
Modeling of Diagnostic Guideline Knowledge in Semantic Wikis

Reinhard Hatko, Jochen Reutelshoefer, Joachim Baumeister, and Frank Puppe
Institute of Computer Science, University of Würzburg, Germany

{lastname}@informatik.uni-wuerzburg.de

Abstract
Knowledge acquisition for diagnostic knowledge
systems is a complex and tedious task. In par-
ticular, the formalization of diagnostic guideline
knowledge is challenging for the contributing do-
main specialists. In this paper, we introduce the
formal representation language DiaFlux, that is
simple and easy to use on the one hand. On
the other hand it allows for the definition of ex-
ecutable clinical protocols, that can solve valu-
able tasks being executed in the clinical context.
Further, we describe a wiki-driven development
process using the stepwise formalization and al-
lowing for almost self-acquisition by the domain
specialists. The applicability of the approach is
demonstrated by a project developing a protocol
for sepsis diagnosis and treatment by a collabo-
ration of clinicians.
This paper is currently under submission at
the Open Knowledge Models Workshop at
EKAW 2010.

1 Introduction
In recent years, knowledge engineering research has been
heavily influenced by the emergence of Web 2.0 applica-
tions, such as wikis, blogs, and tagging systems. They pro-
vide a simplified access and a light-weight approach for
knowledge acquisition. Furthermore, those systems usu-
ally allow for a distributed and (often) collaborative de-
velopment process. One of the most popular examples is
the wide-spread use of wikis as flexible knowledge man-
agement tools, both in personal life and business environ-
ments. In contrast to standard web applications the content
of a wiki page can be created and modified by clicking an
(often mandatory) edit button located on the web page. Due
to the simple markup (less verbose than HTML), users are
capable to author the content easily. Wikipedia is certainly
the most popular example, where informal world knowl-
edge is created and updated by a wiki. Introducing the
semantic interpretation of wikis, the development of Se-
mantic Wikis [1] allows for a more formalized definition of
the knowledge. Today, Semantic Wikis are mainly used for
collaborative ontology development, by providing a flexi-
ble, web-based interface to build semantic applications.

The main benefit of Semantic Wikis is their possibility
to interweave different formalization types of knowledge
in the same context. That way, ontological concept def-
initions are mixed with free text and images within the
wiki articles. Such tacit knowledge often serves as docu-

mentation of the development process or as pursuing ad-
ditional information not representable in a more formal
manner. In detail, we call the interweaving of implicit
and formal elements of knowledge and their interaction
in the knowledge engineering process the knowledge for-
malization continuum [2]. The knowledge formalization
continuum emphasizes that usable knowledge ranges from
very informal representations—such as text and images—
to very explicit representations—such as logic formulas or
consistency-based models. The metaphor frees the domain
specialists and knowledge engineers to commit to a partic-
ular knowledge formalization at an early stage of the de-
velopment project, but offers a versatile understanding of
the formalization process. Present Semantic Wiki imple-
mentations serve as ontology engineering tools with some
support of rules, thus covering a wide range of the knowl-
edge formalization continuum.

In this paper, we introduce the Semantic Wiki KnowWE,
that was designed to build decision-support systems, and
we propose the graphical language DiaFlux, for modeling
of clinical protocols: The contributions of this language are
its simple application for developing decision-support sys-
tems, since it only provides a limited number of intuitive
language elements. Due to its simplicity it is possible to
be used by domain specialists and thus ease the application
in the knowledge engineering process. Albeit its simplic-
ity, a rich set of diagnostic elements can be integrated into
the language, that are required to build sophisticated (med-
ical) knowledge bases. Furthermore, the language allows
for the incorporation of less explicit knowledge elements
when needed, and thus follows the ideas of the knowledge
formalization continuum. To allow for comfortable devel-
opment of DiaFlux models, we introduce a visual editor
integrated into the Semantic Wiki KnowWE.

The rest of the paper is organized as follows: Section 2
briefly introduces the Semantic Wiki KnowWE and dis-
cusses the integration of strong problem-solving knowl-
edge into the context of a Semantic Wiki. Also, some
knowledge engineering aspects, such as the organization
of a distributed knowledge base over a wiki, are dis-
cussed. The procedural knowledge representation language
DiaFlux is introduced in Section 3. Also the integration of
the language into the Semantic Wiki and development pro-
cess including stepwise formalization is described. Cur-
rently, the approach is evaluated by the development of a
medical decision-support system. We describe the essen-
tials of this case study in Section 4. The paper is summa-
rized and concluded in Section 5, also giving an outlook for
future work.



