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Abstract. Recently, research projects such as PADLR and SWAP have
developed tools like Edutella or Bibster, which are targeted at establish-
ing peer-to-peer knowledge management (P2PKM) systems. In such a
system, it is necessary to obtain provide brief semantic descriptions of
peers, so that routing algorithms or matchmaking processes can make
decisions about which communities peers should belong to, or to which
peers a given query should be forwarded.
This paper provides a graph clustering technique on knowledge bases
for that purpose. Using this clustering, we can show that our strategy
requires up to 58% fewer queries than the baselines to yield full recall in
a bibliographic P2PKM scenario.

1 Introduction: Ontology-Based P2PKM

Recently, a lot of effort has been spent on building peer-to-peer systems using
semantic web technology [22, 5, 2, 15], based on a notion of peer-to-peer based,
personal knowledge management (P2PKM for short). In such a scenario, users
will model their knowledge in personal knowledge bases, which can then be
shared with other users via a peer-to-peer network.

Many use cases for P2PKM have been implemented recently. In the PADLR
and ELENA projects1, a P2P infrastructure is established for the exchange of
learning material; Bibster2 is a tool for sharing BibTEX entries between re-
searchers; the SCAM tool3 for knowledge repositories connects to a P2P net-
work. In these systems, each peer builds a knowledge base on top of a common
ontology such as LOM and ACM CCS.

One crucial point in such a P2P network is that query messages need to be
routed to peers which will be able to answer the query without flooding the
network with unnecessary traffic. Several proposals have been made recently as
to how the network can self-organize into a topology consisting of communities
around common topics of interest, a structure which is beneficial for routing, and
how messages can be routed in this topology [20, 21, 8, 23]. All of these are based
on the idea of routing indices [3]. In a routing index, peers store an aggregated

1 http://www.l3s.de/english/projects/projects overview.html
2 http://bibster.semanticweb.org
3 http://scam.sourceforge.net/



view of their neighbors’ contents, enabling them to make content-based routing
decisions.

One missing link towards these self-organized network topologies is the ex-
traction of expertises – semantic self-descriptions – of peers from the peers’
knowledge bases. In this paper, a method of extracting these expertises using a
clustering technique on the knowledge base is proposed and evaluated.

The remainder of this paper is structured as follows: After a brief review of
an ontology-based P2P knowledge management scenario and related work, we
will introduce technical preliminaries in Section 2. In Section 3 the automatic
generation of self-descriptions of peers’ knowledge bases through the use of graph
clustering will be shown. Section 4 presents evaluation results for a bibliographic
P2PKM scenario. Section 5 concludes and discusses future work.

1.1 Related Work

To the best of our knowledge, the exact problem discussed in this paper has
not been treated before. There are, however, related areas which touch similar
topics.

Knowledge-rich approaches from the text summarization area [10, 9] use al-
gorithms on knowledge representation formalism to extract salient topics from
texts in order to generate summaries. We compare our approach to the one in
[10] in Section 4.

In semantic P2P overlays, peers need some means of obtaining a notion of
other peers’ contents for routing tables and other purposes. [13] and others rely
on observing the past behavior of peers – queries sent and answered – to guess
what kind of information peers contain, including some fallback strategies to
overcome the bootstrapping problem. In [8], peers publish their expertise con-
taining all topics they have information about without any aggregation, which
will be a resource consumption problem for larger knowledge bases and networks.

Keyword-based P2P information retrieval systems can make use of the bag-
of-words or vector-space models for IR. [19] proposes the use of Bloom filters to
maintain compact representations of contents for routing purposes. These tech-
niques, however, do not provide a semantically aggregated view of the contents,
but rather a bitwise superposition of keywords which loses semantic relationships
between related keywords.

Much work has been done on graph clustering (e. g. [16]) in a variety of
areas. Most of these algorithms, though, do not readily yield representatives
such as the centroids from the k-modes algorithm used in Section 3, and/or may
not be naturally adapted to the shared-part/personal-part consideration used in
Section 2.3.

