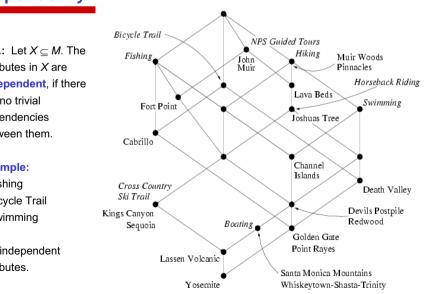
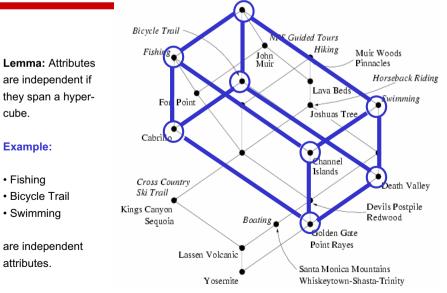

Formal Concept Analysis

- 2 Closure Systems and Implications
- 5 Implications


Implications

{ Boating } \rightarrow { Swimming, Hiking, NPS Guided Tours, Fishing }


{ Bicycle Trail, NPS Guided Tours } \rightarrow { Swimming, Hiking }

20.06.2005 2

Independency

cube.

Independency

Def.: Let $X \subset M$. The attributes in X are independent, if there are no trivial dependencies between them.

Example:

- Fishing
- Bicycle Trail
- Swimming

are independent attributes.

3

Concept Intents and Implications

Def.: A subset $T \subseteq M$ respects an implication $A \rightarrow B$, if $A \subseteq T$ or $B \subseteq T$.

T respects a set \pounds of implications, if *T* respects every single implication in \pounds .

Lemma: An implication $A \rightarrow B$ holds in a context iff $B \subseteq A^{"}$. It is then respected by all concept intents.

Lemma: Is \pounds a set of implications in *M*, then

 $\mathcal{H}(\mathcal{L}) := \{ X \subseteq M \mid X \text{ respects } \mathcal{L} \}$

is a closure system.

The related closure operator is constructed as follows: For a set $X \subseteq M$ let

$$X^{\ell} := X \cup \bigcup \{B \mid A \to B \in \ell, A \subseteq X\}.$$

Compute $X^{\ell}, X^{\ell \ell}, X^{\ell \ell \ell}, \dots$, until a set

 $\mathcal{L}(X) := X^{\mathcal{L}_{\dots} \mathcal{L}}$

with $\ell(X)^{\ell} = \ell(X)$ (i.e., a fix point) is reached. (for infinite contexts this may be an infinite process). $\ell(X)$ ist then the closure of X with respect to the closure system $\mathcal{H}(\ell)$.

Bem.: Dies ist der Algorithmus AttrHülle der Datenbankvorlesung!

20.06.2005 6

Def.: An implication $A \rightarrow B$ is (semantically) entailed from a set \pounds of implications, if every subset of *M* respecting \pounds also respects $A \rightarrow B$. A family \pounds of implications ist called **closed** if every implication entailed from \pounds is already

A family z of implications ist called **closed** if every implication entailed from z is already contained in z.

Lemma: A set \pounds of implications on M is closed iff the following conditions (Amstrong rules) are fulfilled for all *W*, *X*, *Y*, *Z* \subseteq *M*:

1. $X \to X \in \mathcal{L}$, 2. If $X \to Y \in \mathcal{L}$, then $X \cup Z \to Y \in \mathcal{L}$,

3. If $X \to Y \in \mathcal{L}$ and $Y \cup Z \to W \in \mathcal{L}$, then $X \cup Z \to W \in \mathcal{L}$.

Bem.: Auch diese Regeln sollten einem aus der Datenbankvorlesung bekannt vorkommen!

Def.: A set ℓ of implications of a context (G, M, I) is called **complete**, if every implication of (G, M, I) is entailed from ℓ . A set ℓ of implications is called **non-redundant**, if no implication is entailed from the others.

Def.: $P \subseteq M$ is called **pseudo intent** of (G, M, I) if $P \neq P$ "and for every pseudo intent $Q \subseteq P$ with $Q \neq P$ holds $Q^{*} \subseteq P$.