2 KnowWE in a Nutshell
Wikis became famous as a successful means for knowl-
edge aggregation in an evolutionary ’self-organizing’ way
by possibly large and open communities without detailed
project management about contributions. Semantic Wikis
extend the wiki approach by adding formal representations
of the wiki content. This extension allows for two different
perspectives of the use of Semantic Wikis [3]:

• Knowledge formalization for wiki: Here, the infor-
mal content of the wiki is in the foreground. The for-
malization used to help organization, navigation, and
presentation of the content. Formal allowing for se-
mantic navigation and search or the generation of new
aggregated views on content, e.g., by inline queries.

• Wiki for knowledge formalization: In this case, the
formalized knowledge base is the goal of the applica-
tion. The knowledge base is created by the use of the
well-known wiki authoring metaphor. One example is
the use of a Semantic Wiki as a collaborative ontology
engineering tool. The informal content here is used as
description and documentation of the formal concepts
and relations.

The wiki-based knowledge engineering approach de-
scribed as well as the system introduced in this paper
clearly focus on the latter perspective: The wiki is used
as a tool for creating and maintaining formal concepts, for-
mal relations, and informal knowledge containing descrip-
tion as documentation for these. While many Semantic
Wikis provide means to create and populate light-weight
ontologies, the approach can be generalized to create any
kind of formal knowledge bases, e.g., for decision-support
systems. The Semantic Wiki KnowWE provides meth-
ods to capture and execute problem-solving knowledge.
Therefore, a problem-solving layer has been included on
top of the ontological layer, defining findings that describe
the currently running problem-solving session. KnowWE
is designed showing only minimal modifications with re-
spect to look and feel allowing for “backward compati-
ble” use like a normal wiki. Figure 1 shows an article
about Bad Ignition Timing as part of a car-diagnosis ex-
ample wiki. It contains textual descriptions of the concept
forming a solution of the diagnostic wiki knowledge base.
Embedded in this informal content, it contains rules (1) de-
fined by specific rule markup forming the formal knowl-
edge deriving the concept Clogged Air Filter as solution of
the problem-solving session. Further, KnowWE provides
means for testing the knowledge, e.g., by answering pop-
ups (2) that are defined in the page content. The status of
the derived solutions of the current problem-solving ses-
sion is shown in the left panel (3). At the top of the formal
knowledge block different icons provide additional features
like starting a problem-solving session as a guided inter-
view in an external dialog frame or download of the gen-
erated knowledge base (4). The problem-solving knowl-
edge (rules in this example) is entered in textual format by
specified markup using the standard wiki edit view, which
is processed by the wiki engine and translated to an exe-
cutable knowledge representation. Each time the content
is edited, with the page save action the formal knowledge
sections are processed by the wiki engine, updating the ex-
ecutable knowledge base accordingly. Different knowledge
formalization patterns (e.g., heuristic rules, decision-trees,
set-covering knowledge) are supported by the system and
can be captured by the use of various markups [4].

Following the freedom of structuring principle proposed
by wikis, the system does not put up any constraints where
formal knowledge should be defined. Objects and for-
mal relations can be used on any wiki page at any loca-
tion using the markup defined by the current system set-
tings. KnowWE also provides components to test the cur-
rent version of a knowledge base. For automated testing
of the knowledge base behavior, KnowWE also allows for
the definition for test-cases, which can be executed after
knowledge base modifications. For the creation of vari-
ants of a knowledge base the system provides a flexible in-
clude mechanism allowing to include arbitrary knowledge
elements into a new page forming a new compilation of the
overall knowledge corpus (e.g., for fault diagnosis in devi-
ating production series in technical domains).