2 Basics and Definitions

2.1 P2P Network Model

As in [20], the following assumptions are made about about peers in a P2PKM
network:



– Each peer stores a set of content items. On these content items, there exists
a similarity function called sim. We assume sim(i, j) ∈ [0, 1] for all items
i, j, and the corresponding distance function d := 1− sim shall be a metric.
For the purpose of this paper, we assume content items to be entities from
a knowledge base (cf. Section 2.2), and the metric to be defined in terms of
the ontology as described in Section 2.4.

– Each peer provides a self-description of what its knowledge base contains,
in the following referred to as expertise. Expertises need to be much smaller
than the knowledge bases they describe, as they are transmitted over the
network and used in other peers’ routing indices. A method of obtaining
these expertises is outlined in Section 3. Formally, an expertise consists of
a set {(ci, wi)|i = 1 . . . k} of pairs mapping content items ci to real-valued
weights wi.

– There is a relation knows on the set of peers. Each peer knows a certain set
of other peers, i. e., it knows their expertises and network address (e. g. IP
address, JXTA ID, . . . ). This corresponds to the routing index as proposed
in [3]. In order to account for the limited amount of memory and processing
power, the size of the routing index at each peer is limited.

– Peers query for content items on other peers by sending query messages to
some or all of their neighbors; these queries are forwarded by peers according
to some query routing strategy, which uses the sim function mentioned above
to decide which neighbors to forward messages to.

2.2 Ontology Model

Fig. 1: Example Knowledge Base

For the purpose of this paper, we use the view on ontologies proposed by the
KAON framework [6]. Following the simplified nomenclature of [6], an ontology
consists of concepts with a subclassOf partial order, and relations between con-
cepts. A knowledge base consists of an ontology and instances of concepts and
relations. Concepts and instances are both called entities (for details cf. [6]).

Another important feature of KAON is the inclusion mechanism for knowl-
edge bases, enabling the implementation of the shared and personal parts of
knowledge bases as introduced in the next section.



2.3 Shared and Personal Parts of the Knowledge Bases

Based on the use cases mentioned in Section 1, all peers Pi, i = 1 . . . n, in the
system are assumed to share a certain part O of their ontologies: in the case of
e-learning, this could be the Learning Object Metadata (LOM)4 standard plus
a classification scheme; when exchanging bibliographic metadata as in Bibster,
this would be an ontology reflecting BibTEX and a classification scheme such as
ACM CCS5, etc.

Additionally, the knowledge base KBi of each peer Pi contains personal
knowledge PKi which is modeled by the user of the peer and is not known
a-priori to other peers. Querying this knowledge efficiently and sharing it among
peers is the main task of the P2PKM system. Formally, we can say that for all
i, KBi = O ∪ PKi.

In Figure 1, the ontology used in the evaluation in Section 4 is shown. In this
case, the shared part O comprises the concepts Person, Paper, Topic, and their
relations, as well as the topics of the ACM CCS. The personal knowledge PKi of
each peer contains instantiations of papers and persons and their relationships
to each other and the topics for the papers of each individual author in DBLP
with papers in the ACM digital library (cf. 4.1 for details).

For the purpose of this paper, an agreement on a shared ontology O is as-
sumed. The problem of ontologies emerging in a distributed KM setting [1],
of ontology alignment, mapping, and merging [4], are beyond the scope of this
work.

2.4 Ontology-Based Metrics

An ontology of the kind we use is a labeled, directed graph: the set of nodes
comprises the entities, and the relations between entities make up the set of
edges. An edge between entities in this graph expresses relatedness in some
sense: the instance paper37 may have an instanceOf edge to the concept Paper,
Paper and Topic would be connected by an edge due to the hasTopic relation,
etc.

On this kind of semantic structure, [17] has proposed to use the distance
in the graph-theoretic sense (length of shortest path) as a semantic distance
measure.

Metric Used in the Evaluation We follow this suggestion and apply it to
the abovementioned graph as follows:

– To each edge, a length is assigned; taxonomic edges (instanceOf, subclassOf)
get length 1, while non-taxonomic edges are assigned length 2. This reflects
the fact that subclassOf(PhDStudent, Person) is a closer link between
these concepts than, say, rides(Person, Bicycle).