Theorem: The set of implications

 $\mathcal{L} := \{ P \rightarrow P^* \mid P \text{ Pseudoinhalt } \}$

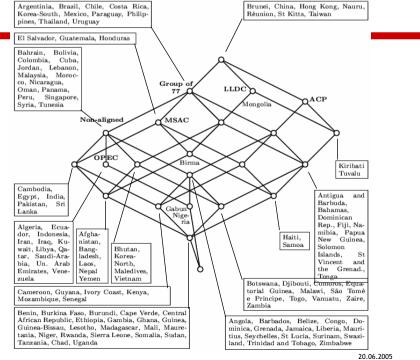
is non-redundant and complete. We call *1* stem basis.

7

20.06.2005

5

Example: Membership of developing countries in supranational groups (Source: Lexikon Dritte Welt. Rowohlt-Verlag, Reinbek 1993)


Taken from: B. Ganter, R. Wille: Formal Concept Analysis -Mathematical Foundations. Springer, Heidelberg 1999

r						1	-						-												
	Group of 77	Non-aligned	LLDC	MSAC	ACP			Group of 77	Non-aligned	LLDC	OPEC	ACP			Group of 77	Non-aligned	LLDC	DEC	ACP		Group of 77	Non-aligned	LLDC	MSAC	ACP
Afghanistan	×	×	×	×	Τ]	Ecuador	×	×	П	×	Г	1	Libva	×		Ť		<	Senegal	l×	×		×	Tx
Algeria	×	х)	<	1	Egypt	×	×)	<	Γ	1	Madagascar			×Þ	ĸ	×	Sevchelles	×		H	+	×
Angola	×	х			×	1	El Salvador	×	Г		<	Г	1	Malawi		×		t	×		1×	×	X:	×	×
Antigua and Barbuda	×				×	1	Equatorial Guinea	×	×	×	Т	>	<	Malaysia	×		+	t	+	Singapore	×	×	H	+	+
Argentina	×					1	Ethiopia	×	×	X	<	>	<	Maledives		×	×	t	+	Solomon Islands	×		H	+	×
Bahamas	×				×	1	Fiji	×	Г	Π	Т	Þ	<	Mali			x	ĸ	×	Somalia			×:	×	×
Bahrain	×	×				1	Gabon	×	×	\square	×	>	<	Mauretania			x		×			×		×	-
Bangladesh	×	х	×	×]	Gambia	×	×	X	<	>	¢	Mauritius	×		+	t	×	St Kitts	+		H	+	\pm
Barbados	×				×		Ghana	×	×	× >	<	Þ	¢	Mexico	x		+	t	1	St Lucia	1×	×	H	+	×
Belize	×	×			×		Grenada	×	×			>	<	Mongolia		H	×	$^+$	+	St Vincent& Grenad.	×		H	+	×
Benin		×		×	×]	Guatemala	×)				Morocco	x	×	+	$^{+}$	+	Sudan	×	×	x:	x	×
Bhutan	×		×				Guinea			X		Þ		Mozambique	×		,	ĸ	×	Surinam	×	×	H	+	×
Bolivia		×					Guinea-Bissau			×		>		Myanmar	×		xb		1	Swaziland		×	H	+	×
Botswana	×	×	×		×]	Guyana	×				>		Namibia	×		-	t	×	Syria	×	×	H	+	+
Brazil	×						Haiti	×		X	<	Þ	<	Nauru		H	+	$^+$	-	Taiwan	1		H	+	+
Brunei							Honduras	×			<			Nepal	×	×	x	×	+	Tanzania	×	×	×:	×	×
Burkina Faso		×			×		Hong Kong							Nicaragua	×			+	+	Thailand	×		H	+	+
Burundi		×	_	_	×		India	×			-			Niger			x	ĸ	×			×	×	+	×
Cambodia	×	×	_	×			Indonesia	×			×			Nigeria	×		+		٢×		1×		H	+	×
Cameroon		×		×	×		Iran	×			×			Oman	×		+	ľ	1	Trinidad and Tobago	×	×	H	+	×
Cape Verde	×				×		Iraq	×	-		×	-		Pakistan	×		-,		+	Tunisia		×	H	+	+
Central African Rep.		×	_	_	×		Ivory Coast	×	-)	<	Þ	<	Panama	x		ľ	1	+	Tuvalu	1	1	×	+	×
Chad		×	×	×	×		Jamaica	×				Þ	<	Papua New Guinea	×	-	+	+	×		×	×		×	×
Chile	×						Jordan	×					_	Paraguay	×	H	+	+	-	United Arab Emirates		×	H	×	Ħ
China							Kenya	×	×		<	Þ	<	Peru	×	x	+	+	+	Uruguay	×		H	+	+
Colombia		×				1	Kiribati			×		Þ	<	Philippines	x		+	$^+$	+	Vanuatu		×	×	+	×
Comoros		×	×		×		Korea-North		×	×				Qatar		×	+	┪,		Venezuela		×	Ĥ	×	_
Congo	×	×			×		Korea-South	×				L		Réunion	Ĥ	Ĥ	+	ť	╧	Vietnam		x	X	f	<u>`</u>
Costa Rica	×						Kuwait	×			×	L		Bwanda	V	V	×	+	×				x:	+	+
Cuba	×						Laos			×	<			Samoa	x		xb		×			x		+	×
Djibouti		×	×		×		Lebanon	×				L		São Tomé e Principe				1	Îx			Â		+	x
Dominica	×	×			×		Lesotho			×	<	Þ	<	Saudi Arabia	×		~	╘	1^	Zimbabwe	×		Ĥ	+	×
Dominican Rep.	×				×		Liberia	×	×				<	Jauai mabia	1	\sim		11	<u>'</u>	I Ennouve	1	1	4		