Wiki-based Knowledge Formalization The major
strength of wikis is the general low barrier for contri-
bution due to its simple editing mechanism. However,
the definition of a formal knowledge base using textual
markups is a complicated task. Autonomous contribution
by domain specialists still can be achieved using a step-
wise formalization process. Employing the metaphor of
the knowledge formalization continuum at first informal
knowledge describing the domain knowledge is inserted
into the wiki. This can be done by domain specialists not
demanding special knowledge engineering experiences.
For this purpose also already existing documents can be
imported into the wiki as startup knowledge that can be
refined manually. After short training sessions discussing
and modifying example knowledge bases the knowledge
formalization task is started as an incremental process:
The domain specialists, not completely familiar with the
provided markups and the formalisms, at first formulate
the knowledge that is right now only given as informal
description, in pseudo-code style inspired by the markup.
In cooperative sessions with the knowledge engineers
this knowledge is discussed and transformed into correct
syntactical shape. This proceeding allows for autonomous
contributions, although if not yet completely formalized,
by the domain specialists. The web-based collaborative
access provided by wikis supports this evolutionary
process.

3 DiaFlux - Modeling Clinical Care
Processes in Semantic Wikis

This section first describes our application scenario, then a
short insight about guideline models in the diagnostics do-
main is given. Following, we introduce our representation
language for clinical protocols, called DiaFlux .

3.1 Application Scenario
Clinical guidelines have shown their benefits by providing
standardized treatment based on evidence-based medicine.
Many textual guidelines are readily available and also
shared through the internet, but rely on the proper applica-
tion by the clinician during the actual care process. While
clinical guidelines are mostly textual documents, clinical
protocols are an implementation of them, offering a more
specific procedure for diagnosis and treatment in a given
clinical context [5]. Much effort has been put into the
development of formal models for computer-interpretable
guidelines (CIGs). Clinical decision-support systems that
execute CIGs support the clinician in his decision-making



Figure 1: A wiki page of the car diagnosis example wiki containing formal and informal knowledge about the concept Bad
Ignition Timing.

at the point of care. In the variety of CIG models, each
has its own focus, e.g. GLIF [6] focuses on the share-
ability of guidelines between various institutions, while
PROforma [7] focuses on assisting patient care through ac-
tive decision support [8].

The work presented in this paper is conducted within the
project “CliWE - Clinical Wiki Environments”1. We in-
vestigate languages, tools and methodologies to collabora-
tively build CIGs by domain specialists themselves. The
requirement concerning the language is the development
of an explicit and executable representation of diagnostic
knowledge for active decision-support systems. Further-
more, we create a development process for simple and ef-
fective knowledge acquisition by domain specialists. Fi-
nally, the completed knowledge bases will be exported into
mixed-initiative systems, that cooperate with the clinical
user during the care process.

3.2 Modeling Clinical Processes
For the representation of the tasks, that have to be carried
out during the process of care, guideline languages employ
different kinds of Task Network Models [9]. They describe
decisions, actions and constraints about their ordering in a
guideline plan. Often, flowcharts are the underlying for-
malism to explicitly express control flow, at least at an
abstract level. GLIF for example, takes a multi-level ap-
proach, on three levels of abstraction, a conceptual, a com-
putable and an implementable level. The conceptual level
is modeled using flowcharts for interpretation by humans,
but can not be executed by decision-support systems. The
formal specification is provided at the next lower - the com-
putable - level. On the implementable level a guideline can

1Funded by Drägerwerk AG & Co. KGaA, Lübeck, Germany,
2009-2011.

be tailored to a specific institution, e.g. by the definition of
mappings to patient information systems.

For the specification of a clinical protocol, two kinds of
knowledge have to be effectively combined, namely declar-
ative and procedural knowledge. While the declarative part
encompasses the facts and their relationships, the proce-
dural one reflects the knowledge about how to perform a
task, i.e. deciding which action to take next. In diagnos-
tics the declarative knowledge particularly consists of the
terminology, i.e., findings, solutions, and sometimes also
treatments and their interrelation. The procedural knowl-
edge for diagnostics in a given domain is responsible for
the decision which action to perform next (e.g. in patient
care: asking a question or carrying out a test). Each of these
actions has a cost (e.g. monetary or associated risk) and a
benefit (for establishing or excluding currently considered
solutions) associated with it. Therefore, the choice of an
appropriate sequence of actions is mandatory for efficient
diagnosis and treatment.

We therefore propose a knowledge representation for
clinical protocols called DiaFlux . It is designed to be a
sufficiently expressive knowledge representation for exe-
cutable clinical protocols, yet intuitive enough for the self-
acquisition by domain specialists.