4 http://ltsc.ieee.org/wg12
5 http://www.acm.org/class



– Edge lengths are divided by the average distance of the incident nodes from
the root concept. This reflects the intuition that top-level concepts such as
Person and Project would be considered less similar than, e.g., Graduate
Student and Undergraduate farther from the root.

Similarity, Relatedness, and Semantic Distances – Why Edge Count-
ing? The notions of semantic similarity (things having similar features) and
relatedness (things being associated with each other) have long been explored in
various disciplines such as linguistics and cognitive sciences. Discussions about
these phenomena and their respective properties have lasted for decades (cf. [24,
7]). While most of this discussion is outside the scope of this paper, some key
points [7] are worth mentioning: Thematic relatedness and similarity are distinct
phenomena, but both can get mixed up or influence each other.

In the context of this paper, where the goal is to provide self-descriptions
of knowledge in a P2PKM system, some more influences on the choice of the
semantic distance should be noted:

– The ontologies to be used in P2PKM will be engineered specifically for KM
purposes. Thus, regarding a relation between two concepts as an indication
that these two have something to do with each other reflects the intention
of a knowledge engineer to express relatedness.

– In a P2PKM system, domain specific ontologies will be used. These represent
a conceptualization of a small part of the world which is relevant for the
given domain, so that stray associations such as lamp – round glowing object
– moon – . . . , which might occur in a “world ontology”, will be avoided.

– Modeling idiosyncrasies of certain tools and formalisms such as described in
the next section need to be anticipated. This can be done by allowing for
flexible weighting and filtering strategies.

Various constraints are present on other kinds of metrics which have led to
the use of an edge-counting metric for the purpose of this paper. Approaches
such as [18] or [24] assume the presence of full text or linguistic background
knowledge; others such as [14] only use concepts and an instanceOf relationship,
neglecting instances and non-taxonomic relationships altogether. To yield max-
imum flexibility and to use as much of the modeled content as possible, an edge
counting approach was chosen for this paper.

Keeping this discussion in mind, one needs to be aware of what kinds of
similarity and/or relatedness should be expressed in modeling the ontology and
parameterizing the metric.

Pitfalls on Real-World Ontologies While the edge-counting metric seems
straightforward, applying it to real-world ontologies turned out to be non-trivial:

Noise and Technical Artifacts. Often not all of the content of a knowledge
base is used to model a certain domain as such; e. g., in KAON, lexical



information is represented as first-class entities in the knowledge base. This
yields entities which are not relevant for the semantic distance computation.
There is also a root class which every entity is an instance of, which would
render our approach to calculating distances useless.

Modeling Idiosyncrasies. Engineering an ontology implies design decisions,
e. g. whether to model something as an instance or as a concept [25]. These
decisions carry implications for the weighting of edges, e. g. when taxonomic
relationships are expressed by a relation which is not one of instanceOf,
subclassOf.

To overcome these problems, we have implemented extensive entity filtering
and weighting customization strategies which are applied prior to the metric
computation itself.

Choice of Parameters One obvious question is where the parameters, weight-
ing schemes and filtering rules necessary for this kind of metric should come
from. These can be agreed upon just like the ontology to be used itself. When
stakeholders deside that there should be a “see also” relation between topics,
they could also agree on its importance or non-importance for retrieval tasks
(cf. the discussion about the value of non-taxonomic relations in [17]).

Secondly, this kind of semantic metric will not primarily be used to reflect
human judgment of similarity or relatedness directly, but to structure a net-
work topology. For this type of use, optimal parameters can be determined in
simulation experiments or might be learned over the lifetime of the system.

2.5 k-Modes Clustering

In Section 3, we will use an extension of k-modes clustering [11] to obtain ag-
gregations of knowledge bases. The basic version of k-modes clustering for par-
titioning a set S of items into k clusters S1, . . . , Sk such that S =

⋃̇
iSi works as

follows:

1. Given k, choose k elements Ci, i = 1 . . . k of S as centroids
2. Assign each s ∈ S to the cluster Si with i = arg minj d(Cj , s)
3. For i = 1 . . . k, recompute Ci such that

∑
s∈Si

d(Ci, s) is minimized.
4. Repeat steps 2 and 3 until centroids converge.