The abbreviations stand for: LLDC := Least Developed Countries, MSAC := Most Seriously Affected Countries, OPEC := Organization of Petrol Exporting Countries, ACP := African, Caribbean and Pacific Countries.

10

20.06.2005 9

Stem basis of the 3rd World context:

- $\{OPEC\} \rightarrow \{Group of 77, Non-Alligned\}$
- {MSAC} \rightarrow {Group of 77}
- {Non-Alligned} \rightarrow {Group of 77 }
- { Group of 77, Non-Alligned, MSAC, OPEC } \rightarrow { LLDC, AKP }
- { Group of 77, Non-Alligned, LLDC, OPEC } \rightarrow { MSAC, AKP }

Determining the stem basis with Next-Closure

is based on the following theorem:

Theorem: The set of all intents and pseudo-intents is a closure system. Its corresponding closure operator is given as follows:

Starting from set *X* we compute successively

$$X^{\ell^*} := X \cup \bigcup \{B \mid A \to B \in \mathcal{L}, A \subseteq X, A \neq X\}$$

$$X^{\ell^{*}\ell^{*}} := X^{\ell^{*}} \cup \bigcup \{ B \mid A \to B \in \ell, A \subseteq X^{\ell^{*}}, A \neq X^{\ell^{*}} \}$$

etc, until a set $\ell^*(X)$ with $\ell^*(X) = \ell^*(\ell^*(X))$ is reached. This is then the desired intent or pseudo-intent.

20.06.2005 13

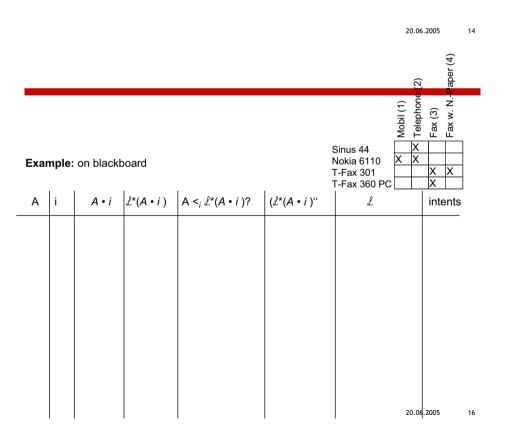
Algorithm **Next-Closure** for computing all concept intents and the stem basis:

0) The set \pounds of all implications is set to the empty set.