3.3 Modeling with DiaFlux
This paper introduces the formalization of clinical proto-
cols with DiaFlux . By combining well-known elements
from flowcharts (i.e. nodes and edges) with the tasks that
are carried out during diagnostic problem-solving, it al-
lows for a uniform and intuitive acquisition of declarative
and procedural knowledge. As known from flowcharts, the
nodes represent actions, that have to be executed, and the
edges connecting those nodes the order of the execution.



An edge can be guarded by a condition, that controls the
transition to the subsequent node. The nodes represent ac-
tions like performing a test or evaluating a diagnosis. The
guards are attached to edges and they control the process
by checking the state of the declarative knowledge, e.g. the
value of a finding or the evaluation of a solution.

Clinical protocols, that are formalized with DiaFlux, are
intuitively understandable and more easily maintainable, as
the sequence of actions is made explicit. Furthermore, due
to the semantics of an underlying application ontology it
directly is executable.

Design Goals
When designing a formalism – especially when aimed at
being used by non-computer-scientists – a trade-off has to
be made between its expressiveness and its usability/under-
standability. In our approach we favor usability over ex-
pressiveness, offering a minimal set of primitives, though
expressive enough for the targeted scenario. Besides, the
following goals were pursued during the design of DiaFlux:

1. Modularity: To alleviate the reuse of (parts of) formal-
ized knowledge, DiaFlux models are intended to be
reused in different contexts. The modularization also
helps to improve the maintainability of the knowledge
base.

2. Repetitive execution of subtasks: Online monitoring
involves the continuous observation of sensory data to
detect fault states and initiate corrective action. There-
fore particular actions need to be performed in an iter-
ative manner.

3. Parallelism: Subtasks with no fixed order and de-
pendency can be allocated to additionally spawned
threads of control, and thus allow for their parallel ex-
ecution. Expressing parallelism is especially neces-
sary for mixed-initiative diagnosis, in which human
and machine initiated examinations are carried out
concurrently.

4. Testability: The evaluation of a knowledge base is an
essential step prior to its productive use. We provide
basic functionality for empirical testing and anomaly
checks tailored to DiaFlux models.

Language Description
Wang et al. [10] studied several guideline representation
models and identified common primitives for guideline cre-
ation. These were categorised as actions, decisions and for
the representation of patient state. Actions denote specific
clinical tasks like collecting data or clinical intervention.
Decisions represent clinical decision making and guide the
course of the care process. Patient states represent a pa-
tient’s clinical status in the context of guideline application.

As DiaFlux models are based on flowcharts, we identi-
fied a minimal subset of node types to incorporate the nec-
essary primitives to express a clinical protocol. To express
the procedural aspect of the protocol, nodes can be con-
nected by edges. There are no different types of edges, but
they can be labeled with different types of conditions. The
actual type of the condition depends on the type of node
the edge starts at. They are used to evaluate the declarative
knowledge with respect to the observed findings, e.g. the
outcome of a given test or the status of a diagnosis. To ob-
tain the semantics necessary for executability, we rely on
an application ontology as an extension to the task ontol-
ogy of diagnostic problem solving [11]. The application

ontology defines the declarative knowledge consisting of
findings and their ranges, solutions and treatments.

In the following, we enumerate and informally describe
the different node types, before we give a toy example of
a DiaFlux model in the introduced car fault diagnosis do-
main:

• Start node: A start node does not imply an action
itself, but is a pseudo-node pointing to the node that
represents the first action to take. Multiple start nodes
can be modeled to provide distinct entry points into
one DiaFlux protocol.

• Test node: Test nodes represent an action for carrying
out a single test on activation of the node at runtime.
This may trigger a question the user has to answer or
data to be automatically obtained by sensors or from
a database. Furthermore, the acquired information re-
fines the knowledge about the patient state.

• Solution node: Solution nodes are used to set the
evaluation of a solution, based on the observed find-
ings.

• Wait node: Upon reaching a wait node, the execution
of the protocol is suspended until the given time has
passed.

• Composed node: DiaFlux models can be hierarchi-
cally structured as already defined ones can be reused
as modules, represented by a composed node. This
fulfills the aforementioned goal of modularity.

• Exit node: An exit node terminates the execution of
a DiaFlux model and returns the control flow to the
superordinate model. To express different results of
a model, several distinct labeled exit nodes are sup-
ported.