This algorithms yields (locally) optimal centroids which minimize the average
distance of each centroid to its cluster members. A variation we will use is bi-
section k-modes clustering, which produces k clusters by starting from an initial
cluster containing all elements, and then recursively splitting the cluster with
the largest variance with 2-modes until k clusters have been reached.

As the algorithm is randomized, it may happen that a cluster cannot be split
although k clusters have not been reached. In that case, we retry a fixed number
of times before accepting the clustering.



3 Graph Clustering for Content Aggregation

As mentioned in the motivation, a peer needs to provide an expertise in order to
be found as an information provider in a P2PKM network. From the discussion
above, the following requirements for an expertise can be derived:

– The expertise should provide an aggregated account of what is contained in
the knowledge base of the peer, meaning that using the similarity function,
a routing algorithm can make good a-priori guesses of what can or cannot be
found in the knowledge base. More specifically, the personal part PKi should
be reflected in the expertise.

– The expertise should be much smaller than the knowledge base itself, prefer-
ably contain only a few entities, because it will be used in routing indices
and in computations needed for routing decisions.

With these requirements in mind, we propose the use of a clustering algorithm
to obtain an expertise for each peer.

3.1 Clustering the Knowledge Base

We use a version of bi-section k-modes clustering for the extraction of such an
expertise. As mentioned before, k-modes clustering yields centroids which are
locally optimal elements of a set regarding the average distance to their cluster
members.

Using the semantic metric, these centroids fulfill the abovementioned require-
ments for an expertise: We can compute a small number of centroids, which are –
on the average – semantically close to every member of their respective clusters,
thus providing a good aggregation of the knowledge base.

In order to apply this algorithm in our scenario, however, some changes need
to be made:

– The set S to be clustered has to consist only of the personal parts PKi of the
knowledge bases. Otherwise, the structure of the shared part (which may be
comparatively large) will shadow the interesting structures of the personal
part.

– The centroids Ci will not be chosen from the whole knowledge base, but
only from the shared part O of the ontology. Otherwise, other peers could
not interpret the expertise of a peer.

The expertise for each knowledge base is obtained by clustering the knowledge
base as described, obtaining a set {Ci | i = 1 . . . k} ⊆ O of entities from the
ontology as centroids for a given k. The expertise then consists of the pairs
{(Ci, |Si|)|i = 1 . . . k} of centroids and cluster sizes. Because we restricted the
choice of centroids to be from O, we get expertises that other peers can interpret
from clustering the elements of KBi.



3.2 Determining the number of centroids

One problem of the k-modes algorithm is that one needs to set the value of k
beforehand. As the appropriate number of topics for a given knowledge base may
not be known a-priori, we use the silhouette coefficient [12], which is an indicator
for the quality of the clustering. In short, it determines how well clusters are
separated in terms of the distances of each item to the nearest and the second
nearest centroid: if each item is close to its own centroid and far away from the
others, the silhouette coefficient will be large, indicating a good clustering.

4 Experimental Evaluation

In the following sections, we will try to verify three hypotheses:

1. Extracting a good expertise from a knowledge base is harder for large knowl-
edge bases.

2. With larger expertises, the retrieval results improve.
3. The clustering strategy extracts expertises which are useful for retrieval.

The intuition is as follows: Extracting a good expertise from a large knowl-
edge base is harder than from a small one, as the interests of a person interested
in many areas will be more difficult to summarize than those of someone who has
only few fields of interest. With larger expertises, the retrieval results improve,
because if we spend more space (and processing time) for describing someone’s
interests, we can make better guesses about what his knowledge base contains.
As the clustering strategy tries to return the centroids which are as close as
possible to all cluster members, we assume that it gives a good approximation
of what a knowledge base contains.