1) The lectically first intent or pseudo-intent is \emptyset .

2) Is A determined to be intent or pseudo-intent, then the lectically next intent/pseudo-intent is computed by checking all $i \in M \setminus A$ in decreasing order until $A <_i \mathcal{J}^*(A \cdot i)$ holds.

 $\mathcal{L}^*(A \bullet i)$ is then the next intent or pseudo-intent.


3) If $\ell^*(A \oplus i) = (\ell^*(A \cdot i))^{\prime\prime}$, then $\ell^*(A \cdot i)$ is a concept intent, else it is a pseudointent, and the implication $\ell^*(A \cdot i) \to (\ell^*(A \cdot i))^{\prime\prime}$ is added to ℓ .

4) If $\mathcal{I}^*(A \cdot i) = M$, then stop, else $A \leftarrow \mathcal{I}^*(A \cdot i)$ and continue at 2).

The first part of the theorem is proven by using the following lemma:

Lemma: If P and Q are concept intents or pseudo-intents with $P \neq Q$, $P \not\subset Q$, and $Q \not\subset P$, then $P \cap Q$ is a concept intent.

Proof: P and Q, and therefore also $P \cap Q$, respect all implications in $\mathcal{L} \setminus \{P \to P^{"}, Q \to Q^{"}\}$. If $P \neq P \cap Q \neq Q$, then $P \cap Q$ respects these implications, too, and is hence a concept intent.

Association Rules

{ veil color: white, gill spacing: close } \rightarrow { gill attachment: free } Support: 78,52 % Confidence: 99,6 %

The input data of association rules algorithms can be written as a formal context (G, M, I):

- *M* is a set of items,
- G consists of the transaction IDs,
- and the relation I is the list of transactions.

Association Rules

{ veil color: white, gill spacing: close } \rightarrow { gill attachment: free } Support: 78,52 % Confidence: 99,6 %

The support is the percentage of all objects having all attributes in premise and conclusion:

Def.: The support of an attribute set $X \subseteq M$ is given by

$$\operatorname{supp}(X) = \frac{|X'|}{|G|}$$

The support of an association rule $X \rightarrow Y$ is given by supp $(X \rightarrow Y) := \text{supp} (X \cup Y)$.

The **confidence** is the percentage of all objects fulfilling the premise among all objects fulfilling both premise and conclusion.

Def.: The confidence of a rule $X \to Y$ is given by $\operatorname{conf}(X \to Y) = \frac{\operatorname{supp}(X \cup Y)}{\operatorname{supp}(X)}$

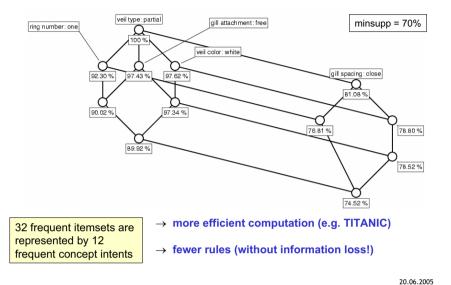
20.06.2005 18

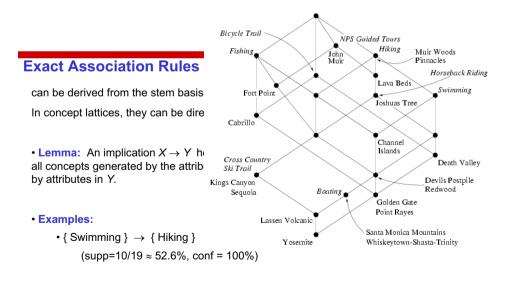
20.06.2005 17

Bases of Association Rules

{ veil color: white, gill spacing: close } \rightarrow { gill attachment: free } Support: 78,52 % Confidence: 99,6 %

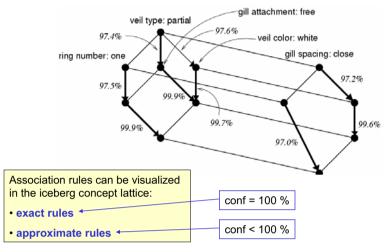
Classical Data Mining Task: Find, for given minsupp, minconf \in [0,1], all rules with support and confidence above these thresholds


Our task: Find a **basis** of rules, i.e., a minimal set of rules out of which all other rules can be derived.