• Comment node: For documentation of a protocol,
comment nodes can be inserted at arbitrary positions.
Though, they can be connected by edges and so be
used to create semi-formal guidelines. They do not
represent an action and are ignored during execution.

Figure 2 shows a DiaFlux module for handling the prob-
lem area “Battery”, which has been established by another
- superordinate - module (not shown in Figure 2). It is em-
bedded into the wiki article containing further informal in-
formation about batteries.

The execution of the module starts at the start node
“Start” (1), which is pointing to the node “Battery voltage”
(2). It is a test node, which asks the user for the actual
voltage of the battery. As “Battery voltage” is a question
with a numerical range, the conditions that can be modeled
on the outgoing edges, are checks against disjoint intervals.
In case the battery’s voltage is high enough to start the car
(> 12.5V), the fault may be a connection problem to the
electrical system. So, the user is asked whether the termi-
nals are clean. In case they are, the problem has to be the
automobile self starter or its cabling. Then, the execution
reaches a solution node that evaluates the solution “Dam-
aged Starter” as suspected (3). An attached comment node
gives a hint for further elaboration, pointing out, that also
the cabling may be the fault case.

Having rusty terminals, a connection problem is likely.
The instructions of how to clean the terminals are a self-
contained module, that can readily be reused in this pro-
tocol. Upon reaching the composed node “Clean Termi-
nals” (4) the execution of the according protocol is started
and “Battery Check” is stalled until the subordinate one
is finished. In this example, the module “Clean termi-
nals” exclusively consists of instructions to the user, so



Figure 2: A guideline for diagnosing a car battery, embedded into a wiki article containing further information. The
pathway of the current testing session is highlighted in green.

the only possible outcome of this procedure is “Terminals
cleaned”(represented by an according exit node), which is
the condition on the outgoing edge. After following the in-
structions and finishing the module, the exit node “Battery
ok” (5) is activated, returning execution to the superordi-
nate protocol (not shown in Figure 2).

In case the battery’s voltage is too low to reliably start
the engine (below 12.5V), different solutions can be estab-
lished. If the voltage lies below 11.9V, then the battery is
exhaustively discharged and considered broken. Therefore,
the solution “Battery damaged” is established and the exe-
cution is ended by reaching the exit node “Fault detected”.
If the voltage is in the range between [11.9V, 12.5V], then it
is probably too low for activating the self starter, but can be
recharged. After establishing the solution “Flat Battery”,
the user is instructed to load the battery by the node “Load
battery” (this basically is modeled by a one-choice question
with the only one answer “ok”). Then the wait node (6) is
activated suspending the execution for 12 hours. After this
period has passed, the execution of the protocol is resumed.
The user is asked for the actual battery voltage again, which
is the battery’s maximum voltage. If the voltage still is too
low to start the car (< 12.5V), a “Damaged Battery” can
again be established. If the voltage is sufficiently high, the
taken exit node “Battery ok” indicates, that there must be
another cause for the fault. After returning to the superor-
dinate protocol, further steps can be taken to find the cause
of the fault, e.g., a damaged engine. The outgoing edges
in the superordinate protocol starting at the composed node
representing “Battery Check” can decide how to proceed
further, depending on the taken exit node.

Integration in KnowWE
We created an implementation of DiaFlux for the
knowledge-based system d3web [12]. DiaFlux offers
the possibility to model and execute protocols that em-
ploy declarative and inferential expressiveness provided by
d3web.

An AJAX-based editor for DiaFlux is integrated into the
Semantic Wiki KnowWE (cf. Figure 3), using its plugin
mechanism [13]. The DiaFlux editor is on the one hand
able to reuse ontological concepts that are readily available
in the wiki’s knowledge base. Those can simply be dragged
into the flowchart. Depending on the type of object (find-
ing, solution, DiaFlux model), a node of adequate type is
created. On the other hand, the application ontology can
be extended by creating new concepts from within the ed-
itor with an easy to use wizard. The model’s source code
is encoded in XML and integrated into the corresponding
wiki article and saved and versioned together with it. This
allows for further documentation of the protocol by tacit
knowledge in the article. When the article is displayed in
a web browser, the model visualization is rendered, instead
of displaying its XML source code.