4.1 Setup

To evaluate the usefulness of the expertise extraction approach from the previous
sections, we consider a P2PKM scenario with a self-organized semantic topology
as described in [20, 8, 23]: the expertises of peers are stored in routing tables,
where similarity computations between queries and expertises in the routing
indices are used to make greedy routing decisions when forwarding queries.

If the routing strategy of this network works as intended, the peers which
published an expertise closest to a given query will be queried first. In the fol-
lowing experiment, the quality of the expertises is evaluated in isolation based
on that observation: An expertise was extracted for each peer. All of the shared
entities of the ontology were used in turn as queries. For each query, the authors
were sorted in descending similarity of the closest entity of the expertise to the
query. Ties were resolved by ordering in decreasing weight order.

The evaluation is based on the bibliographic use case mentioned in Section 1:
there are scientists in the P2P network sharing bibliographic information about
their publications. An ontology according to Figure 1 is used. Only the top level



concepts (Person, Topic, Paper) and the ACM classification hierarchy are shared
among the peers. Each user models a knowledge base on his peer representing
his own papers.

We instantiated such a set of knowledge bases using the following data:

– For 39067 papers from DBLP which are present in the ACM Digital Library,
the topics were obtained from the ACM website. There are 1474 topics in
the ACM Computing Classification System. Details on the construction of
the data set and the conversion scripts can be found on http://www.kde.
cs.uni-kassel.de/schmitz/acmdata.

– To yield non-trivial knowledge bases, only those authors who wrote papers
on at least 10 topics were considered. This left 317 authors. A discussion of
this pruning step can be found in Section 4.3.

For each of the summarization strategies described below, we show the num-
ber of authors which had to be queried in order to yield a given level of recall.
This is an indicator for how well the expertises capture the content of the au-
thors’ knowledge bases: the better the expertises, the fewer authors one needs
to ask in order to reach a certain level of recall.

This is a variation of the usual precision-against-recall evaluation from infor-
mation retrieval. Instead of precision – how many of the retrieved documents are
relevant? – the relative number of the queried authors which are able to provide
papers on a given topic is measured.

4.2 Expertise Extraction Strategies

In comparison with the clustering technique from Section 3, the following strate-
gies were evaluated. The expertise size was fixed to be 5 except where noted
otherwise.

Counting (#5): The occurrences of topics in each author’s knowledge base
were counted. The top 5 topics and counts were used as the author’s exper-
tise.

Counting Parents (#P5): As above, but each topic did not count for itself,
but for its parent topic.

Random (R5): Use 5 random topics and their counts.
Wavefront (WFL7/WFL9): Compute a wavefront of so-called fuser concepts

[10]. A fuser concept is a concept many descendants of which are instantiated
in the knowledge base. The intuition is that if many of the descendants of a
concept occur, it will be a good summary of that part of the knowledge base.
If only few children occur, a better summarization would be found deeper in
the taxonomy.
There are two parameters in this computation: a threshold value between 0
and 1 for the branch ratio (the lower the branch ratio, the more salient the
topic), and a minimal depth for the fuser concepts. There are some problems
in comparing this strategy with the other strategies named here:



– It is not possible to control the number of fuser concepts returned with
the parameters the strategy offers.

– Leaves can never be fuser concepts, which is a problem in a relatively
flat hierarchy such as ACM CCS, where many papers are classified with
leaf concepts.

– All choices of parameters yielded very few fuser concepts.
The expertise consisted of the fuser concepts as returned by the wavefront
computation with the inverse of the branch ratio as weights. If the number
of fuser concepts was less than 5, the expertise was filled up with the leaf
concepts occurring most frequently. We examined thresholds of 0.7 (WFL7)
and 0.9 (WFL9) with minimal depth 1.

Clustering (C5/C37): The expertise consisted of centroids and cluster sizes
determined by a bisection-k-modes clustering as described in Section 3. C5
used a fixed k of 5, while C37 selected the best k ∈ {3, . . . , 7} using the
silhouette coefficient. 20 retries were used in the bi-section k-means compu-
tation.