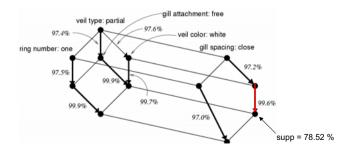

$$\operatorname{supp}(B) = \frac{|B'|}{|G|} = \frac{|B''|}{|G|} = \operatorname{supp}(B')$$

Theorem: $X \to Y$ and $X^{"} \to Y^{"}$ have the same support and the same confidence.

Hence for computing association rules, it is sufficient to compute the supports of all frequent sets with B = B'' (i.e., the intents of the iceberg concept lattice).


Advantage of the use of iceberg concept lattices (compared to frequent itemsets)

- { Boating } → { Swimming, Hiking, NPS Guided Tours, Fishing } (supp=4/19 ≈ 21.0%, conf = 100%)
- { Bicycle Trail, NPS Guided Tours } → { Swimming, Hiking } (supp=4/19 ≈ 21.0%, conf = 100%)


Advantage of the use of iceberg concept lattices (compared to frequent itemsets)

20.06.2005 22

Approximate Association Rules

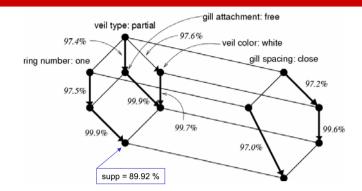
Def.: The Luxenburger basis consists of all valid association rules $X \rightarrow Y$ such that there are concepts (A_1, B_1) and (A_2, B_2) where (A_1, B_1) is a direct upper neighbor of (A_2, B_2) , $X = B_1$, and $X \cup Y = B_2$.

Each arrow indicates a rule of the basis, e.g. the rightmost arrow stands for { veil type: partial, gill spacing: close, veil color: white } \rightarrow { gill attachment: free } (conf = 99.6 %, supp = 78.52 %)

21

Theorem: From the Luxenburger-Basis all approximate rules (incl. support und confidence) can be derived with the following rules:

•
$$\phi(X \to Y) = (X \to Y \setminus Z)$$
, für $\phi \in \{ \text{ conf, supp } \}, Z \subseteq X$


•
$$\phi(X" \rightarrow Y") = \phi(X \rightarrow Y)$$

•
$$conf(X \rightarrow X) = 1$$

• $\operatorname{conf}(X \to Y) = p$, $\operatorname{conf}(Y \to Z) = q \implies \operatorname{conf}(X \to Z) = p \cdot q$ for all frequent concept intents $X \subset Y \subset Z$.

• supp
$$(X \rightarrow Z)$$
 = supp $(Y \rightarrow Z)$, for all X, Y \subseteq Z.

The basis is minimal with this property.

Example:

{ ring number: one } \rightarrow { veil color: white }

- has support 89.92 % (the support of the largest concept having both attributes in its intent)
- and confidence 97.5 % × 99.9 % ≈ 97.4 %.

20.06.2005 25

	Name	Number of objects	Average size of objects	Number of items
	T10I4D100K		10	1.000
_	MUSHROOMS	8.416	23	127
	C20D10K	10.000	20	386
	C73D10K	10.000	73	2,177

Some experimental results

Dataset	Exact	DG.		Approximate	Luxenburger
(Minsupp)	rules	basis	Minconf	rules	basis
			90%	16,269	3,511
T10I4D100K	0	0	70%	20,419	4,004
(0.5%)			50%	$21,\!686$	4,191
			30%	22,952	4,519
			90%	12,911	563
Mushrooms	7,476	69	70%	37,671	968
(30%)			50%	56,703	1,169
			30%	71,412	1,260
			90%	36,012	1,379
C20D10K	2,277	11	70%	89,601	1,948
(50%)			50%	116,791	1,948
			30%	116,791	1,948
			95%	1,606,726	4,052
C73D10K	52,035	15	90%	2,053,896	4,089
(90%)			85%	2,053,936	4,089
			80%	2,053,936	4,089

20.06.2005 26