A related wiki environment for the collaborative creation
of clinical guidelines is the Modelling Wiki (MoKi) [14],
based on Semantic Media Wiki [15]. Originally it was de-
signed for the creation of enterprise models using a visual
editor, but it also has been used in the Oncocure project [16]
to acquire clinical protocols for breast cancer treatment.
Therefore, templates were defined within the wiki and later
their content was exported into skeletal Asbru plans [17].
Though MoKi’s visual editing capabilities for business pro-



Figure 3: The main module of the sepsis diagnosis and treatment protocol, opened in the AJAX-based editor.

cesses, they were not employed to graphically model guide-
lines. Furthermore, the created Asbru plans are currently
not executable within the wiki.

Development Process
For the development of DiaFlux models we propose the
idea of the knowledge formalization continuum [2]: At
first, informal information can be collected in wiki arti-
cles, e.g. about goals of a protocol. During the next step, a
first semi-formal flowchart can be created using only com-
ment, start and exit nodes and connecting edges. At this
stage of formalization, the flowcharts can not be automat-
ically executed, but “manually”. For testing purposes the
user can run through the flowchart by clicking on that out-
going edge of the active node, he wants to continue the
pathway on. The taken pathway is highlighted for easier
tracking. This especially is useful, when parallelism or hi-
erarchically structured protocols are involved. The last step
is the formalization into a DiaFlux model and the creation
of the application ontology, resulting in a fully formalized
and executable knowledge base. By following this process
of gradual refinement, the entry barrier for domain special-
ists is quite low, while knowledge acquisition can start from
the beginning.

Graphical modeling languages as a mediator to extract
knowledge are also used in the IT-Socket of the research
project plugIT [18]. Compared to our process of gradual re-
finement within the same modeling language, the IT-Socket
employs semi-formal graphical models created by domains
specialists, that are later formalized on a different level of
abstraction.

Development Tools
Collaborative development requires to track the changes of
all participants. Therefore, a frequent task is to compare
different versions of a wiki article. For this purpose in gen-
eral, wikis provide a textual diff comparing two versions of

an article. As a diff of the XML source code is not very
helpful for comparing a visual artifact like a flowchart, a
more understandable diff is provided. On the one hand,
a textual summary of the added, removed, and changed
nodes and edges is generated. On the other hand, the previ-
ous and the current version of the DiaFlux model are shown
next to each other, highlighting the changes in different col-
ors for easy comparison, e.g. removed items are red in the
previous version, added items are green in the current one,
and changed items are highlighted in both versions.

After creating a knowledge base in KnowWE, a test ses-
sion can directly be started from the wiki article containing
it. Having used DiaFlux models, the current state of the
protocol throughout the session can be observed. The tra-
versed pathway through the flowchart is highlighted, in a
similar manner as in the visual diff (cf. Figure 2). This im-
mediate feedback considerably eases the interactive testing
of the knowledge base.

4 Case Study
In the context of the project “CliWE” we used a prototype
of the clinical wiki environment for the development of a
protocol covering the diagnosis and therapy of sepsis. Sep-
sis is a syndrome of a systemic inflammation of the whole
body. Despite the high mortality of this critical illness (30
to 60%) there are two main problems in sepsis therapy.
First, it is essential to recognize that a patient fulfills sepsis
criteria and second, if sepsis is diagnosed a complex med-
ical therapy has to be initiated quickly. Today, so called
patient data management systems are available in many in-
tensive care units. With these systems, medical data are
electronically available. In this context a clinical decision
support system may be a reasonable solution for the above
outlined practical problems, monitoring all patients for sep-
sis and support the physician in the initiation of sepsis treat-



Figure 4: An early semi-formal version of the sepsis protocol.

ment.
The knowledge base was developed in accordance to the

official guideline by the German Sepsis Society [19]. It is a
textual guideline of about 80 pages describing the preven-
tion, diagnosis, and therapy of sepsis. Our formalization
of the guideline contains so far the diagnostics and parts
of the therapy together with some common tasks for pa-
tient admission (cf. Figure 3). At the moment it contains
about 50 nodes in eight modules with several possible path-
ways, depending on how the diagnosis can exactly be es-
tablished and the course of the therapy. The upper part of
the main DiaFlux model contains knowledge about the de-
cision making and the lower part contains knowledge about
the treatment.