4.3 Results

In this section, results are presented for the different strategies. The values pre-
sented are averaged over all queries (i. e. all ACM topics), and, in the cases with
randomized algorithms (C5, C37, R5), over 20 runs.

Note that all strategies except C37 returned expertises of size 5, while in
C37, the average expertise size was slightly larger at 5.09. Table 3 shows the
distribution of expertise sizes for C37.q

Pruning of the Evaluation Set In order to yield interesting knowledge bases
to extract expertises from, we pruned the ACM/DBLP data set as described
in Section 4.1. Thus, only the knowledge bases of authors which have written
papers on at least 10 topics were considered.

Table 1: Full vs. pruned data: Fraction of authors (%) queried
to yield given recall, C5 strategy

Recall full data pruned data

10% 0.01 4.09
30% 0.04 4.93
50% 0.07 6.43
70% 0.16 12.53
90% 0.55 18.73

100% 3.45 22.88

Table 1 presents a comparison of the full and the pruned dataset for the C5
strategy. It can be seen that the full data require querying only a fraction of the
authors which is one or two orders of magnitude smaller than the pruned data.
This indicates that the first hypothesis holds; the pruning step yields the “hard”
instances of the problem.



Influence of the Expertise Size Intuitively, a larger expertise can contain
more information about the knowledge base than a smaller one. In the extreme
case, one could use the whole knowledge base as the expertise.

To test the second hypothesis, Figure 2 and Table 2, show the influence of
the expertise size on retrieval performance for the C5 clustering strategy.

Fig. 2: Influence of Expertise Size (C5 Strategy)

Table 2: Percentage of Authors Queries against Expertise Size (C5 Strategy)

Expertise Size
Recall 1 3 5 7 10

10% 15.06 6.80 4.09 3.38 3.03
30% 17.66 8.16 4.93 4.12 3.69
50% 21.79 10.59 6.43 5.35 4.82
70% 33.37 19.79 12.53 10.21 9.18
90% 44.57 28.20 18.73 15.44 14.15

100% 49.07 33.04 22.88 19.10 17.67

Table 3: Distribution of Expertise Sizes for C37

Exp. Size Percentage of Authors

3 20%
4 15%
5 21%
6 23%
7 21%

Avg.: 5.09

While the small number of data points for each recall level do not lend
themselves to a detailed quantitative analysis, it is clear that the expertise size
has the expected influence in the clustering technique: the larger the expertise
is, the more detail it can provide about the knowledge base, and the better the
retrieval performance is.

Note that the resources a peer would be willing to spend on storing routing
tables and making routing decisions are limited, so that a trade-off between



resources set aside for routing and the resulting performance must be made,
especially as network and knowledge base sizes grow larger.

Influence of the Summarization Strategy Finally, we evaluate the perfor-
mance of the clustering strategies against the other strategies mentioned above.

Table 4 and Figure 3 show that the k-modes clustering compares favorably
against the other strategies: fewer authors need to be asked in order to find a
given proportion of the available papers on a certain topic. This is an indication
that the clustering technique will yield expertises which can usefully be applied
in a P2PKM system with a forwarding query routing strategy based on routing
indices. For example, to yield 100% recall, 58% fewer (18.42% vs. 44.15%) peers
would have to be queried when using C37 instead of the #5 strategy. With C37
and a routing strategy that contacted best peers first, 100%− 18.42% ≈ 81% of
the peers could be spared from being queried while still getting full recall.

The standard deviations σ of the randomized strategies given in Table 4 show
that while the actual results of the C5, C37, and R5 runs may vary, the quality
of the results for querying is stable.

