one } \rightarrow { veil color: white }

- has support 89.92 % (the support of the largest concept having both attributes in its intent)
- and confidence 97.5 % \times 99.9 % \approx 97.4 %.

Name	Number of objects	Average size of objects	Number of items
T10I4D100K	100,000	10	1,000
MUSHROOMS	8,416	23	127
C20D10K	10,000	20	386
C73D10K	10,000	73	2,177

Some experimental results

Dataset	Exact	DG.		Approximate	Luxenburger
(Minsupp)	rules	basis	Minconf	rules	basis
			90%	16,269	3,511
T10I4D100K	0	0	70%	20,419	4,004
(0.5%)			50%	$21,\!686$	4,191
			30%	22,952	4,519
			90%	12,911	563
Mushrooms	7,476	69	70%	37,671	968
(30%)			50%	56,703	1,169
			30%	71,412	1,260
			90%	36,012	1,379
C20D10K	2,277	11	70%	89,601	1,948
(50%)			50%	116,791	1,948
			30%	116,791	1,948
			95%	1,606,726	4,052
C73D10K	52,035	15	90%	2,053,896	4,089
(90%)			85%	2,053,936	4,089
			80%	2,053,936	4,089