The diagnosis task involves the assessment of up to eight
clinical parameters (conducted in the modules “Septic pa-
rameters” and “Extended septic parameters”) and an estab-
lished or suspected infection. The monitoring is repeated
until a sepsis can be established within different cycles de-
pending on which parameters are acquired and their eval-
uation. If there is enough evidence to support a suspected
sepsis, then a warning to the clinician is generated. If the
clinician agrees with the conclusion, the diagnosis “Sep-
sis” is established and instructions for starting the therapy
are given. The treatment for sepsis consists of the three
bundles causal therapy (treating the cause of the infection),
supportive therapy (stabilizing the patients circulation) and
adjunctive therapy (supporting fighting off the infection).
Those bundles are modeled as self-contained modules and
reused as composed nodes in the main module.

Experiences
The knowledge acquisition mainly took place in two work-
shops, approximately six hours each, involving two domain
experts. The DiaFlux editor was handled by a knowledge
engineer, entering the knowledge artifacts provided by the
domain specialists. The remaining participants followed
the authoring process on a projector.

During the first session we followed the idea of the
knowledge formalization continuum and started with tex-
tual descriptions of most modules. As a second step, we
created semi-formal flowcharts giving an outline of the pro-
tocol, as exemplified in Figure 4. Next, we started to further
formalize these flowcharts into executable DiaFlux mod-
els and to create the according declarative knowledge. The
second session began with the acquisition of test cases of
typical sepsis patients. As they were only informally en-
tered in a wiki article and not executable so far, we stepped
manually through the model by highlighting the correct
pathway. The found inconsistencies were corrected during
the second half of the session, together with further elab-
oration of the knowledge base. In a third session of about

one hour, one of the experts created a small module by him-
self, while being observed by a knowledge engineer. The
expert shared his screen using an internet screen sharing
software and was supported in formalizing the knowledge
and the usage of the DiaFlux editor.

Overall, the wiki-based approach showed its applicabil-
ity and usefulness, as the combination of formal and in-
formal knowledge and its gradual refinement was intensely
used during the acquisition of the protocol and the test
cases. Further, the developed knowledge base was accessi-
ble to all participants immediately after the workshops, as
it took place in a password protected wiki, which can be
accessed over the internet.

So far, the knowledge acquisition was conducted in
workshops involving domain experts and knowledge engi-
neers. After the initial workshops and the successful tele-
knowledge acquisition session, we are confident to proceed
with further workshops, that require minimal support by
the knowledge engineers.

5 Conclusion

This paper presented work in the context of the project
“CliWE - Clinical Wiki Environments” for collaborative
development and evolution of clinical decision-support
systems. We introduced a language that can incorporate
declarative and procedural diagnostic knowledge for mod-
eling executable clinical protocols. Its main focus is sim-
plicity for the usage by domain specialists. DiaFlux is in-
tegrated into the Semantic Wiki KnowWE to support the
collaborative development by a community of experts. The
case study demonstrated the applicability and benefits of
the approach during the development of a clinical protocol
for sepsis diagnosis and treatment. Due to the wiki-based
approach the knowledge can evolve easily. It is accessi-
ble without depending on specialized software, as long as
an internet connection is available. Furthermore, domain
specialists can almost instantly start contributing. Formal-
ization of the knowledge can then happen at a later time,
after familiarizing with the semantics.

As next steps we plan the integration of refactoring ca-
pabilities into the editor, for the easier evolution of DiaFlux
models. We will also enhance the tool support for the grad-
ual formalization. As there rarely is only one single opinion
in medicine, we will support different “medical schools”
represented by the contributing experts by the possibility to
engineer variants of DiaFlux models. In the future, we are
planning the collaborative development by a community of
experts, connected by KnowWE.



References
[1] Schaffert, S., Bry, F., Baumeister, J., Kiesel, M.: Se-

mantic wikis. IEEE Software 25(4) (2008) 8–11
[2] Baumeister, J., Reutelshoefer, J., Puppe, F.: Con-

tinuous knowledge engineering with semantic wikis.
In: CMS’09: Proceedings of 7th Conference on Com-
puter Methods and Systems (Knowledge Engineering
and Intelligent Systems). (2009) 163–168

[3] Buffa, M., Gandon, F., Ereteo, G., Sander, P., Faron,
C.: SweetWiki: A semantic wiki. Web Semantics
8(1) (2008) 84–97

[4] Baumeister, J., Reutelshoefer, J., Puppe, F.: Markups
for knowledge wikis. In: SAAKM’07: Proceedings
of the Semantic Authoring, Annotation and Knowl-
edge Markup Workshop, Whistler, Canada (2007) 7–
14