Table 4: Percentage of Authors Queried against Recall; σ:
Standard Deviation

Authors Queried
Recall WFL7 WFL9 C5 (σ) C37 (σ) #5 #P5 R5 (σ)

10% 6.11 6.37 4.09 (.28) 3.10 (.18) 10.69 9.25 6.96 (.48)
30% 7.16 7.43 4.93 (.28) 3.80 (.19) 12.15 10.72 8.26 (.52)
50% 9.61 9.86 6.43 (.32) 5.01 (.21) 15.33 13.67 11.33 (.61)
70% 19.06 19.67 12.53 (.52) 9.65 (.33) 27.43 23.38 24.04 (.82)
90% 28.97 29.78 18.73 (.64) 14.78 (.47) 39.45 33.91 35.16 (.93)

100% 34.35 35.37 22.88 (.75) 18.42 (.48) 44.15 39.27 39.65 (.83)

Fig. 3: Percentage of Authors Queried against Recall

To get an impression about why the clustering strategies work better than
the others, consider one author whose papers are labelled with the following



topics6: B.5, B.6, B.6, B.6.1.a, B.6.1.a, B.6.3.b, B.7, B.7.1.c, B.8, B.8, C.0.d,
C.3.e, C.5.3.f, D.3.2, G.1, I.5.4.g, J.

The different strategies delivered the results shown in Table 5. It can be
seen that the clustering strategies find the best balance between spreading the
expertise over all occuring topics, and on the other hand generalizing so that
many occuring topics are subsumed under one expertise entry. This happens
due to the way the clustering strategy spreads the clusters over the ontology
graph, maxminizing the coherence within clusters. Most other strategies, e. g. ,
did not consider any of the topics outside the B and C parts of ACM CCS.

Table 5: Sample Results for Different Strategies

#P5 #5 R5 WFL7 WFL9 C5 C37
B. (6) B.6.1.a (2) B.6.1.a (2) C. (3) C. (3) B. (11) B.6 (10)

B.6.1 (2) B.6 (2) B.6.3.b (1) B.6.1.a (2) B.6.1.a (2) C. (3) C. (3)
B.6.3 (1) B.8 (2) D.3.2 (1) B. (2) B. (2) I.5.4.g (1) J. (1)

C.0 (1) B.6.3.b (1) C.5.3.f (1) B.6 (1.5) B.6 (1.5) D.3.2 (1) G.1 (1)
B.7.1 (1) B.5 (1) B.7 (1) B.6.3.b (1) B.6.3.b (1) G.1 (1) D.3.2 (1)

I.5.4.g (1)

5 Summary and Outlook

5.1 Conclusion

In this paper, an algorithm which can be used to extract semantic summaries
– called expertises – from knowledge bases is proposed. A motivation for the
necessity of this kind of summary is given, namely, that such summaries are
needed for routing tables in semantic P2P networks.

We demonstrate that the clustering method outperforms other strategies
in terms of queries needed to get a given recall on a set of knowledge bases
from a bibliographic scenario. We also show qualitatively that larger knowledge
bases are harder to summarize, and that larger expertises are an advantage in
determining which peers to query.

5.2 Outlook and Work in Progress

Evaluation in Context. This paper provides evidence that the clustering proce-
dure extracts suitable expertises for a P2PKM setting. The next step will be
combining the clustering with self-organization techniques for P2PKM networks
as described in [20]. Note that usually the value of aggregations or summaries
is measured by evaluating it against human judgment. In our case, however, the
aggregations will be evaluated with regard to their contribution to improving
the performance of the P2P network.

6 Note that the fourth level topics do not have names of their own originally; we
attached artificial IDs to distinguish them



Scalability Issues. Computing the metric as described above is very expensive,
as it needs to compute all-pairs-shortest-paths. For large ontologies having tens
or hundreds of thousands of nodes, this is prohibitively expensive. In the current
evaluation, the shortest paths needed are computed on the fly, but for a real-
world P2PKM implementation, some faster solution needs to be found. The
obvious idea of pre-computing the metric does not mitigate the problem very
much, because maintaining the shortest path lengths requires O(n2) storage.

On possible direction of investigation is to look at the actual usage of the
metric in a P2PKM system. If the community structure of the network leads
to a locality in the use of the metric, caching and/or dynamic programming
strategies for the metric computation may be feasible.

Test Data and Evaluation Methodology. Other than in Information Retrieval, for
example, there are neither widespread testing datasets nor standard evaluation
methods available for Semantic Web and especially P2PKM applications. In
order to compare and evaluate future research in these areas, standardized data
sets and measures need to be established.
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