[5] Hommersom, A., Groot, P., Lucas, P., Marcos, M.,
Martı́nez-Salvador, B.: A constraint-based approach
to medical guidelines and protocols. In Teije, A.t.,
Miksch, S., Lucas, P., eds.: Computer-based Medi-
cal Guidelines and Protocols: A Primer and Current
Trends. Volume 139 of Studies in Health Technology
and Informatics. IOS Press (2008) 213–222

[6] Boxwala, A.A., Peleg, M., Tu, S., Ogunyemi, O.,
Zeng, Q.T., Wang, D., Patel, V.L., Greenes, R.A.,
Shortliffe, E.H.: GLIF3: a representation format
for sharable computer-interpretable clinical practice
guidelines. J. of Biomedical Informatics 37(3) (2004)
147–161

[7] Fox, J., Johns, N., Rahmanzadeh, A.: Disseminat-
ing medical knowledge: the proforma approach. Ar-
tificial Intelligence in Medicine 14(1-2) (1998) 157 –
182 Selected Papers from AIME ’97.

[8] de Clercq, P., Kaiser, K., Hasman, A.: Computer-
interpretable guideline formalisms. In ten Teije, A.,
Miksch, S., Lucas, P., eds.: Computer-based Med-
ical Guidelines and Protocols: A Primer and Cur-
rent Trends. IOS Press, Amsterdam, The Netherlands
(2008) 22–43

[9] Peleg, M., Tu, S., Bury, J., Ciccarese, P., Fox, J.,
Greenes, R.A., Miksch, S., Quaglini, S., Seyfang,
A., Shortliffe, E.H., Stefanelli, M., et al.: Compar-
ing computer-interpretable guideline models: A case-
study approach. JAMIA 10 (2003) 2003

[10] Wang, D., Peleg, M., Tu, S., Boxwala, A., Greenes,
R., Patel, V., Shortliffe, E.: Representation primi-
tives, process models and patient data in computer-
interpretable clinical practice guidelines:: A literature
review of guideline representation models. Interna-
tional Journal of Medical Informatics 68(1-3) (2002)
59 – 70

[11] Baumeister, J., Reutelshoefer, J., Puppe, F.:
KnowWE: A semantic wiki for knowledge engineer-
ing. Applied Intelligence (2010)

[12] Baumeister, J., et al.: The knowledge model-
ing environment d3web.KnowME. open-source at:
http://d3web.sourceforge.net (2008)

[13] Reutelshoefer, J., Lemmerich, F., Haupt, F., Baumeis-
ter, J.: An extensible semantic wiki architecture. In:
SemWiki’09: Fourth Workshop on Semantic Wikis
– The Semantic Wiki Web (CEUR proceedings 464).
(2009)

[14] Ghidini, C., Kump, B., Lindstaedt, S.N., Mahbub, N.,
Pammer, V., Rospocher, M., Serafini, L.: MoKi:
The enterprise modelling wiki. In: ESWC’09: The
Semantic Web: Research and Applications. Volume
5554 of LNCS., Springer (2009) 831–835

[15] Krötzsch, M., Vrandecić, D., Völkel, M.: Semantic
MediaWiki. In: ISWC’06: Proceedings of the 5th
International Semantic Web Conference, LNAI 4273,
Berlin, Springer (2006) 935–942

[16] Eccher, C., Rospocher, M., Seyfang, A., Ferro, A.,
Miksch, S.: Modeling clinical protocols using Se-
mantic MediaWiki: the case of the oncocure project.
In: K4HelP: ECAI 2008 Workshop on the Knowledge
Management for Healthcare Processes, University of
Patras (2008) 20–24

[17] Miksch, S., Shahar, Y., Johnson, P.: Asbru: A task-
specific, intention-based, and time-oriented language
for representing skeletal plans. In: UK, Open Univer-
sity. (1997) 9–1

[18] Woitsch, R., Utz, W.: The IT-Socket: Model-based
business and IT alignment. In Weghorn, H., Isaı́as,
P.T., eds.: IADIS AC (1), IADIS Press (2009) 141–
148

[19] German Sepsis-Society: Sepsis guideline.
http://www.sepsis-gesellschaft.de/DSG/Englisch


